New Insights from LEIS about Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds^{*}

Israel E. Wachs

Operando Molecular Spectroscopy & Catalysis Laboratory Chemical Engineering Department Lehigh University, Bethlehem 18015 PA

*Angewandte Chemie 49 (2010) 8037-8041; S.V. Merzlikin, A.N. Tolkachev, L.E. Briand, T. Strunskus, C. Wöll, I.E. Wachs, W.Grünert

Heterogeneous Catalysis

- Catalysts accelerate chemical reactions and control relative activity of reaction pathways giving rise to enhanced selectivity
- Heterogeneous catalysis involves chemical reactions between gaseous or condensed molecules and solid surfaces of catalysts
- Molecules can <u>not</u> diffuse into bulk lattice of solid catalysts unless solids are porous (e.g., zeolites)
- Heterogeneous catalysis models for mixed oxides have traditionally <u>assume</u> that the catalyst surfaces are just truncations of the bulk lattice

Modern Surface Analysis Techniques

X-ray Photoelectron Spectroscopy (XPS): Provides composition and oxidation states, BUT averaged over <u>10–20 atomic layers (1-3 nm)</u>

Low Energy Ion Scattering (LEIS) Spectroscopy: Provides composition of <u>outermost surface layer</u> (0.2 nm), BUT no information about oxidation state

Combination of LEIS + Chemical Titration: Provides both composition and oxidation state information of the outer surface atoms

Consequences of Monolayer Sensitivity

LEIS 0.2 nm depth resolution: observes

XPS 1-3 nm depth resolution: observes

&

XPS "Surface" Analysis of Stoichiometric Oxides

Oxide (Me =)	XPS lines used	Stoichiometry Mo/Me (V/Me)	XPS "Surface" Mo/Me (V/Me)ª
ZrV ₂ O ₇ (Me = Zr)	V 2p _{3/2} // Zr 3d	2	2.0
AIVO ₄ (Me = AI)	V 2p _{3/2} // Al 2p	1	0.63
$Ce_8MO_{12}O_{49}$ (Me = Ce)	Mo 3d // Ce 3d	1.5	2.5
$Fe_2(MoO_4)_3$ (Me = Fe)	Mo 3d // Fe 2p	1.5	1.8
α -Bi ₂ Mo ₃ O ₁₂ (K) (Me = Bi)	Mo 3d // Bi 4f	1.5	1.7 (K : Bi = 0.09)
α-Bi ₂ Mo ₂ O ₉ (K) (Me = Bi)	Mo 3d // Bi 4f	1	1.4 (K : Bi = 0.10)
γ(H)-Bi ₂ MoO ₆ (K) (Me = Bi)	Mo 3d // Bi 4f	0.5	0.33 (K : Bi = 0.10)
Bi ₆ Mo ₂ O ₁₅ (K) (Me = Bi)	Mo 3d // Bi 4f	0.33	0.24 (K : Bi = 0.07)
Bi ₃₈ Mo ₇ O ₇₈ (K) (Me = Bi)	Mo 3d // Bi 4f	0.18	0.19 (K : Bi = 0.22)
γ(H)-Bi ₂ MoO ₆ (Me = Bi)	Mo 3d // Bi 4f	0.5	0.86
γ(L)-Bi ₂ MoO ₆ (Me = Bi)	Mo 3d // Bi 4f	0.5	0.43
α -Bi ₂ Mo ₃ O ₁₂ (Me = Bi)	Mo 3d // Bi 4f	1.5	1.1

Surface VOx Monolayer Present on ZrV₂O₇!

Surface VOx Monolayer Present on AIVO₄!

Surface MoOx Monolayer Present on Ce₈Mo₁₂O₄₉!

Surface MoOx Monolayer Present on $Fe_2(MoO_4)_3!$

2.3% MoO₃/Fe₂O₃

Surface of Bulk Bi-Mo-O Catalyst Does Not Possess Bi and Contaminated with K!

Bi

1.0

Conclusions

- Only LEIS provides <u>true surface</u> <u>compositions</u> of stoichiometric oxides
- Stoichiometric mixed oxide surfaces enriched in MoOx and VOx due to their low surface energy & surface diffusion (low Tammann Temperatures)

