Symposium 2011: Unique Surface Analysis Instrumentation at Lehigh University

March 23, 2011  |  1:00 - 5:00 p.m.  |  Whitaker Auditorium 303 (Bldg. 5)

Click here to watch the lectures | Speaker bios | About the HS-LEIS & HR-XPS systems

Lehigh's Unique Surface Analysis Symposium was a success! Thank you to everyone who attended. Even though the symposium has come and gone, you can watch all the lectures below!

To learn more about the invited speakers as well as this exciting new technology and some of its emerging applications, see the descriptions below.


SYMPOSIUM LECTURES

 

Unique opportunities for new insight in the outer surfaces and interfaces by Low Energy Ion Scattering (LEIS)

Dr. Hidde Brongersma (inventor of the HS-LEIS)
Eindhoven University of Technology

Click here to download a copy of this presentation in PDF format

 

 

 

New Insights from LEIS about Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds

Dr. Israel E. Wachs
Lehigh University

Click here to download a copy of this presentation in PDF format

 

 

 

X-ray Photoelectron Spectroscopy (XPS) at Lehigh

Dr. Al Miller
Lehigh University

Click here to download a copy of this presentation in PDF format

 

 

 

Exploring glass surface with high-resolution XPS and LEIS:
Examples of Fundamental Studies and Applications

Dr. Andriy Kovalskiy
Lehigh University

Click here to download a copy of this presentation in PDF format




SPEAKER PROFILES

Featured Speaker: Dr. Hidde Brongersma, Eindhoven University of Technology
Unique opportunities for new insight in the outer surfaces and interfaces by Low Energy Ion Scattering (LEIS)
Hidde Brongersma studied both physics and chemistry at Leiden University, where he also received his PhD. During his career he has worked at the interface of physics and chemistry. After a postdoc at Caltech he joined Philips Electronics where he was at the cradle of Low Energy Ion Scattering (LEIS). During his time at Philips he directed research on the development of the compact disc, optical fibers, and a variety of high-end glass applications. Parallel to his industrial career, he was appointed as a professor of chemistry at Leiden University. Later he joined the faculty of physics at the Eindhoven University of Technology. This gave him the opportunity to further develop the LEIS technique and apply it to solve problems in a great variety of materials applications. He holds patents on the compact disc, optical fibers and on LEIS. In Eindhoven he directed large research efforts on catalysis, polymers, III-V semiconductors and ceramics, and was a member of the Board of two Centers of Excellence in The Netherlands. Brongersma received numerous awards, an honorary doctorate and the prestigious Jacob Kistemaker prize in physics. Most recently, he started a successful start-up company, Calipso, which was at the basis of the High-Sensitivity LEIS technique that is now further developed and marketed by ION-TOF in Germany. In 2010 he was appointed as a visiting professor at Imperial College in London.

Dr. Israel E. Wachs, Lehigh University
New Insights from LEIS about Anomolous Surface Compositions of Stoichiometric Mixed Oxide Compounds
Israel Wachs, G. Whitney Snyder professor of chemical engineering at Lehigh University, studies complex phenomena related to surface oxides. He has demonstrated that, for many two-component metal oxide systems, one metal oxide may be present as an atomically dispersed phase over a second metal oxide substrate. His research team systematically examines various structures of these atomically dispersed surface oxides on oxide substrates to determines the factors that control the metal oxide structure. Much of the structural information about surface oxides can be provided with modern laser Raman spectroscopy because of the dependence of the Raman spectrum on the structure of the scattering material. Another goal in his work is to define the relationship between surface oxide structures and their various physical and chemical properties. A better understanding of the synthesis and materials science/solid-state chemistry of the surface oxides is also emerging from this research program. The insight generated from this research has implications for metal oxide catalysts, ceramic materials, pigment materials, and electronic devices which find wide application in the pollution control industry, chemical industry, petroleum industry and the advanced materials industries. Professor Wachs' pioneering research on mixed metal oxide catalysts has been recognized by numerous scientific organizations (AIChE, ACS, EPA and multiple catalysis societies.)

Dr. Alfred Miller, Lehigh University
XPS at Lehigh-An Overview of the Scienta ESCA300 and Related Resources
Dr. Alfred Miller is a Lehigh research scientist with primary focus on the characterization of solid surfaces with a variety of modern analytical techniques. His interests include reactions at clean metal surfaces, surface segregation and the effects of surface treatments on the composition and chemistry of solid surfaces.

Dr. Andriy Kovalskyy, Lehigh University
Exploring glass surface with high resolution XPS and LEIS: examples of fundamental studies and applications
Andriy Kovalskyy has served as a research associate at Lehigh University since November 2004. He works in the field of glasses, amorphous thin films and nano/microfabrication. He earned his Ph.D. in solid state physics from National University in Lviv (Ukraine), as well as Bachelor's and Master's degrees in electronics from the same university. Dr. Kovalskyy has published more than 60 peer-reviewed papers and has co-authored 4 book chapters. He has also published more than 150 conference contributions and holds 6 patents. Andriy is a fellow of Deutscher Akademischer Austausch Dienst (DAAD) (Germany) and Mianowski Foundation (Poland). In his position at Lehigh, he provided technical support to research projects funded by the Army Research Laboratory, focusing on the development of novel gray-scale photoresists on thin films of chalcogenide glasses. His other scientific activity was in the field of glass structure by XPS and EXAFS, radiation-induced effects in glasses, electron-beam nanolithography, development of ultrathin Fresnel lenses and CVD growth of carbon nanotubes.


ABOUT THE HS-LEIS & HR-XPS SYSTEMS:

High Sensitivity Low Energy Ion Scattering (HS-LEIS) Spectroscopy

The only system of its kind in America, the new Qtac 100 High Sensitivity-Low Energy Ion Scattering (HS-LEIS) spectrometer system, complete with in situ pretreatment chambers, was recently installed at Lehigh University. This new machine utilizes a unique double toroidal electrostatic energy analyzer that provides 3,000 times higher sensitivity than conventional ion scattering spectrometers. Coupled with the existing Scienta ESCA-300 High Resolution-X-ray Photoelectron Spectrometer (HR-XPS) system, Lehigh University possesses unique and sophisticated surface characterization opportunities.

The Qtac100 is the new generation of LEIS instruments. It has been developed to include small spot analysis, surface imaging, and static and dynamic depth profiling, as well as 3000 times higher sensitivy than conventional LEIS instruments. This instrument provides the best quantitative look at the top atomic layer of materials.

For more information on HS-LEIS click here.


NIM Section B, 1992, 68, p207

High Resolution X-ray Photoelectron Spectroscopy (HR-XPS)

The Scienta ESCA 300 is generally regarded as one of the best XPS instruments in operation today. The sample chamber and/or attached chambers provide the ability to heat specimens to >1000°C without the use of electron bombardment, expose surfaces to various vacuum compatible reactant gases, deposit thin films from a precision Knudsen cell and monitor the thickness with a crystal monitor, monitor the vacuum with an RGA, fracture brittle samples in situ, sputter clean surfaces, and scrape surfaces in UHV. The sample entry chamber, which can have base pressures in the low 10 -8 torr range, can be used to carry out experiments at temperatures >400°C at pressures ranging from 10 -8 to 700 torr.