Research
 

Our research focuses on surface oxides and has demonstrated that, for many two-component metal oxide systems, one metal oxide may be present as an atomically dispersed phase over a second metal oxide substrate. The state of the atomically dispersed metal oxide, the surface oxide, has a different structure from that of its bulk unsupported oxide counterpart. This structural difference usually results in very different chemical properties. Our studies have shown that a relationship exists between the metal oxide structure and its surface reactivity (reduction properties and catalytic activity or selectivity).

The complex structures of the atomically dispersed surface oxides are poorly understood. The focus of our program is therefore to examine systematically the various structures of these atomically dispersed surface oxides on oxide substrates and to determine the factors that control the metal oxide structure. Much of the structural information about surface oxides can be provided with modern laser Raman spectroscopy because of the dependence of the Raman spectrum on the structure of the scattering material.

Another of our goals is to define the relationship between surface oxide structures and their various physical and chemical properties. A better understanding of the synthesis and materials science/solid-state chemistry of the surface oxides is also emerging from this research program. The insight generated from this research has implications for metal oxide catalysts, ceramic materials, pigment materials, and electronic devices which find wide application in the pollution control industry, chemical industry, petroleum industry and the advanced materials industries.

Publications

These publications are copyrighted by their respective publishers. Single copies of individual articles may be made for private use or research. For any other use please contact the copyright owner. These articles may be removed at any time and distribution ceased.

2022 |2022 | 2021 | 2020 |
2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009
2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998
1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987
1986 | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 | 1979 | 1978 | 1977 | 1976

2023 [top]

Overview of the catalytic properties of bulk unsupported and supported group 4-5-6 oxides,  I. E. Wachs, Catal. Today, 2024, 431, 114596.

Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields,  K. Zhao, Y. Gao, Z. Wang, B. Mosevitzky Lis, J. Liu, B. Jin, J. Smith, C. Huang, W. Gao, X. Wang, X. Wang, A. Zheng, Z. Huang, J. Hu, R. Schomacker, I. E. Wachs, F. Li, Nat. Commun., 2023, 14, 7749.

Olefin Metathesis over Supported MoOx catalysts: Influence of the Oxide Support,  B. Zhang, M. E. Ford, I. E. Wachs, Catal. Science Technology, 2023, 13, 217-225.

2022 [top]

Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol,  D. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu, I. E. Wachs, M. Zhu, Nature Catalysis, 2022, XX, XXX-XXX.

Assignment of Vibrational Bands of Critical Surface Species Containing Nitrogen in the Selective Catalytic Reduction of NO by NH3,  M. M. Mason, I. E. Wachs, D. A. Dixon, J. Phys. Chem. A, 2022, 127, 240-249.

Resolving the Oxygen Species on Ozone Activated AgAu Alloy Catalysts for Oxidative Methanol Coupling,  T. Pu, J.-M. Jehng, A. Setiawan, B. Mosevitzky Lis, M. E. Ford, S. Rangarajan, I. E. Wachs, J. Phys. Chem. C, 2022, 126, 21568-21575.

Progress in Catalysis by Mixed Oxides: From Confusion to Catalysis Science,  I. E. Wachs, Catal. Today, 2022, 400, XXX-XXX.

CO2-Assisted Oxidative Dehydrogenation of Propane over VOx/In2O3 Catalysts: Interplay between Redox Property and Acid-Base Interaction,  X. Jiang, B. Mosevitzky Lis, S. Purdy, S. Paladugu, V. Fung, W. Quan, Z. Bao, B. Sumpter, K. Page, Katharine, I. E. Wachs, Z. Wu, ACS Catal., 2022, 12, 11239-11252.

Molecular Structure and Catalytic Promotional Effect of Mn on Supported Na2WO4/SiO2 Catalysts for Oxidative Coupling of Methane (OCM) Reaction,  S. Sourav, D. Kiani, Y. Wang, J. Baltrusaitis, R. R. Fushimi, I. E. Wachs, Catal. Today, 2022, XX, XXX-XXX.

Dependency of CO2 Methanation on the Strong Metal-Support Interaction for Supported Ni/CeO2 Catalysts,  T. Pu, J. Chen, W. Tu, J. Xu, Y-F. Han, I. E. Wachs, M. Zhu, J. Catal., 2022, 413, 821-828.

Nature and Reactivity of Oxygen Species on/in Silver Catalysts during Ethylene Oxidation,  T. Pu, A. Setiawan, B. Mosevitzky Lis, M. Zhu, M. E. Ford, S. Rangarajan, I. E. Wachs, ACS Catal., 2022, 12, 4375-4381.

Redox Dynamics of Active VOx Sites Promoted by TiOx during Oxidative Dehydrogenation of Ethanol Detected by Operando Quick XAS,  A. Zabilska, A. H. Clark, B. M. Moskowitz, I. E. Wachs, Y. Kakiuchi, C. Coperet, M. Nachtegaal, O. Krocher, O. V. Safonova, JACS Au, 2022, 2, 762-776.

Molecular Design of Supported MoOx Catalysts with Surface TaOx Promotion for Olefin Metathesis,  B. Zhang, S. Xiang, A. I. Frenkel, I. E. Wachs, ACS Catalysis, 2022, 12, 3226-3237.

Effect of redox promoters (CeOx and CuOx) and surface sulfates on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts,  M. Guo, B. Mosevitzky Lis, M. E. Ford, C. Liu, Q. Liu, I. E. Wachs, Appl. Catal. B: Environmental, 2022, 306, 121128-1.

The effect of non-redox promoters (AlOx, POx, SiOx and ZrOx) on the supported V2O5-WO3/TiO2 catalysts for selective catalytic reduction of NO with NH3,  M. Guo, B. Mosevitzky Lis, M. E. Ford, C. Liu, Q. Liu, I. E. Wachs, Appl. Catal. B: Environmental, 2022, 306, 121128-2.

2021 [top]

Structure-Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during Reverse Water-Gas Shift Reaction,  M. Gu, S. Dai, R. Qiu, M. E. Ford, C. Cao, I. E. Wachs, M. Zhu, ACS Catalysis, 2021, 11, 12609-12619.

Structure-Activity Relationships of Hydrothermally Aged Titania-Supported Vanadium-Tungsten Oxide Catalysts for SCR of NOx Emissions with NH3,  J. K. Lai, N. R. Jaegers, B. Mosevitzky Lis, M. Guo, M. E. Ford, E. Walter, Y. Wang, J. Z. Hu, I. E. Wachs, ACS Catalysis, 2021, 11, 12096-12111.

New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na2WO4/SiO2 Catalysts,  S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R. R. Fushimi, I. E. Wachs, Angewandte Chemie, 2021, 60, 21502-21511.

Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 Catalysts for Oxidative Coupling of Methane,  S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R. R. Fushimi, I. E. Wachs, ACS Catalysis, 2021, 11, 10288-10293.

Elucidating the Effects of Mn Promotion on SiO2-Supported Na-Promoted Tungsten Oxide Catalysts for Oxidative Coupling of Methane (OCM),  D. Kiani, S. Sourav, J. Baltrusaitis, I. E. Wachs, ACS Catalysis, 2021, 11, 10131-10137.

Impact of Hydration on Supported V2O5/TiO2 Catalysts as Explored by Magnetic Resonance Spectroscopy,  N. R. Jaegers, Y. Wang, J. Z. Hu, I. E. Wachs, Journal of Physical Chemistry C, 2021, 125, 16766-16775.

Formation and influence of surface hydroxyls on product selectivity during CO2 hydrogenation by Ni/SiO2 catalysts,  T. Pu, L. Shen, X. Liu, X. Cao, J. Xu, I. E. Wachs, M. Zhu, Journal of Catalysis, 2021, 400, 228-233.

Role of Cr in Cr-Fe oxide catalysts for high temperature water-gas shift reaction - A DFT study,  O. Yalcin, I. E. Wachs and I. Onal, International Journal of Hydrogen Energy, 2021, 46 (33), 17154-17162.

Tuning the Number of Active Sites and Turnover Frequencies by Surface Modified Supported ReO4/(SiO2-Al2O3) Catalysts for Olefin Metathesis,  B. Zhang, S. Lwin, S, Xiang, A. I. Frenkel and I. E. Wachs, ACS Catalysis, 2021, 11, 2412-2421.

Identifying the Catalytic Active Site for Propylene Metathesis by Supported ReOx Catalysts,  B. Zhang and I. E. Wachs, ACS Catalysis, 2021, 11, 1962-1976.

Methane Activation by ZSM-5-Supported Transition Metal Centers,  D. Kiani, S. Sourav, Y. Tang, J. Baltrusaitis and I. E. Wachs, Chemical Society Reviews, 2021, 50, 1251-1268. Invited

Experimental Methods in Chemical Engineering: Temperature Programmed Surface Reaction Spectroscopy-TPSR,  J.-M. Jehng, I. E. Wachs, G. S. Patience and Y.-M. Dai, Canadian Journal of Chemical Engineering, 2021, 99, 423-434. Invited

2020 [top]

Initial Steps in Selective Catalytic Reduction of NO with NH3 by TiO2-Supported Vanadium Oxides,  M. M. Mason, Z. R. Lee, M. Vasiliu, I. E. Wachs and D. A. Dixon, ACS Catalysis, 2020, 10, 13918-13931.

Nature of Reactive Oxygen Intermediates on Copper-Promoted Iron-Chromium Oxide Catalysts during CO2 Activation,  M. Zhu, P. Tian, M. E. Ford, J. Chen, J. Xu, Y-F. Han and I. E. Wachs, ACS Catalysis, 2020, 10, 7857-7863.

Probing the surface of promoted CuO-Cr2O3-Fe2O3 catalysts during CO2 activation,  M. Zhu, J. Chen, L. Shen, M. E. Ford, J. Gao, J. Xu, I. E. Wachs and Y-F. Han, Applied Catalysis B: Environmental, 2020, 271, 1-6.

Synthesis and Molecular Structure of model silica-supported tungsten oxide catalysts for oxidative coupling of methane (OCM),  D. Kiani, S. Sourav, I. E. Wachs and J. Baltrusaitis, Catalysis Science & Technology, 2020, 10, 3334-3345.

Existence and Properties of Isolated Catalytic Sites on the Surface of β-Cristobalite-Supported, Doped Tungsten Oxide Catalysts (WOx/β-SiO2, Na-WOx/β-SiO2, Mn-WOx/β-SiO2) for Oxidative Coupling of Methane (OCM): A Combined Periodic DFT and Experimental Study,  D. Kiani, S. Sourav, W. Taifan, M. Calatayud, F. Tielens, I. E. Wachs and J. Baltrusaitis, ACS Catalysis, 2020, 10, 4580-4592.

Cr-Free, Cu Promoted Fe Oxide-Based Catalysts for High-Temperature Water-Gas Shift (HT-WGS) Reaction,  S. Sourav and I. E. Wachs, Catalysts, 2020, 10 (3), 305. Invited

Role of Local Structure on Catalytic Reactivity: Comparison of Methanol Oxidation by Aqueous Bioinorganic Enzyme Mimic (Vanadium Haloperoxidase) and Vanadia-Based Heterogeneous Catalyst (Supported VO4/SiO2),  O. Yalcin, J. E. Molinari Erwin, D. Gerceker, I. Onal and I. E. Wachs, ACS Catalysis, 2020, 10 (2), 1566-1574.

Activation and deactivation of the commercial-type CuO-Cr2O3-Fe2O3 high temperature shift catalyst,  M. Zhu, P. Tian, J. Chen, M. E. Ford, J. Xu, I. E. Wachs and Y-F. Han, AIChE J., 2020, 66:e16846.

2019 [top]

Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts,  T. Pu, H. Tian, M. E. Ford, S. Rangarajan and I. E. Wachs, ACS Catalysis, 2019, 9, 10727-10750.

Molybdenum Oxide, Oxycarbide, and Carbide: Controlling the Dynamic Composition, Size, and Catalytic Activity of Zeolite-Supported Nanostructures,  Y. Zheng, Y. Tang, J. R. Gallagher, J. Gao, J. T. Miller, I. E. Wachs and S. G. Podkolzin Journal of Physical Chemistry C , 2019, 123, 22281-22292.

Oxidative Coupling of Methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na,  D. Kiani, S. Sourav, J. Baltrusaitis and I. E. Wachs, ACS Catalysis, 2019, 9, 5912-5928.

Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction,  Prof. M. Zhu, Dr. P. Tian, R. Kurtz, Prof. T. Lunkenbein, Prof. J. Xu, Prof. R. Schlogl, Prof. I. E. Wachs and Prof. Y. Han Angewandte Chemie , 2019, 58, 9083-9087.

Mechanism by which Tungsten Oxide Promotes the Activity of Supported V2O5/TiO2 Catalysts for NOX Abatement: Structural Effects Revealed by 51V MAS NMR Spectroscopy,  N. R. Jaegers, J-K Lai, Y. He, K. T. Mueller, I. E. Wachs, Y. Wang and J. Z. Hu Angewandte Chemie , 2019, 58, 2-10.

Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper–Chromium–Iron Oxide Catalyst,  F. Polo-Garzon, V. Fung, L. Nguyen, Y. Tang, F. Tao, Y. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta, G. S. Foo, M. Zhu, I. E. Wachs, D. Jiang and Z. Wu, JACS , 2019, 141, 7990-7999.

Activation Mechanism and Surface Intermediates during Olefin Metathesis by supported MoOx/Al2O3 catalyst,  A. Chakrabarti and I. E. Wachs, Jornal of Physical Chemistry C, 2019, 123, 12367-12375.

Critical review on the active site structure of sulfated zirconia catalysts and prospects in fuel production,  G. X. Yan, A. Wang, I. E. Wachs and J. Baltrusaitis, Applied Catalysis A: General, 2019, 572, 210-225.

2018 [top]

Pyrolysis of Cellulose Fraction of Biomass in the Presence of Solid Acid Catalysts: An Operando Spectroscopy and Theoratical Investigation,  C. J. Keturakis, O. B. Lapina, A. A. Shubin, V. V. Terskikh, E. Papulovskiy, I. V. Yudaev, E. A. Paukshtis and I. E. Wachs, ChemSusChem, 2018, 11, 4044-4059.

Photocatalytic Methanol Oxidation by Supported Vanadium Oxide Species: Influence of Support and Degree of Oligomerization, B. Kortewille, I.E. Wachs, N. Cibura, O. Pfingsten, G. Bacher, M. Muhler and J. Strunk, Europian Journal of Inorganic Chemistry, 2018, 33, 3725-3735.

A Perspective on Chromium-Free Iron Oxide-Based Catalysts for High Temperature Water-Gas Shift Reaction, M. Zhu and I.E. Wachs, Catalysis Today, 2018, 311, 2-7.

Anatomy of a Visible Light Activated Photocatalyst for Water Splitting, S. P. Phivilay, C. A. Roberts, A. D. Gamalski, E. A. Stach, S. Zhang, L. Nguyen, Y. Tang, A. Xiong, A. A. Puretzky, F. F. Tao, K. Domen, and Israel E. Wachs, ACS Catalysis, 2018, 8, 6650-6658.

A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH3 by Supported V2O5−WO3/TiO2 Catalysts, J.-K. Lai, and I.E. Wachs, ACS Catalysis, 2018, 8, 6537-6551.

Nature of surface oxygen intermediates on TiO2 during photocatalytic splitting of water, C. A. Roberts, S. P. Phivilay, and I.E. Wachs, Chinese Chemical Letters, 2018, 29, 769-772.

Proof of Equivalent Catalytic Functionality upon Photon‐Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation, B. Kortewille, I.E. Wachs, N. Cibura, O. Pfingsten, G. Bacher, M. Muhler, and J. Strunk, ChemCatChem, 2018, 10, 2360-2364.

Revealing structure-activity relationships in chromium free high temperature shift catalysts promoted by earth abundant elements, M. Zhu, Ö. Yalçin, and I.E. Wachs, Applied Catalysis B: Environmental, 2018, 232, 205-212.

Molecular structure and sour gas surface chemistry of supported K2O/WO3/Al2O3 catalysts, M. Zhu, B. Li, J.-K. Jehng, L. Sharma, J. Taborda, L. Jhang, E. Stach, I.E. Wachs, Z. Wu, and J. Baltrusaitis, Applied Catalysis B: Environmental, 2018, 232, 146-154.

Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts, M. Zhu, J.-K. Lai, and I.E. Wachs, Applied Catalysis B: Environmental, 2018, 224, 836-840.

Molecular Structure-Reactivity Relationships for Olefin Metathesis by Al2O3-Supported Surface MoOx Sites, A. Chakrabarti and I.E. Wachs, ACS Catalysis, 2018, 8, 949-959.

2017 [top]

Reaction Pathways and Kinetics for Selective Catalytic Reduction (SCR) of Acidic NOx Emissions from Power Plants with NH3, M. Zhu, J.-K. Lai, U. Tumuluri, M.E. Ford, Z. Wu, and I.E. Wachs, ACS Catalysis, 2017, 7, 8358-8361.

Nature of Active Sites and Surface Intermediates for SCR of NO with NH3 by Supported V2O5-WO3/TiO2 Catalysts, M. Zhu, J.-K. Lai, U. Tumuluri, Z. Wu, and I.E. Wachs, Journal of the American Chemical Society, 2017, 139, 15624-15627.

Vibrational Spectroscopy of Oxide Overlayers, J. Struck, M.A. Banares, and I.E. Wachs, Topics in Catalysis, 2017, 60, 1577-1617.

Catalyst Activation and Kinetics for Propylene Metathesis by Supported WOx/SiO2 Catalysts, S. Lwin and I.E. Wachs, ACS Catalysis, 2017, 7, 573-580.

Nature of Catalytically Active Sites in the Supported WO3/ZrO2 Solid Acid System: A Current Perspective, W. Zhou, N. Soultanidis, H. Xu, M.S. Wong, M. Neurock, C.J. Kiely, I.E. Wachs, ACS Catalysis, 2017, 7, 2181-2198.

Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field 51V Magic-Angle Spinning NMR, N.R. Jaegers, C. Wan, M.Y. Hu, M. Vasiliu, D.A. Dixon, E. Walter, I.E. Wachs, Y. Wang, J.Z. Hu, ACS Catalysis, 2017, 121, 6246-6254.

A decade+ of operando spectroscopy studies, A. Chakrabarti, M.E. Ford, D. Gregory, R. Hu, C.J. Keturakis, S. Lwin, Y. Tang, Z. Yang, M. Zhu, M.A. Banares, I.E. Wachs, Catalysis Today, 2017, 283, 27-53.

2016 [top]

Surface Structure and Photocatalytic Properties of Bi2WO6 Nanoplatelets Modified by Molybdena Islands from Chemical Vapor Deposition, A. Dittmer, J. Menze, B. Mei, J. Strunk, H.S. Luftman, R. Gutkowski, I.E. Wachs, W. Schuhmann, M. Muhler, Journal of Physical Chemistry, 2016, 120, 18191-18200.

Dynamics of CrO3-Fe2O3 Catalysts during the High-Temperature Water-Gas Shift Reaction: Molecular Structures and Reactivity, C.J. Keturakis, M. Zhu, E.K. Gibson, M. Daturi, F. Tao, A.I. Frenkel, I.E. Wachs, ACS Catalysis, 2016, 6, 4786-4798.

Revisiting formic acid decomposition on metallic powder catalysts: Exploding the HCOOH decomposition volcano curve, Y. Tang, C.A. Roberts, R.T. Perkins, I.E. Wachs, Surface Science, 2016, 650, 103-110.

Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts, Y. He, M.E. Ford, M. Zhu, Q. Liu, U. Tumuluri, Z. Wu, I.E. Wachs, Applied Catalysis B: Environmental, 2016, 193, 141-150.

Nature of WOx Sites on SiO2 and Their Molecular Structure - Reactivity/Selectivity Relationships for Propylene Metathesis, S. Lwin, Y. Li, A.I. Frenkel, I.E. Wachs, ACS Catalysis, 2016, 6, 3061-3071.

Operando Molecular Spectroscopy During Ethylene Polymerization by Supported CrOx/SiO2 Catalysts: Active Sites, Reaction Intermediates, and Structure-Activity Relationship, A. Chakrabarti, M. Gierada, J. Handzlik, I.E. Wachs, Topics in Catalysis, 2016, 59, 725-739.

Analysis of Corrosion Layers in Ancient Roman Silver Coins with High Resolution Surface Spectroscopic Techniques, C.J. Keturakis, B. Notis, A. Blenheim, A.C. Miller, R. Pafcheck, M.R. Notis, I.E. Wachs, Applied Surface Science, 2016, 376, 241-251.

Resolving the Reaction Mechanism for H2 Formation from High-Temperature Water-Gas Shift by Chromium-Iron Oxide Catalysts, M. Zhu and I.E. Wachs, ACS Catalysis, 2016, 6, 2827-2830.

Determining Number of Active Sites and TOF for the High-Temperature Water Gas Shift Reaction by Iron Oxide-Based Catalysts, M. Zhu and I.E. Wachs, ACS Catalysis, 2016, 6, 1764-1767.

Iron-Based Catalysts for High-Temperature Water-Gas Shift (HT-WGS) Reaction: A Review, M. Zhu and I.E. Wachs, ACS Catalysis, 2016, 6, 722-732.

Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method, Y. He, M.E. Ford, M. Zhu, Q. Liu, Z. Wu, I.E. Wachs, Applied Catalysis B: Environmental, 2016, 188, 123-133.

Reaction Mechanism and Kinetics of Olefin Metathesis by Supported ReOx/Al2O3 Catalysts, S. Lwin and I. E. Wachs, ACS Catalysis, 2016, 6, 272-278.

2015 [top]

Determination of Number of Activated Sites Present during Olefin Metathesis by Supported ReOx/Al2O3 Catalysts, S. Lwin and I. E. Wachs, ACS Catalysis, 2015, 5, 6823-6827.

Activation of Surface ReOx Sites on Al2O3 Catalysts for Olefin Metathesis, S. Lwin, Y. Li, A. I. Frenkel, I. E. Wachs, ACS Catalysis, 2015, 5, 6807-6814.

Spectroscopic and Computational Study of Cr Oxide Structures and Their Anchoring Sites on ZSM-5 Zeolites, J. Gao, Y. Zheng, Y. Tang, J.-M. Jehng, R. Grybos, J. Handzlik, I. E. Wachs, and S. G. Podkolzin, ACS Catalysis, 2015, 5, 3078-3092.

Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion, J. Gao, Y. Zheng, J.-M. Jehng, Y. Tang, I. E. Wachs, S. G. Podkolzin, Science, 2015, 348, 686-690.

The Nature of Surface CrOx Sites on SiO2 in Different Environments, A. Chakrabarti and I. E. Wachs, Catalysis Letters, 2015, 145, 985-994.

Surface ReOx Sites on Al2O3 and their Molecular Structure-Reactivity Relationships for Olefin Metathesis, S. Lwin, C. Keturakis, J. Handzlik, P. Sautet, Y. Li, A. I. Frenkel, I. E. Wachs, ACS Catalysis, 2015, 5, 1432-1444.

2014 [top]

Monitoring Solid Oxide CO2 Capture Sorbents in Action, C. J. Keturakis, F. Ni, M. Spicer, M. G. Beaver, H. S. Caram, I. E. Wachs, ChemSusChem, 2014, 7, 3459-3466.

Structure of Mo2Cx and Mo4Cx Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM-5 Zeolites, Jie Gao, Yiteng Zheng, George B. Fitzgerald, Jason de Joannis, Yadan Tang, Israel E. Wachs, and Simon G. Podkolzin, J. Phys. Chem. C, 2014, 118, 4670−4679.

A critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts, Carlos A. Carrero, Robert Schlögl, Israel E. Wachs, and Reinhard Schomaecker, ACS Catalysis, 2014, 4, 3357−3380.

Olefin Metathesis by Supported Metal Oxide Catalysts, Soe Lwin and Israel E. Wachs, ACS Catalysis, 2014, 4, 2505-2520.

 

2013 [top]

Monolayer Systems, I. E. Wachs and C. J. Keturakis, in Comprehensive Inorganic Chemistry II, Schlogl, R., Ed.; Elsevier Publishing, 2013, Chapter 7.06, 131-15.

How Strain Affects the Reactivity of Surface Metal Oxide Catalysts, K. Amakawa, L. Sun, C. Guo, M. Havecker, P. Kube, I. Wachs, S. Lwin, A. Frenkel, A. Patlolla, K. Hermann, R. Schlogl, and A. Trunschke Angewandte Chemie, 2013, 52, 1-6.

Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts, S. P. Phivilay, A. A. Puretzky, K. Domen, and I. E. Wachs, ACS Catalysis, 2013, 3, 2920-2929.

Fundamental Bulk/Surface Structure – Photoactivity Relationships of Supported (Rh2-yCryO3)/GaN Photocatalysts, S. P. Phivilay, C. A. Roberts, A. A. Puretzky, K. Domen, and I. E. Wachs, JPC Letters, 2013, 4, 3719-3724.

Reporting of Reactivity for Heterogeneous Photocatalysis, I. E. Wachs, S. P. Phivilay, and C. A. Roberts, ACS Catalysis, 2013, 3, 2606-2611.

Anomalous Reactivity of Supported V2O5 Nanoparticles for Propane Oxidative Dehydrogenation: Influence of the Vanadium Oxide Precursor, C. A. Carrero, C. J. Keturakis, A. Orrego, R. Schomäker, I. E. Wachs, Dalton Transactions, 2013, 42, 12644-12653

Catalysis Science of Supported Vanadium Oxide Catalysts, Israel E. Wachs, Dalton Transactions, 2013, 42, 11762-11769

 

2012 [top]

Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes, J. Landon, E. Demeter, N. Inoglu, C. Keturakis, I. E. Wachs, R. Vasic, A. I. Frenkel, J. R. Kitchin, ACS Catalysis, 2012, 2, 1793-1801.

Catalysis Science of Bulk Mixed Oxides, Israel E. Wachs and Kamalakanta Routray; ACS Catalysis, 2012, 2 (6), pp 1235-1246.

Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy, Zhou, Wu; Wachs, Israel E.; Kiely, Christopher J.; Current Opinion in Solid State & Materials Science, 2012, 16 (1), pp 10–22

 

2011 [top]

New Catalyst Research Instrumentation is Allowing for Quantitative Atomic Composition of the Outermost, Top-Surface Layer of Heterogeneous Catalysts and Sorbents, Wachs, Israel E. The Catalyst Review, Sept. 2011

Aberration-corrected Analytical Microscopy Characterization of Double-Supported WO3/TiO2/SiO2 Solid Acid Catalysts, Zhou, Wu; Doura, Kevin F.; Watanabe, Masashi; Herzing, Andrew A.; Okunishi, Eiji; Ross-Medgaarden, Elizabeth I.; Wachs, Israel E.; Kiely, Christopher J; ChemCatChem, 2011, 3 (6), pp 1045–1050

Dynamic Surface Structures and Reactivity of Vanadium-Containing Molybdophosphoric Acid (H3+xPMo12–xVxO40) Keggin Catalysts during Methanol Oxidation and Dehydration, Julie E. Molinari, Lingaiah Nakka, Taejin Kim, and Israel E. Wachs, ACS Catal., 2011, 1 (11), pp 1536–1548

Catalysis Science of Methanol Oxidation over Iron Vanadate Catalysts: Nature of the Catalytic Active Sites, Kamalakanta Routray, Wu Zhou, Christopher J. Kiely, and Israel E. Wachs, ACS: Catalysis, 2011, 1, 54-66

The generality of surface vanadium oxide phases in mixed oxide catalysts, Wachs, Israel E., Applied Catalysis A: General, 2011, 391, 1-2, 36-42

 

2010 [top]

Comparison of catalytic active sites present in supported MOx/SiO2, MOx/AlOx/SiO2 and MOx/ZSM-5 catalysts, Lee, E. L. and Wachs, I. E., in Silica and Silicates in Modern Catalysis, I. Halasz, Ed., 2010

Raman Spectroscopy of Catalysts, M.A. Banares and I. E. Wachs, in Encyclopedia of Analytical Chemistry; Wiley Publishing, 2010.

Monitoring Surface Metal Oxide Catalytic Active Sites with Raman Spectroscopy, Wachs, Israel E., Roberts, Charles A., Chemical Society Reviews, 2010, 39 (12), 5002-5017

Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds, Sergiy V. Merzlikin, Nikolay N. Tolkachev, Laura E. Briand, Thomas Strunskus, Christof Wöll, Israel E. Wachs, Wolfgang Grünert, Angewandte Chemie International Edition 2010, 49 (43), 8037-8041

Relating n-Pentane Isomerization Activity to the Tungsten Surface Density of WOx/ZrO2, Nikolaos Soultanidis, Wu Zhou, Antonis C. Psarras, Alejandro J. Gonzalez, Eleni F. Iliopoulou, Christopher J. Kiely, Israel E. Wachs, and Michael S. Wong, J. Am. Chem. Soc. 2010, 132 (38), 13462–13471

Presence of Surface Vanadium Peroxo-oxo Umbrella Structures in Supported Vanadium Oxide Catalysts: Fact or Fiction?, Julie E. Molinari and Israel E. Wachs, J. Am. Chem. Soc., 2010, 132 (36), 12559–12561

Molecular Structural Determination of Molybdena in Different Environments: Aqueous Solutions, Bulk Mixed Oxides, and Supported MoO3 Catalysts, Hanjing Tian, Charles A. Roberts and Israel E. Wachs, J. Phys. Chem. C, 2010, 114 (33), 14110–14120

Revealing Structure-Activity Relationships in Model Double-Supported WO3/TiO2/SiO2 Solid Acid Catalysts by Atomic Scale Characterization, W. Zhou, E. I. Ross-Medgaarden, K. F. Doura, M. Watanabe, I. E. Wachs and C. J. Kiely, Microscopy and Microanalysis, 2010, 16, 1446-1447

Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde, Kamalakanta Routray, Wu Zhou, Christopher J. Kiely, Wolfgang Grünert and Israel E. Wachs, Journal of Catalysis, 2010, 275 (1), 84-98

Characterization of Hydrothermally Prepared Titanate Nanotube Powders by Ambient and In Situ Raman Spectroscopy, Kim, Sun-Jae; Yun, Yeong-Ung; Oh, Hyo-Jin; Hong, Sung Ho; Roberts, Charles A.; Routray, Kamalakanta; Wachs, Israel E., J. Phys. Chem. Letters, 2010, 1, 130-135

 

2009 [top]

Use of Oxide Ligands in Designing Catalytic Active Sites, Lee, E. L. and Wachs, I.E., in Design of Heterogeneous Catalysts: New Approaches based on Synthesis, Characterization and Modeling, U. Ozkon, Ed., Wiley Publishing, 2009, Chapter 1.

Supported Metal Oxide Catalysts: Molecular/Electronic Structure-Activity/Selectivity Relationships, Kim, Taejin. and Wachs, I.E., in Metal Oxide Catalysis, J. Hargreaves and S. D. Jackson, Eds., Wiley Publishing, 2009, Chapter 11.

Identification of active Zr–WOx clusters on a ZrO2 support for solid acid catalysts, Wu Zhou, Elizabeth I. Ross-Medgaarden, William V. Knowles, Michael S. Wong, Israel E. Wachs & Christopher J. Kiely, Nature Chemistry, 2009, 1, 722 - 728
Surface and Bulk Aspects of Mixed Oxide Catalytic Nanoparticles: Oxidation and Dehydration of CH3OH by Polyoxometallates, Nakka, Lingaiah; Molinari, Julie E.; Wachs, Israel E., Journal of the American Chemical Society, 2009, 131(42), 15544-15554.
Applications of High Sensitivity Low Energy Ion Scattering (HS-LEIS) in Heterogeneous Catalysis, H.R.J. ter Veen, T. Kim, I.E. Wachs and H. Brongersma, Catalysis Today2009, 140(3-4), 197-201.
 
Insights into Oxygen Exchange Between Gaseous O2 and Supported Vanadium Oxide Catalysts via 17O NMR, Klug, Christopher A.; Kroeker, Scott; Aguiar, Pedro M.; Zhou, Min; Stec, Donald F.; Wachs, Israel E., Chemistry of Materials, 2009, 21(18), 4127-4134.
Tuning the Electronic and Molecular Structures of Catalytic Active Sites with Titania Nanoligands, Ross-Medgaarden, Elizabeth I.; Wachs, Israel E.; Knowles, William V.; Burrows, Andrew; Kiely, Christopher J.; Wong, Michael S., Journal of the American Chemical Society, 2009, 131(2), 680-687.

 

2008 [top]

An Operando Raman, IR, and TPSR Spectroscopic Investigation of the Selective Oxidation of Propylene to Acrolein over a Model Supported Vanadium Oxide Monolayer Catalyst, Zhao, Chunli; Wachs, Israel E., Journal of Physical Chemistry C2008, 112(30), 11363-11372.

Structural characterization of WO3/ZrO2 catalysts using HAADF imaging,W. Zhou, E.I. Ross-Medgaarden, I.E. Wachs, C.J. Kiely, Microscopy and Microanalysis, 2008, 14, 1350-1351

In situ UV-Raman study on soot combustion over TiO2 or ZrO2-supported vanadium oxide catalysts, J. Liu, Z. Zhao, C. Xu, A. Duan, G. Jiang, J. Gao, W. Lin and I.E. Wachs, Sci. China Ser. B-Chem., 2008, 51, 551-561

Is there a relationship between the M=O bond length (strength) of bulk mixed metal oxides and catalytic activity?, Kamalakantra Routray, Laura E. Briand and Israel E. Wachs, Journal of Catalysis2008, 256(1), 145-153.

Probing Metal-Support Interactions under Oxidizing and Reducing Conditions: In Situ Raman and Infrared Spectroscopic and Scanning Transmission Electron Microscopic-X-ray Energy-Dispersive Spectroscopic Investigation of Supported Platinum Catalysts, Wenyong Lin, Andrew Herzig, Christopher J. Kiely and Israel E. Wachs, Journal of Physical Chemistry C2008, 112(15), 5942-5951.

CH3OH oxidation over well-defined supported V2O5/Al2O3 catalysts: Influence of vanadium oxide loading and surface vanadium-oxygen functionalities, Kim, Taejin; Wachs, Israel E., Journal of Catalysis (2008), 255(2), 197-205.

In Situ Raman Spectroscopy of SiO2 supported transition metal oxide catalysts: an isotopic 18O-16O exchange study, E. L. Lee and I.E. Wachs, Journal of Physical Chemistry C, 2008, 112(16), 6487-6498.

Influence of Vanadium Location in Titania Supported Vanadomolybdophosphoric Acid Catalysts and Its Effect on the Oxidation and Ammoxidation Functionalities, Lingaiah, N.; Reddy, K. Mohan; Nagaraju, P.; Prasad, P. S. Sai; Wachs, Israel E., Journal of Physical Chemistry C, 2008, 112(22), 8294-8300.
Nature of Catalytic Active Sites for Sb-V-O Mixed Metal Oxides, Guerrero-Perez, M. Olga; Kim, Taejin; Banares, Miguel A.; Wachs, Israel E., Journal of Physical Chemistry C2008, 112(43), 16858-16863.
New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts, Ross-Medgaarden, Elizabeth I.; Knowles, William V.; Kim, Taejin; Wong, Michael S.; Zhou, Wu; Kiely, Christopher J.; Wachs, Israel E., Journal of Catalysis2008, 256(1), 108-125.
Selective oxidation of propylene over model supported V2O5 catalysts: Influence of surface vanadia coverage and oxide support, Zhao, Chunli; Wachs, Israel E., Journal of Catalysis, 2008, 257(1), 181-189.
Study on the reaction mechanism for soot oxidation over TiO2 or ZrO2-supported vanadium oxide catalysts by means of in-situ UV-Raman, Liu, Jian; Zhao, Zhen; Liang, Peng; Xu, Chunming; Duan, Aijun; Jiang, Guiyuan; Lin, Wenyong; Wachs, Israel E., Catalysis Letters, 2008, 120(1-2), 148-153.
Molecular Design and In Situ Spectroscopic Investigation of Multilayered Supported M1Ox/M2Ox/SiO2 Catalysts, Lee, Edward L.; Wachs, Israel E., Journal of Physical Chemistry C, 2008, 112(51), 20418-20428.
Surface chemistry and reactivity of well-defined multilayered supported M1Ox/M2Ox/SiO2 catalyst, Lee, Edward L. and Wachs, Israel E., Journal of Catalysis, 2008, 258(1), 103-110

 

2007 [top]

Structural determination of bulk and surface tungsten oxides with UV-vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy, E.I. Ross-Medgaarden and I.E. Wachs, J. Phys. Chem. C, 2007, 111, 15089-15099.

In situ spectroscopic investigation of the molecular and electronic structures of SiO2 Supported Surface Metal Oxides, Edward L. Lee and Israel E. Wachs, J. Phys. Chem. C, 2007, 111, 14410-14425.

Photocatalytic activity of vanadium-substituted ETS-10. M.J. Nash, S. Rykov, R.F. Lobo, D.J. Doren and I.E. Wachs, J. Phys. Chem. C, 2007, 111, 7029-7037.  

Structural characteristics and reactivity properties of the tantalum oxide modified mesoporous silicalite (MCM-41) catalysts, Jehng, Jih-Mirn; Tung, Wan-Chen; Huang, Chao-His; Wachs, Israel E., Microporous and Mesoporous Materials, 2007, 99, 299-307.

Molecular/Electronic Structure – Surface Acidity Relationships of Model Supported Tungsten Oxide Catalysts, Taejin Kim, Andrew Burrows, Christopher J. Kiely and Israel E. Wachs, Journal of Catalysis, 2007, 246, 370-381.

An operando Raman spectroscopic investigation of C2H4 epoxidation over supported Ag/Al2O3 catalysts, J.C. Dellamorte, M.A. Barteau, W. Lin and I.E. Wachs, Preprints – American Chemical Society, 2007, 52(2), 173.

Mechanism of propylene oxidation to acrolein over well-defined supported vanadia catalysts: an operando spectroscopy approach, Preprints – American Chemical Society, 2007, 52(1), 21-24.

Is there a relationship between the M=O bond length (strength) of mixed metal oxides and catalytic activity? Kamalakantra Routray, Laura E. Briand and Israel E. Wachs, Preprints – American Chemical Society, 2007, 52(1), 30-34.

Role of excess MoO3 in Iron-Molybdate Methanol Oxidation Catalysts, Kamalakantra Routray and Israel E. Wachs, Preprints – American Chemical Society, Division of Petroleum Chemistry, 2007, 52(1), 25-29

 

2006 [top]

Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity, M.V. Martínez-Huerta, X. Gao, H. Tian, I.E. Wachs, J.L.G. Fierrocand M.A. Bañares, Catalysis Today, 2006, 118, 279-287.

Selective oxidation of propylene to acrolein over supported V2O5/Nb2O5 catalysts: An in situ Raman, IR, TPSR and kinetic study, Wachs, Israel E.; Chunli Zhao, Catalysis Today, 2006, 118, 332-343.

Catalysis science of the solid acidity of model supported tungsten oxide catalysts, Wachs, Israel E.; Taejin Kim; Elizabeth I. Ross, Catalysis Today, 2006, 116, 162-168.

Quantitative Determination of the Speciation of Surface Vanadium Oxides and Their Catalytic Activity, Catalysis Today, H. Tian, E.I. Ross, and I.E. Wachs, J. Phys. Chem. B, 2006, 110, 9593-9600.

 

2005 [top]

Comparison of UV and Visible Raman Spectroscopy of Bulk Metal Molybdate and Metal Vanadate Catalysts, Hanjing Tian, Israel E. Wachs, and Laura E. Briand, J. Phys. Chem. B, 2005, 109, 23491-23499

Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials, Wachs, Israel E., Catalysis Today, 2005, 100(1-2), 79-94.

Comparison of alcohol and alkane oxidative dehydrogenation reactions over supported vanadium oxide catalysts: in situ infrared, Raman and UV-vis spectroscopic studies of surface alkoxide intermediates and of their surface chemistry, Resini, Carlo; Montanari, Tania; Busca, Guido; Jehng, Jih-Mirn; Wachs, Israel E., Catalysis Today, 2005, 99(1-2), 105-114.

 

2004 [top]

Designing the activity/selectivity of surface acidic, basic and redox active sites in the supported K2O-V2O5/Al2O3 catalytic system, Wang, Xiang; Wachs, Israel E. Catalysis Today, 2004, 96(4), 211-222.

Preface. Banares, Miguel; Wachs, Israel E.. Catalysis Today, 2004, 96(4), vii-viii.

Determination of the Chemical Nature of Active Surface Sites Present on Bulk Mixed Metal Oxide Catalysts. Wachs, Israel E.; Jehng, Jih-Mirn; Ueda, Wataru., Journal of Physical Chemistry B, 2005, 109(6), 2275-2284.

Converting natural gas waste gases to value-added products. Wachs, Israel E.; Gibson, Andrew G. Preprints - American Chemical Society, Division of Petroleum Chemistry, 2004, 49 (3), 333-336.

Vapor-phase oxidesulfurization (ODS) of organosulfur compounds: Carbonyl sulfide, methyl mercaptans and thiophene. Choi, Sukwon; Wachs, Israel E. Preprints of Symposia - American Chemical Society, Division of Fuel Chemistry, 2004, 49 (2), 514-515.

In Situ UV-Vis-NIR Diffuse Reflectance and Raman Spectroscopy and Catalytic Activity Studies of Propane Oxidative Dehydrogenation over Supported CrO3/ZrO2 Catalysts. Rao, T. V. Malleswara; Deo, Goutam; Jehng, Jih-Mirn; Wachs, Israel E., Langmuir, 2004, 20 (17), 7159-7165.

Methodical aspects in the surface analysis of supported molybdena catalysts. Briand, Laura E.; Tkachenko, Olga P.; Guraya, Monica; Wachs, Israel E.; Gruenert, Wolfgang., Surface and Interface Analysis, 2004, 36 (3), 238-245.

Nano-supported metal oxides as a new type of catalyst structure. Wong, M. S.; Knowles, W. V.; Jehng, J.-M.; Wang, X.; Kim, T. J.; Ross, E. I.; Wachs, I. E., Preprints - American Chemical Society, Division of Petroleum Chemistry, 2004, 49 (1), 25.

Surface-Analytical Studies of Supported Vanadium Oxide Monolayer Catalysts. Briand, Laura E.; Tkachenko, Olga P.; Guraya, Monica; Gao, Xingtao; Wachs, Israel E.; Gruenert, Wolfgang., Journal of Physical Chemistry B, 2004, 108 (15), 4823-4830.

In situ UV-vis-NIR diffuse reflectance and Raman spectroscopy and catalytic activity studies of propane oxidative dehydrogenation over supported CrO3/ZrO2 catalysts, Malleswara Rao T V; Deo Goutam; Jehng Jih-Mirn; Wachs Israel E., Langmuir, 2004, 20(17), 7159-65.

BOOK REVIEW: Molecular Spectroscopy of Oxide Catalyst Surfaces, By Anatoli Davydov. Wachs, Israel E., Journal of the American Chemical Society, 2004, 126 (11), 3669.

 

2003 [top]

International Congress on Operando Spectroscopy: Fundamental and technical aspects of spectroscopy of catalysts under working conditions. Wachs, Israel E., Catalysis Communications, 2003, 4 (11), 567-570.

Extending surface science studies to industrial reaction conditions: mechanism and kinetics of methanol oxidation over silver surfaces. Wachs, Israel E., Surface Science, 2003, 544 (1), 1-4.

Comparative Study of Bulk and Supported V-Mo-Te-Nb-O Mixed Metal Oxide Catalysts for Oxidative Dehydrogenation of Propane to Propylene. Zhao, Zhen; Gao, Xingtao; Wachs, Israel E., Journal of Physical Chemistry B, 2003, 107 (26), 6333-6342.

Tantalum oxide-supported metal oxide (Re2O7, CrO3, MoO3, WO3, V2O5, and Nb2O5) catalysts: synthesis, Raman characterization and chemically probed by methanol oxidation. Chen, Yongsheng; Wachs, Israel E., Journal of Catalysis, 2003, 217 (2), 468-477.

Foreword. Banares, Miguel A.; Wachs, Israel E., Catalysis Today, 2003, 78 (1-4), 1-3.

Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction. Chen, Yongsheng; Fierro, Jose L. G.; Tanaka, Tsunehiro; Wachs, Israel E., Journal of Physical Chemistry B, 2003, 107 (22), 5243-5250.

Catalytic synthesis of methanethiol from hydrogen sulfide and carbon monoxide over vanadium-based catalysts. Mul, Guido; Wachs, Israel E.; Hirschon, Albert S., Catalysis Today, 2003, 78 (1-4), 327-337.

Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates. Briand, Laura E.; Jehng, Jih-Mirn; Cornaglia, Laura; Hirt, Andrew M.; Wachs, Israel E., Catalysis Today, 2003, 78 (1-4), 257-268.

Molecular structure and reactivity of the Group V metal oxides, Wachs, Israel E.; Chen, Yongsheng; Jehng, Jih-Mirn; Briand, Laura E.; Tanaka, Tsunehiro. Catalysis Today, 2003, 78(1-4), 13-24.

 

2002 [top]

Converting waste gases from pulp mills into value-added chemicals. Burgess, Tom L.; Gibson, Andrew G.; Furstein, Saul J.; Wachs, Israel E., Environmental Progress, 2002, 21 (3), 137-141.

Oxidative dehydrogenation of propane over supported chromia catalysts: influence of oxide supports and chromia loading, Cherian, Maymol; Rao, Musti Someswara; Hirt, Andrew M.; Wachs, Israel E.; Deo, Goutam. Journal of Catalysis, 2002, 211(2), 482-495.

Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies. Kulkarni, Deepak; Wachs, Israel E., Applied Catalysis, A: General, 2002, 237 (1-2), 121-137.

Quantitative Determination of the Catalytic Activity of Bulk Metal Oxides for Formic Acid Oxidation. Fein, David E.; Wachs, Israel E., Journal of Catalysis, 2002, 210 (2), 241-254.

In Situ UV-vis-NIR Diffuse Reflectance and Raman Spectroscopic Studies of Propane Oxidation over ZrO2-Supported Vanadium Oxide Catalysts. Gao, Xingtao; Jehng, Jih-Mirn; Wachs, Israel E., Journal of Catalysis, 2002, 209 (1), 43-50.

Molecular structures of supported metal oxide catalysts under different environments, Banares, M. A.; Wachs, I. E.. Journal of Raman Spectroscopy, 2002, 33(5), 359-380.

Molecular engineering of supported vanadium oxide catalysts through support modification. Gao, Xingtao; Wachs, Israel E., Topics in Catalysis, 2002, 18 (3-4), 243-250.

Selective oxidesulfurization of C1-organosulfur compounds over supported metal oxide catalysts. Choi, Sukwon; Wachs, Israel E., Preprints of Symposia - American Chemical Society, Division of Fuel Chemistry, 2002, 47 (1), 138-139.

 

2001 [top]

Raman Spectroscopy of Catalysts, I. E. Wachs, in Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, I.R. Lewis and H.G.M. Edwards, Eds., CRC Press, 2001, Chapter 20.

Catalysis by Supported Metal Oxides, B.M. Weckhuysen and I. E. Wachs, in Handbook of Surfaces and Interfaces of Materials, Volume 1: Surface and Interface Phenomena, H.S. Nalwa, Ed., Academic Press, 2001, Chapter 11, 613-648.

Methanol: a "smart" chemical probe molecule. Badlani, Mohit; Wachs, Israel E., Catalysis Letters, 2001, 75 (3-4), 137-149.

Structural and Reactivity Properties of Nb-MCM-41: Comparison with That of Highly Dispersed Nb2O5/SiO2 Catalysts. Gao, Xingtao; Wachs, Israel E.; Wong, Michael S.; Ying, Jackie Y., Journal of Catalysis, 2001, 203(1), 18-24.

The Origin of the Ligand Effect in Metal Oxide Catalysts: Novel Fixed-Bed in Situ Infrared and Kinetic Studies during Methanol Oxidation. Burcham, Loyd J.; Badlani, Mohit; Wachs, Israel E., Journal of Catalysis, 2001, 203 (1), 104-121.

Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 2. Bulk Metal Oxide Catalysts. Burcham, Loyd J.; Briand, Laura E.; Wachs, Israel E., Langmuir, 2001, 17 (20), 6175-6184.

Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 1. Supported Metal Oxide Catalysts. Burcham, Loyd J.; Briand, Laura E.; Wachs, Israel E., Langmuir, 2001, 17 (20), 6164-6174.

Quantitative Determination of the Number of Surface Active Sites and the Turnover Frequencies for Methanol Oxidation over Metal Oxide Catalysts: Application to Bulk Metal Molybdates and Pure Metal Oxide Catalysts. Briand, Laura E.; Hirt, Andrew M.; Wachs, Israel E., Journal of Catalysis, 2001, 202 (2), 268-278.

A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts, Chua, Yek Tann; Stair, Peter C.; Wachs, Israel E. Journal of Physical Chemistry B, 2001, 105(36), 8600-8606.

In situ studies of atomic, nano- and macroscale order during VOHPO4 × 0.5H2O transformation to (VO)2P2O7. Guliants, V. V.; Holmes, S. A.; Benziger, J. B.; Heaney, P.; Yates, D.; Wachs, I. E., Journal of Molecular Catalysis A: Chemical, 2001, 172 (1-2), 265-276.

Characterization of supported rhenium oxide catalysts: effect of loading, support and additives, Mitra, Brishti; Gao, Xingtao; Wachs, Israel E.; Hirt, A. M.; Deo, Goutam. Physical Chemistry Chemical Physics, 2001, 3(6), 1144-1152.

 

2000 [top]

Historical Perspective of Raman Spectroscopy in Catalysis, I. E. Wachs, in Springer Series in Materials Science, Volume 42: Raman Scattering in Materials Science, W.H. Weber and R. Merlin, Eds., Springer, 2000, 271-272.

ESR study of monolayer vanadium oxide catalysts supported on different supports in relation to catalytic oxidation of methanol, Haber, Jerzy; Nowak, Pawel; Serwicka, Ewa M.; Wachs, Israel E., Bulletin of the Polish Academy of Sciences: Chemistry, 2000, 48(4), 337-346.

Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts I. Fundamentals of the methanol chemisorption technique and application to monolayer supported molybdenum oxide catalysts, Briand, L. E.; Farneth, W. E.; Wachs, I. E., Catalysis Today, 2000, 62(2-3), 219-229.

Investigation of active surface sites of vanadyl pyrophosphate catalysts using methanol probe molecule. Guliants, Vadim V.; Holmes, Stephen A.; Carreon Garciduenas, Moises; Wachs, I. E., Abstracts of Papers, 220th ACS National Meeting, Washington, DC, August 20-24, 2000, COLL-280.

In situ studies on the structure-activity relationships of different active sites in ceria-supported vanadia catalysts for ethane oxidative dehydrogenation. Banares, Miguel A.; Martinez-Huerta, Maria Victoria; Fierro, J. L. G.; Gao, Xingtao; Wachs, Israel E., Abstracts of Papers, 220th ACS National Meeting, Washington, DC, August 20-24, 2000, COLL-258.

In situ Raman spectroscopy of supported transition metal oxide catalysts: 18O2-16O2 Isotopic labeling studies. Weckhuysen, B. M.; Jehng, J. M.; Wachs, I. E., Abstracts of Papers, 220th ACS National Meeting, Washington, DC, August 20-24, 2000, COLL-106.

Solid state NMR study of supported vanadium oxide catalysts. Klug, Christopher A.; Zhou, Min; Gao, Xingtao; Wachs, Israel E., Abstracts of Papers, 220th ACS National Meeting, Washington, DC, August 20-24, 2000, COLL-101.

Identification and roles of the different active sites in supported vanadia catalysts by in situ techniques, Banares, M. A.; Martinez-Huerta, M.; Gao, X.; Wachs, I. E.; Fierro, J. L. G., Studies in Surface Science and Catalysis, 2000, 130D (International Congress on Catalysis, 2000, Pt. D), 3125-3130.

Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane In situ Raman, UV-Vis DRS and reactivity studies, Banares, M. A.; Martinez-Huerta, M. V.; Gao, X.; Fierro, J. L. G.; Wachs, I. E., Catalysis Today, 2000, 61(1-4), 295-301.

Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts, Briand, Laura E.; Wachs, Israel E., Studies in Surface Science and Catalysis, 2000, 130A (International Congress on Catalysis, 2000, Pt. A), 305-310.

Molecular structure-reactivity relationships in n-butane oxidation over bulk VPO and supported vanadia catalysts: lessons for molecular engineering of new selective catalysts for alkane oxidation, Guliants, V. V.; Benziger, J. B.; Sundaresan, S.; Wachs, I. E., Studies in Surface Science and Catalysis, 2000, 130B (International Congress on Catalysis, 2000, Pt. B), 1721-1726.

In Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts: 18O2-16O2 Isotopic Labeling Studies, Weckhuysen, Bert M.; Jehng, Jih-Mirn; Wachs, Israel E., Journal of Physical Chemistry B, 2000, 104(31), 7382-7387.

Structural characteristics and reactivity properties of highly dispersed Al2O3/SiO2 and V2O5/Al2O3/SiO2 catalysts, Gao, Xingtao; Wachs, Israel E. Journal of Catalysis, 2000, 192(1), 18-28.

In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation, Burcham, Loyd J.; Deo, Goutam; Gao, Xingtao; Wachs, Israel E., Topics in Catalysis, 2000, 11/12(1-4), 85-100.

The structure of vanadium oxide species on gamma-alumina; an in situ X-ray absorption study during catalytic oxidation, Ruitenbeek, M.; Van Dillen, A. J.; de Groot, F. M. F.; Wachs, I. E.; Geus, J. W.; Koningsberger, D. C., Topics in Catalysis, 2000, 10(3,4), 241-254.

Molecular structure and reactivity of the group V metal oxides, Wachs, I. E.; Briand, L. E.; Jehng, J.-M.; Burcham, L.; Gao, X. Catalysis Today, 2000, 57(3-4), 323-330.

Investigation of Surface Structures of Supported Vanadium Oxide Catalysts by UV-vis-NIR Diffuse Reflectance Spectroscopy, Gao, Xingtao; Wachs, Israel E. Journal of Physical Chemistry B, 2000, 104(6), 1261-1268.

 

1999 [top]

Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts, Dunn, Joseph P.; Stenger, Harvey G., Jr.; Wachs, Israel E., Catalysis Today, 1999, 53(4), 543-556.

Ethane and n-Butane Oxidation over Supported Vanadium Oxide Catalysts: An in Situ UV-Visible Diffuse Reflectance Spectroscopic Investigation, Gao, Xingtao; Banares, Miguel A.; Wachs, Israel E., Journal of Catalysis, 1999, 188(2), 325-331.

Effect of promoters for n-butane oxidation to maleic anhydride over vanadium-phosphorus-oxide catalysts: comparison with supported vanadia catalysts, Guliants, V. V.; Benziger, J. B.; Sundaresan, S.; Wachs, I. E.; Hirt, A. M., Catalysis Letters, 1999, 62(2-4), 87-91.

The Oxygen Isotopic Exchange Reaction on Vanadium Oxide Catalysts, Doornkamp, C.; Clement, M.; Gao, X.; Deo, G.; Wachs, I. E.; Ponec, V., Journal of Catalysis, 1999, 185(2), 415-422.

In Situ Vibrational Spectroscopy Studies of Supported Niobium Oxide Catalysts, Burcham, Loyd J.; Datka, Jerzy; Wachs, Israel E., Journal of Physical Chemistry B, 1999, 103(29), 6015-6024.

Interaction of Polycrystalline Silver with Oxygen, Water, Carbon Dioxide, Ethylene, and Methanol: In Situ Raman and Catalytic Studies, Wang, Chuan-Bao; Deo, Goutam; Wachs, Israel E., Journal of Physical Chemistry B, 1999, 103(27), 5645-5656.

Preface, Wachs, Israel E.. Catalysis Today, 1999, 51(2), 201.

In situ Raman spectroscopy studies of catalysts, Wachs, Israel E., Topics in Catalysis, 1999, 8(1,2), 57-63.

Oxidation of sulfur dioxide over supported vanadia catalysts: molecular structure - reactivity relationships and reaction kinetics, Dunn, Joseph P.; Stenger, Harvey G., Jr.; Wachs, Israel E., Catalysis Today, 1999, 51(2), 301-318.

Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties, Gao, Xingtao; Wachs, Israel E., Catalysis Today, 1999, 51(2), 233-254.

Structural Characteristics and Catalytic Properties of Highly Dispersed ZrO2/SiO2 and V2O5/ZrO2/SiO2 Catalysts, Gao, Xingtao; Fierro, J. L. G.; Wachs, Israel E., Langmuir, 1999, 15(9), 3169-3178.

The origin of the support effect in supported metal oxide catalysts in situ infrared and kinetic studies during methanol oxidation, Burcham, Loyd J.; Wachs, Israel E., Catalysis Today, 1999, 49(4), 467-484.

Oxidation of SO2 over supported metal oxide catalysts, Dunn, Joseph P.; Stenger, Harvey G., Jr.; Wachs, Israel E., Journal of Catalysis, 1999, 181(2), 233-243.

The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia, Amiridis, Michael D.; Duevel, Robert V.; Wachs, Israel E., Applied Catalysis, B: Environmental, 1999, 20(2), 111-122.

Reaction-Induced Spreading of Metal Oxides onto Surfaces of Oxide Supports during Alcohol Oxidation: Phenomenon, Nature, and Mechanisms, Wang, Chuan-Bao; Cai, Yeping; Wachs, Israel E., Langmuir, 1999, 15(4), 1223-1235.

Structural Characteristics and Reactivity/Reducibility Properties of Dispersed and Bilayered V2O5/TiO2/SiO2 Catalysts, Gao, Xingtao; Bare, Simon R.; Fierro, J. L. G.; Wachs, Israel E., Journal of Physical Chemistry B, 1999, 103(4), 618-629.

 

1998 [top]

Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Dunn, Joseph P.; Koppula, Prashanth R.; Stenger, Harvey G.; Wachs, Israel E., Applied Catalysis, B: Environmental, 1998, 19(2), 103-117.

In Situ Spectroscopic Investigation of Molecular Structures of Highly Dispersed Vanadium Oxide on Silica under Various Conditions, Gao, Xingtao; Bare, Simon R.; Weckhuysen, Bert M.; Wachs, Israel E., Journal of Physical Chemistry B, 1998, 102(52), 10842-10852.

Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3, Burcham, Loyd J.; Wachs, Israel E., Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 1998, 54A(10), 1355-1368.

Characterization of vanadia sites in V-silicalite, vanadia-silica cogel, and silica-supported vanadia catalysts: x-ray powder diffraction, Raman spectroscopy, solid-state 51V NMR, temperature-programmed reduction, and methanol oxidation studies, Wang, Chuan-Bao; Deo, Goutam; Wachs, Israel E., Journal of Catalysis, 1998, 178(2), 640-648.

Interactions between Surface Vanadate and Surface Sulfate Species on Metal Oxide Catalysts, Dunn, Joseph P.; Jehng, Jih-Mirn; Kim, Du Soung; Briand, Laura E.; Stenger, Harvey G.; Wachs, Israel E., Journal of Physical Chemistry B, 1998, 102(32), 6212-6218.

Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica, Gao, Xingtao; Bare, Simon R.; Fierro, J. L. G.; Banares, Miguel A.; Wachs, Israel E., Journal of Physical Chemistry B, 1998, 102(29), 5653-5666.

Selective oxidation of 1-butene over silica-supported Cr(VI), Mo(VI), and W(VI) oxides, Ramani, Narayanan C.; Sullivan, David L.; Ekerdt, John G.; Jehng, Jih-Mirn; Wachs, Israel E., Journal of Catalysis, 1998, 176(1), 143-154.

The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina. II. In situ conditions, Ostromecki, Marlene M.; Burcham, Loyd J.; Wachs, Israel E., Journal of Molecular Catalysis A: Chemical, 1998, 132(1), 59-71.

The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina: I. Ambient conditions, Ostromecki, Marlene M.; Burcham, Loyd J.; Wachs, Israel E.; Ramani, Narayanan; Ekerdt, John G., Journal of Molecular Catalysis A: Chemical, 1998, 132(1), 43-57.

 

1997 [top]

An application of 129Xe NMR of adsorbed xenon to the study of silica-based catalysts, Terskikh, V. V.; Mastikhin, V. M.; Okkel, L. G.; Fenelonov, V. B.; Zamaraev, K. I.; Hu, H.; Wachs, I. E., NATO ASI Series C: Mathematical and Physical Sciences, 1997, 491 (Physical Ads.: Experiment, Theory and Applications), 571-574.

Partial oxidation of ethane over monolayers of vanadium oxide. Effect of the support and surface coverage, Banares, Miguel A.; Gao, Xingtao; Fierro, Jose L. G.; Wachs, Israel E, Studies in Surface Science and Catalysis, 1997, 110 (3rd World Congress on Oxidation Catalysis, 1997), 295-304.

Reaction induced spreading of metal oxides: in situ Raman spectroscopic studies during oxidation reactions, Cai, Y.; Wang, C. -B.; Wachs, I. E., Studies in Surface Science and Catalysis, 1997, 110 (3rd World Congress on Oxidation Catalysis, 1997), 255-264.

Methanol oxidation over supported vanadium oxide catalysts: new fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics, Wachs, Israel E.; Deo, Goutam; Juskelis, Michael V.; Weckhuysen, Bert M., Studies in Surface Science and Catalysis, 1997, 109 (Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis), 305-314.

Molecular engineering of supported metal oxide catalysts: oxidation reactions over supported vanadia catalysts, Wachs, Israel E., Catalysis, 1997, 13 37-54.

Fundamental studies of butane oxidation over model-supported vanadium oxide catalysts: molecular structure-reactivity relationships, Wachs, Israel E.; Jehng, Jih-Mirn; Deo, Goutam; Weckhuysen, Bert M.; Guliants, V. V.; Benziger, J. B.; Sundaresan, S., Journal of Catalysis, 1997, 170(1), 75-88.

Structure and reactivity of surface vanadium oxide species on oxide supports, Wachs, Israel E.; Weckhuysen, Bert M., Applied Catalysis, A: General, 1997, 157(1-2), 67-90.

Development of active oxide catalysts for the direct oxidation of methane to formaldehyde, Herman, Richard G.; Sun, Qun; Shi, Chunlei; Klier, Kamil; Wang, Chuan-Bao; Hu, Hangchun; Wachs, Israel E.; Bhasin, Madan M., Catalysis Today, 1997, 37(1), 1-14.

Semiconductive and redox properties of V2O5/TiO2 catalysts, Herrmann, Jean-Marie; Disdier, Jean; Deo, Goutam; Wachs, Israel E., Journal of the Chemical Society, Faraday Transactions, 1997, 93(8), 1655-1660.

In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: 18O2-16O2 Isotopic Labeling Studies, Weckhuysen, Bert M.; Wachs, Israel E., Journal of Physical Chemistry B, 1997, 101(15), 2793-2796.

In situ Raman spectroscopy during the partial oxidation of methane to formaldehyde over supported vanadium oxide catalysts, Sun, Qun; Jehng, Jih-Mirn; Hu, Hangchun; Herman, Richard G.; Wachs, Israel E.; Klier, Kamil., Journal of Catalysis, 1997, 165(1), 91-101.

 

1996 [top]

The activity and selectivity properties of supported metal oxide catalysts during oxidation reactions,Wachs, I. E.; Deo, G.; Jehng, J.-M.; Kim, D. S.; Hu, H., in Heterogeneous Hydrocarbon Oxidation, 1996, Volume 638: ACS Symposium Series, Chapter 21, 292-299.

In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions, Wachs, Israel E.; Jehng, Jih-Mirn; Deo, Goutam; Weckhuysen, Bert M.; Guliants, Vadim V.; Benziger, Jay B., Catalysis Today, 1996, 32 (1-4, Proceedings of the 5th European Workshop Meeting on Selective Oxidation by Heterogeneous Catalysis, 1995), 47-55.

Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides, Weckhuysen, Bert M.; Wachs, Israel E.; Schoonheydt, Robert A., Chemical Reviews, 1996, 96(8), 3327-3349.

Selective catalytic reduction of nitric oxide with ammonia on vanadia/alumina catalysts. Influence of vanadia loading and secondary metal oxide additives, Andreini, Amedeo; de Boer, Michiel; Vurrman, Michael A.; Deo, Goutam; Wachs, Israel E., Journal of the Chemical Society, Faraday Transactions, 1996, 92(17), 3267-3272.

Combined Raman and IR study of MOx-V2O5/Al2O3 (MOx = MoO3, WO3, NiO, CoO) catalysts under dehydrated conditions, Vuurman, Michael A.; Stufkens, Derk J.; Oskam, Ad; Deo, Goutam; Wachs, Israel E., Journal of the Chemical Society, Faraday Transactions, 1996, 92(17), 3259-3265.

The dynamic states of silica-supported metal oxide catalysts during methanol oxidation, Jehng, Jih-Mirn; Hu, Hungchun; Gao, Xingtao; Wachs, Israel E., Catalysis Today, 1996, 28(4), 335-350.

The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane, Guliants, V. V.; Benziger, J. B.; Sundaresan, S.; Wachs, I. E.; Jehng, J.-M.; Roberts, J. E., Catalysis Today, 1996, 28(4), 275-295.

Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures, Jehng, Jih-Mirn; Deo, Goutam; Weckhuysen, Bert M.; Wachs, Israel E., Journal of Molecular Catalysis A: Chemical, 1996, 110(1), 41-54.

In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane, Weckhuysen, Bert M.; Wachs, Israel E., Journal of Physical Chemistry, 1996, 100(34), 14437-14442.

Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: influence of vanadia loading, H2O, and SO2. Amiridis, M.; Wachs, I.; Deo, G.; Jehng, J.M.; Kim, D., Journal of Catalysis, 1996, 161, 247-253.

Selective catalytic reduction of NO with NH3 over supported vanadia catalysts, Wachs, I.; Deo, G.; Weckhuysen, B.; Andreini, A.; Vuurman, M.; de Boer, M.; Amiridis, M., Journal of Catalysis, 1996, 161, 211-221.

Raman spectroscopy of supported chromium oxide catalysts. Determination of chromium-oxygen bond distances and bond orders, Weckhuysen, Bert M.; Wachs, Israel E., Journal of the Chemical Society, Faraday Transactions, 1996, 92(11), 1969-1973.

The selective catalytic reduction of NOx with NH3 over titania supported rhenium oxide catalysts, Wachs, I.E.; Deo, G.; Andreini, A.; Vuurman, M.M.; de Boer, M., Journal of Catalysis, 1996, 160(2), 322-325.

Comparison of silica-supported MoO3 and V2O5 catalysts in the selective partial oxidation of methane, Faraldos, M.; Banares, M.; Anderson, J.; Hu, H.; Wachs, I.; Fierro, J., Journal of Catalysis, 1996, 160(2), 214-221.

Redox properties of niobium oxide catalysts, Wachs, I. E.; Jehng, J.-M.; Deo, G.; Hu, H.; Arora, N., Catalysis Today, 1996, 28(1-2), 199-205.

Oxidative dehydrogenation of propane over niobia supported vanadium oxide catalysts, Watling, T. C.; Deo, G.; Seshan, K.; Wachs, I. E.; Lercher, J. A., Catalysis Today, 1996, 28(1-2), 139-145.

XAFS study of niobium oxide on alumina, Tanaka, T.; Yoshida, T.; Yoshida, H.; Aritani, H.; Funabiki, T.; Yoshida, S.; Jehng, J.-M.; Wachs, I. E., Catalysis Today, 1996, 28(1-2), 71-78.

The activity and selectivity properties of supported metal oxide catalysts during oxidation reactions. Wachs, I.E.; Deo, G.; Jehng, J.-M.; Kim, D. S.; Hu, H., Preprints - ACS Division of Petroleum Chemistry, 1996, 41, 64-7.

Surface aspects of bismuth-metal oxide catalysts, Arora, Navneet; Deo, Goutam; Wachs, Israel E.; Hirt, Andrew M., Journal of Catalysis, 1996, 159(1), 1-13.

Surface structures of supported tungsten oxide catalysts under dehydrated conditions, Kim, Du Soung; Ostromecki, Marlene; Wachs, Israel E., Journal of Molecular Catalysis A: Chemical, 1996, 106(1-2), 93-102.

Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts, Wachs, Israel E. Catalysis Today, 1996, 27(3-4), 437-55.

Direct conversion of methane to methanol and formaldehyde over a double-layered catalyst bed in the presence of steam, Shi, Chunlei; Sun, Qun; Hu, Hangchun; Herman, Richard G.; Klier, Kamil; Wachs, Israel E., Chemical Communications, 1996, 5, 663-4.

 

1995 [top]

Infrared spectroscopy of supported metal oxide catalysts, Wachs, Israel E. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1995, 105(1), 143-9.

Combined DRS-RS-EXAFS-XANES-TPR study of supported chromium catalysts. Weckhuysen, Bert M.; Schoonheydt, Robert A.; Jehna, Jih-Mirn; Wachs, Israel E.; Cho, Sung June; Ryoo, Ryong; Kijlstra, Sjoerd; Poels, Eduard., Journal of the Chemical Society, Faraday Transactions, 1995, 91(18), 3245-53.

Spectroscopic characterization of supported Cr and Cr, Ti catalysts: Interaction with probe molecules, Weckhuysen, Bert M.; Wachs, Israel E.; Schoonheydt, Robert A., Studies in Surface Science and Catalysis, 1995, 91 (Preparation of Catalysts VI), 151-8.

Genesis and stability of silicomolybdic acid on silica-supported molybdenum oxide catalysts: in situ structural-selectivity study on selective oxidation reactions, Banares, M.A.; Hu, H.; Wachs, I.E., Journal of Catalysis, 1995, 155(2), 249-55.

Vanadyl(IV) Phosphonates, VOCnH2n+1PO3 × xH2O (n = 0-4, x = 1 or 1.5), as Precursors of Vanadyl(IV) Pyrophosphate, (VO)2P2O7, Guliants, V. V.; Benziger, J. B.; Sundaresan, S.; Wachs, I. E.; Jehng, J.-M., Chemistry of Materials, 1995, 7(8), 1493-8.

Preparation and characterization of WO3/SiO2 catalysts, Kim, Du Soung; Ostromecki, Marlene; Wachs, Israel E.; Kohler, Steve; Ekerdt, John G., Catalysis Letters, 1995, 33(3,4), 209-15.

Raman spectroscopy of bismuth tungstates, Hardcastle, Franklin D.; Wachs, Israel E., Journal of Raman Spectroscopy, 1995, 26(6), 407-12.

Determination of the molecular structures of tungstates by Raman spectroscopy, Hardcastle, Franklin D.; Wachs, Israel E., Journal of Raman Spectroscopy, 1995, 26(6), 397-405.

Evolution of the active surface of the vanadyl pyrophosphate catalysts, Guliants, V. V.; Benziger, J. B.; Sundaresan, S.; Yao, N.; Wachs, I. E., Catalysis Letters, 1995, 32(3,4), 379-86.

Surface Structures of Supported Molybdenum Oxide Catalysts: Characterization by Raman and Mo L3-Edge XANES, Hu, Hangchun; Wachs, Israel E.; Bare, Simon R. Journal of Physical Chemistry, 1995, 99(27), 10897-910.

Catalytic Properties of Supported Molybdenum Oxide Catalysts: In Situ Raman and Methanol Oxidation Studies, Hu, Hangchun; Wachs, Israel E., Journal of Physical Chemistry, 1995, 99(27), 10911-22.

Mechanism of surface spreading in vanadia-titania system, Haber, J.; Machej, T.; Serwicka, E. M.; Wachs, I. E., Catalysis Letters, 1995, 32(1,2), 101-14.

Surface chemistry of silica-titania-supported chromium oxide catalysts, Jehng, Jih-Mirn; Wachs, Israel E.; Weckhuysen, Bert M.; Schoonheydt, Robert A., Journal of the Chemical Society, Faraday Transactions, 1995, 91(5), 953-61.

 

1994 [top]

Interactions in alumina-based iron-vanadium catalysts under high-temperature oxidation conditions, Springman, M. C.; Clark, F. T.; Willcox, D.; Wachs, I. E., in Fluid Catalytic Cracking III, 1994, Volume 571: ACS Symposium Series, Chapter 14, 160-77.

Molybdena on silica catalysts: role of preparation methods on the structure-selectivity properties for the oxidation of methanol, Banares, M. A.; Hu, H.; Wachs, I. E., Journal of Catalysis, 1994, 150(2), 407-20.

Supported vanadium oxide catalysts: Molecular structural characterization and reactivity properties, Deo, Goutam; Wachs, Israel E.; Haber, Jerzy., Critical Reviews in Surface Chemistry, 1994, 4(3 & 4), 141-87.

1H MAS NMR Studies of Alumina-Supported Metal Oxide Catalysts, Mastikhin, V. M.; Nosov, A. V.; Terskikh, V. V.; Zamaraev, K. I.; Wachs, Israel E., Journal of Physical Chemistry, 1994, 98(51), 13621-4.

Alumina-supported manganese oxide catalysts. I. Characterization: effect of precursor and loading, Kapteijn, Freek; van Langeveld, A. Dick; Moulijn, Jacob A.; andreini, Amedeo; Vuurman, Michael A.; Turek, Andrzej M.; Jehng, Jih-Mirn; Wachs, Israel E. Journal of Catalysis, 1994, 150(1), 94-104.

Molecular structures and reactivity of supported molybdenum oxide catalysts, Kim, Du Soung; Wachs, Israel E.; Segawa, Kohichi., Journal of Catalysis, 1994, 149(2), 268-77.

Effect of additives on the structure and reactivity of the surface vanadium oxide phase in V2O5/TiO2 catalysts, Deo, Goutam; Wachs, Israel E., Journal of Catalysis, 1994, 146(2), 335-45.

Reactivity of supported vanadium oxide catalysts: the partial oxidation of methanol, Deo, Goutam; Wachs, Israel E., Journal of Catalysis, 1994, 146(2), 323-34.

Effect of alkali metal cations on the structure of Mo(VI)/SiO2 catalysts and its relevance to the selective oxidation of methane and methanol, Banares, M.A.; Spencer, N.D.; Jones, M.D.; Wachs, I.E., Journal of Catalysis, 1994, 146(1), 204-10.

 

1993 [top]

Surface oxide-support interactions in the molecular design of supported metal oxide selective oxidation catalysts, Deo, Goutam; Wachs, Israel E., in Catalytic Selective Oxidation, 1993, Volume 523: ACS Symposium Series, Chapter 3, 31-42.

Applications of Raman spectroscopy to heterogeneous catalysis, Wachs, Israel E.; Hardcastle, Franklin D., in Catalysis, 1993, 10, 102-53.

Characterization of CrO3/Al2O3 catalysts under ambient conditions: influence of coverage and calcination temperature, Vuurman, Michael A.; Hardcastle, Franlin D.; Wachs, Israel E., Journal of Molecular Catalysis, 1993, 84(2), 193-205.

Recent catalytic applications of niobium-based materials, Jehng, J. M.; Wachs, I. E., High Temperature Materials and Processes, 1993, 11(1-4), 159-73.

Raman characterization of alumina supported molybdenum-vanadium-iron catalysts: influence of calcination temperature, Jehng, Jih Mirn; Wachs, Israel E.; Clark, Fred T.; Springman, Mary C. Journal of Molecular Catalysis, 1993, 81(1), 63-75.

Molecular design of supported metal oxide catalysts, Wachs, I. E.; Deo, G.; Kim, D. S.; Vuurman, M. A.; Hu, H., Studies in Surface Science and Catalysis, 1993, 75 (New Frontiers in Catalysis, Pt. A), 543-57.

Molecular design of supported metal oxide catalysts: an initial step to theoretical models, Wachs, Israel E.; Deo, Goutam; Vuurman, Michael A.; Hu, Hangchun; Kim, Du Soung; Jehng, Jih Mirn., Journal of Molecular Catalysis, 1993, 82(2-3), 443-55.

Characterization of titania silicalites, Deo, Goutam; Turek, Andrzej M.; Wachs, Israel E.; Huybrechts, Diana R. C.; Jacobs, P. A., Zeolites, 1993, 13(5), 365-73.

Molecular design of supported niobium oxide catalysts, Jehng, Jih Mirn; Wachs, Israel E., Catalysis Today, 1993, 16(3-4), 417-26.

Surface chemistry of supported chromium oxide catalysts, Kim, Du Soung; Wachs, Israel E., Journal of Catalysis 1993, 142(1), 166-71.

Surface rhenium oxide-support interaction for supported rhenium oxide (Re2O7) catalysts, Kim, Du Soung; Wachs, Israel E., Journal of Catalysis, 1993, 141(2), 419-29.

Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy, Das, Nandini; Eckert, Hellmut; Hu, Hangchun; Wachs, Israel E.; Walzer, John F.; Feher, Frank J., Journal of Physical Chemistry, 1993, 97(31), 8240-3.

Characterization of chromium oxide supported on alumina, titania, zirconia, and silica under dehydrated conditions, Vuurman, Michael A.; Wachs, Israel E.; Stufkens, Derk J.; Oskam, Ad. Journal of Molecular Catalysis, 1993, 80(2), 209-227.

 

1992 [top]

Characterization of Catalytic Materials, Israel E. Wachs, Ed., Butterworth-Heinemann, 1992, Boston, Mass.

Supported Metal Oxides, Israel E. Wachs and Kohichi Segawa, in Characterization of Catalytic Materials, I. E. Wachs, Ed., Butterworth-Heinemann, 1992, 69-88.

Relationship between structure and point of zero surface charge for molybdenum and tungsten oxides supported on alumina, Kohler, S. D.; Ekerdt, J. G.; Kim, D. S.; Wachs, I. E., Catalysis Letters, 1992, 16(3), 231-9.

Monolayer dispersion of molybdenum on silica, Roark, Ryan D.; Kohler, Steven D.; Ekerdt, John G.; Kim, Du Soung; Wachs, Israel E., Catalysis Letters, 1992, 16(1-2), 77-83.

Surface oxide-support interaction (SOSI) for the molecular design of supported metal oxide selective oxidation catalysts. Deo, Goutam; Wachs, Israel E., Preprints - American Chemical Society, Division of Petroleum Chemistry, 1992, 37(4), 1062-8.

Raman spectroscopy of vanadia, molybdena, iron oxide (Fe2O3), MoO3-V2O5, and Fe2O3-V2O5 supported on alumina catalysts: influence of coverage and dehydration, Vuurman, Michael A.; Wachs, Israel E., Journal of Molecular Catalysis, 1992, 77(1), 29-39.

Physical and chemical characterization of surface vanadium oxide supported on titania: influence of the titania phase (anatase, rutile, brookite and B), Deo, Goutam; Turek, Andrzej M.; Wachs, Israel E.; Machej, Tadeusz; Haber, Jerzy; Das, Nandini; Eckert, Hellmut; Hirt, Andrew M., Applied Catalysis, A: General, 1992, 91(1), 27-42.

Surface structure and reactivity of chromium trioxide/silica catalysts, Kim, Du Soung; Tatibouet, Jean Michel; Wachs, Israel E., Journal of Catalysis, 1992, 136(1), 209-21.

Surface structures of supported molybdenum oxide catalysts under ambient conditions, Kim, Du Soung; Segawa, Koichi; Soeya, Tomotsune; Wachs, Israel E., Journal of Catalysis, 1992, 136(2), 539-53.

The molecular structures and reactivity of vanadium pentoxide/titania/silica catalysts, Jehng, Jih Mirn; Wachs, Israel E., Catalysis Letters, 1992, 13(1-2), 9-20.

Surface modified niobium oxide catalyst: synthesis, characterization, and catalysis, Jehng, Jih Mirn; Turek, Andrzej M.; Wachs, Israel E., Applied Catalysis A: General, 1992, 83(2), 179-200.

Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study, Turek, Andrzej M.; Wachs, Israel E.; DeCanio, Elaine. Journal of Physical Chemistry, 1992, 96(12), 5000-7.

In situ Raman spectroscopy of alumina-supported metal oxide catalysts, Vuurman, Michael A.; Wachs, Israel E. Journal of Physical Chemistry, 1992, 96(12), 5008-16.

Acidic properties of supported niobium oxide catalysts: an infrared spectroscopy investigation, Datka, J.; Turek, A. M.; Jehng, J. M.; Wachs, I. E., Journal of Catalysis, 1992, 135(1), 186-99.

The molecular structure of bismuth oxide by Raman spectroscopy, Hardcastle, Franklin D.; Wachs, Israel E., Journal of Solid State Chemistry, 1992, 97(2), 319-31.

 

1991 [top]

Remarkable spreading behavior of molybdena on silica catalysts: an in situ EXAFS-Raman study, De Boer, M.; Van Dillen, A. J.; Koningsberger, D. C.; Geus, J. W.; Vuurman, M. A.; Wachs, I. E. Catalysis Letters, 1991, 11(2), 227-39.

Molecular structure-reactivity relationships of supported vanadium oxide catalysts, Deo, G.; Wachs, I. E., Studies in Surface Science and Catalysis, 1991, 67 (Struct.-Act. Sel. Relat. Heterog. Catal.), 13-20.

Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy, Hardcastle, Franklin D.; Wachs, Israel E., Journal of Physical Chemistry, 1991, 95(26), 10763-72.

Structural determination of supported vanadium pentoxide-tungsten trioxide-titania catalysts by in situ Raman spectroscopy and x-ray photoelectron spectroscopy, Vuurman, Michael A.; Wachs, Israel E.; Hirt, Andrew M., Journal of Physical Chemistry, 1991, 95(24), 9928-37.

A Raman and ultraviolet diffuse reflectance spectroscopic investigation of silica-supported molybdenum oxide, Williams, Clark C.; Ekerdt, John G.; Jehng, Jih Mirn; Hardcastle, Franklin D.; Turek, Andrzej M.; Wachs, Israel E., Journal of Physical Chemistry, 1991, 95(22), 8781-91.

A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide, Williams, Clark C.; Ekerdt, John G.; Jehng, Jih Mirn; Hardcastle, Franklin D.; Wachs, Israel E., Journal of Physical Chemistry, 1991, 95(22), 8791-7.

Molecular structures of supported niobium oxide catalysts under ambient conditions, Jehng, Jih Mirn; Wachs, Israel E., Journal of Molecular Catalysis, 1991, 67(3), 369-87.

Formation of titanium oxide monolayer coatings on silica surfaces, Srinivasan, S.; Datye, A. K.; Hampden-Smith, M.; Wachs, I. E.; Deo, G.; Jehng, J. M.; Turek, A. M.; Peden, C. H. F., Journal of Catalysis, 1991, 131(1), 260-75.

Molecular structures of supported niobium oxide catalysts under in situ conditions, Jehng, Jih Mirn; Wachs, Israel E., Journal of Physical Chemistry, 1991, 95(19), 7373-9.

Predicting molecular structures of surface metal oxide species on oxide supports under ambient conditions, Deo, Goutam; Wachs, Israel E., Journal of Physical Chemistry, 1991, 95(15), 5889-95.

Niobium oxide solution chemistry, Jehng, J.-M.; Wachs, I. E., Journal of Raman Spectroscopy, 1991, 22, 83-9.

Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy, Hardcastle, Franklin D.; Wachs, Israel E., Journal of Physical Chemistry, 1991, 95(13), 5031-41.

Determination of niobium-oxygen bond distances and bond orders by Raman spectroscopy. Hardcastle, Franklin D.; Wachs, Israel E., Solid State Ionics, 1991, 45(3-4), 201-13.

Vanadium(V) environments in bismuth vanadates: a structural investigation using Raman spectroscopy and solid state vanadium-51 NMR, Hardcastle, Franklin D.; Wachs, Israel E.; Eckert, Hellmut; Jefferson, David A., Journal of Solid State Chemistry, 1991, 90(2), 194-210.

Monolayer vanadia/titania and molybdena/titania catalysts prepared by different methods, Machej, Tadeusz; Haber, Jerzy; Turek, Andrzej M.; Wachs, Israel E., Applied Catalysis, 1991, 70(1), 115-28.

Surface oxide-support interaction (SOSI) for surface redox sites, Deo, Goutam; Wachs, Israel E., Journal of Catalysis, 1991, 129(1), 307-12.

Structural chemistry and Raman spectra of niobium oxides, Jehng, Jih Mirn; Wachs, Israel E., Chemistry of Materials, 1991, 3(1), 100-7.

 

1990 [top]

Niobium oxalate: new precursor for preparation of supported niobium oxide catalysts, Jehng, Jih Mirn; Wachs, Israel E., in Novel Mater. Heterog. Catal., 1990, Volume 437: ACS Symposium Series, Chapter 21, 232-42.

Raman spectroscopy of vanadium oxide supported on alumina, Deo, G.; Hardcastle, F. D.; Richards, M.; Hirt, A. M.; Wachs, Israel E., in Novel Mater. Heterog. Catal., 1990, Volume 437: ACS Symposium Series, Chapter 29, 317-28.

The molecular structures and reactivity of supported niobium oxide catalysts, Jehng, Jih Mirn; Wachs, Israel E., Catalysis Today, 1990, 8(1), 37-55.

Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy, Hardcastle, Franklin D.; Wachs, Israel E., Journal of Raman Spectroscopy, 1990, 21(10), 683-91.

Molecular engineering of supported metal oxide catalysts, Wachs, Israel E., Chemical Engineering Science, 1990, 45(8), 2561-5.

Molecular structures of surface vanadium oxide species on titania supports, Wachs, Israel E., Journal of Catalysis, 1990, 124(2), 570-3.

Molecular structure-reactivity relationships of supported vanadium oxide catalysts, Deo, G.; Eckert, H.; Wachs, I. E., Preprints - American Chemical Society, Division of Petroleum Chemistry, 1990, 35(1), 16-21.

Solid state vanadium-51 NMR structural studies of vanadium(V) oxide catalysts supported on titania(anatase) and titania(rutile). The influence of surface impurities on the vanadium(V) coordination, Eckert, Hellmut; Deo, Goutam; Wachs, Israel E.; Hirt, Andrew M., Colloids and Surfaces, 1990, 45 347-59.

 

1989 [top]

Physicochemical properties of molybdena-titania prepared by an equilibrium adsorption method, Kim, D. S.; Kurusu, Y.; Wachs, I. E.; Hardcastle, F. D.; Segawa, K., Journal of Catalysis, 1989, 120(2), 325-36.

Niobium oxalate: a new precursor for the preparation of supported niobium oxide catalysts. Jehng, J. M.; Wachs, I. E., Preprints - ACS, Division of Petroleum Chemistry, 1989, 34(3), 546-50.

Raman spectroscopy of supported vanadium oxide on alumina: influence of the alumina phase. Deo, G.; Hardcastle, F. D.; Richards, M.; Wachs, I. E., Preprints - ACS, Division of Petroleum Chemistry, 1989, 34, 529-34.

Solid-state vanadium-51 NMR structural studies on supported vanadium(V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports, Eckert, Hellmut; Wachs, Israel E., Journal of Physical Chemistry, 1989, 93(18), 6796-805.

The interaction of vanadium pentoxide and niobium pentoxide with oxide surfaces, Wachs, Israel E.; Jehng, Jih Mirn; Hardcastle, Franklin D., Solid State Ionics, 1989, 32-33(Pt. 2), 904-10.

 

1988 [top]

Raman spectroscopy of chromium oxide supported on alumina, titania, and silica: a comparative study, Hardcastle, Franklin D.; Wachs, Israel E., Journal of Molecular Catalysis, 1988, 46(1-3), 173-86.

The structure of surface rhenium oxide on alumina from laser Raman spectroscopy and x-ray absorption near-edge spectroscopy, Hardcastle, Franklin D.; Wachs, Israel E.; Horsley, John A.; Via, Grayson H., Journal of Molecular Catalysis, 1988, 46(1-3), 15-36.

Vanadium-51 NMR: a new probe of structure and bonding in catalysts, Eckert, Hellmut; Wachs, Israel E., Materials Research Society Symposium Proceedings, 1988, 111 (Microstruct. Prop. Catal.), 459-64.

Characterization of supported metal oxides by laser Raman spectroscopy: supported vanadium oxide on alumina and titania, Wachs, Israel E.; Hardcastle, Franklin D.; Chan, Shirley S., Materials Research Society Symposium Proceedings, 1988, 111 (Microstruct. Prop. Catal.), 353-8.

 

1987 [top]

Activity profiling in catalytic reactions, Pirkle, J. Carl, Jr.; Wachs, Israel E., Chemical Engineering Progress, 1987, 83(8), 29-34.

Reaction Network and Kinetics of O-Xylene Oxidation to Phthalic Anhydride over V2O5/TiO2 (Anatase) Catalysts, Saleh, R.Y., Wachs, I. E., Applied Catalysis, 1987, 31, 87-98.

Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorption near-edge spectroscopy and Raman spectroscopy, Horsley, J. A.; Wachs, I. E.; Brown, J. M.; Via, G. H.; Hardcastle, F. D., Journal of Physical Chemistry, 1987, 91(15), 4014-20.

In situ laser Raman spectroscopy of nickel oxide supported on gamma-alumina, Chan, Shirley S.; Wachs, Israel E., Journal of Catalysis, 1987, 103(1), 224-7.

 

1986 [top]

Characterization of the tungsten trioxide/alumina system with low energy ion scattering spectroscopy, Carver, James C.; Wachs, Israel E.; Murrell, Lawrence L., Journal of Catalysis, 1986, 100(2), 500-2.

Raman spectroscopy of supported metal oxide catalysts, Wachs, Israel E.; Hardcastle, Franklin D.; Chan, Shirley S., Spectroscopy, 1986, 1(8), 30-8.

Comparison of V2O5/TiO2 (anatase) and V2O5/TiO2 (rutile): promoting effect of the support. Saleh, R. Y.; Wachs, I. E.; Chan, S. S.; Chersich, C. C., Preprints - ACS, Division of Petroleum Chemistry, 1986, 31(1), 272-6.

The interaction of V2O5 with TiO2 (anatase): catalyst evolution with calcination temperature and o-xylene oxidation, Saleh, R.Y.; Wachs, I.E.; Chan, S.S.; Chersich, C.C., Journal of Catalysis, 1986, 98, 102-14.

 

1985 [top]

Solid state chemistry of tungsten oxide supported on alumina, Soled, S.; Murrell, L. L.; Wachs, I. E.; McVicker, G. B.; Sherman, L. G.; Chan, S.; Dispenziere, N. C.; Baker, R. T. K., in Solid State Chemistry in Catalysis, 1985, Volume 279: ACS Symposium Series, Chapter 10, 165-82.

Supporting the catalyst, Wachs, Israel E.; Saleh, Ramzi Y.; Chan, Shirley S.; Chersich, Claudio., CHEMTECH, 1985, 15(12), 756-61.

The interaction of vanadium pentoxide (V2O5) with TiO2 (anatase). Wachs, I. E.; Chan, S. S.; Chersich, C. C., Materials Science Monographs, 1985, 28B(React. Solids, Pt. B), 1047-9.

Photo-oxidation of methanol using molybdenum trioxide/titanium dioxide: catalyst structure and reaction selectivity. Liu, Y. C.; Griffin, G. L.; Chan, S. S.; Wachs, I. E., Journal of Catalysis, 1985, 94(1), 108-19.

The interaction of vanadium pentoxide with titania (anatase): part I. Effect on o-xylene oxidation to phthalic anhydride, Wachs, I. E.; Saleh, R. Y.; Chan, S. S.; Chersich, C. C., Applied Catalysis, 1985, 15(2), 339-52.

Laser Raman characterization of tungsten oxide supported on alumina: influence of calcination temperatures, Chan, S. S.; Wachs, I. E.; Murrell, L. L.; Dispenziere, N. C., Jr., Journal of Catalysis, 1985, 92(1), 1-10.

The interaction of vanadia with titania (anatase). II. Comparison of fresh and used catalysts for o-xylene oxidation to phthalic anhydride, Wachs, I. E.; Chan, S. S.; Saleh, R. Y., Journal of Catalysis, 1985, 91(2), 366-9.

Reduction of alumina-supported tungsten trioxide and unsupported tungsten trioxide: a comparative ESCA study, Wachs, Israel E.; Chersich, Claudio C.; Hardenbergh, John H., Applied Catalysis (1985), 13(2), 335-46.

 

1984 [top]

In situ characterization of small vanadium oxide (V2O5) crystallites supported on titanium dioxide(anatase), Wachs, Israel E.; Chan, Shirley S., Applications of Surface Science, 1984, 20(1-2), 181-5.

Relative Raman cross-sections of tungsten oxides: [tungsten(VI) oxide, aluminum tungstate (Al2(WO4)3) and tungsten(VI) oxide/aluminum oxide], Chan, S.S.; Wachs, I.E.; Murrell, L L., Journal of Catalysis, 1984, 90, 150-5.

The interaction of vanadia (V2O5) with TiO2 (anatase): the active site for the oxidation of o-xylene to phthalic anhydride, Wachs, I. E.; Chan, S. S.; Chersich, C. C.; Saleh, R. Y., Studies in Surface Science and Catalysis, 1984, 19 (Catal. Energy Scene), 275-82.

In situ laser Raman spectroscopy of supported metal oxides, Chan, S. S.; Wachs, I. E.; Murrell, L. L.; Wang, L.; Hall, W. K. Journal of Physical Chemistry, 1984, 88(24), 5831-5.

Laser Raman characterization of tungsten oxide on alumina, Chan, S. S.; Wachs, I. E.; Murrell, L. L.; Dispenziere, N. C., Studies in Surface Science and Catalysis, 1984, 19 (Catal. Energy Scene), 259-66.

Characterization of iron, iron-copper and iron-silver Fischer-Tropsch catalysts, Wachs, Israel E.; Dwyer, Daniel J.; Iglesia, Enrique., Applied Catalysis, 1984, 12(2), 201-17.

 

1983 [top]

Research on Gold in Catalysis, Wachs, Israel E., Gold Bulletin, 1983, 16(4), 98-102.

Comparison of Bulk and Supported Tungsten Oxide, Soled, S.; Murrell, L.; Wachs, I.E.; McVicker, G., ACS Preprints - Division of Petroleum Chemistry, 1983, 28(5), 1310-1314.

 

1982 [top]

Oxidation of acetonitrile (CH3CN) over silver: formation of surface compounds, Wachs, Israel E.; Chersich, Claudio C., Chemical Physics Letters, 1982, 88(1), 46-9.

 

1981 [top]

Postreactor reactions during ethylene oxidation over silver, Wachs, Israel E.; Chersich, Claudio C., Journal of Catalysis, 1981, 72(1), 160-5.

The interaction of ethylene with surface carbonate and hydroxide intermediates on silver, Wachs, Israel E.; Kelemen, Simon R., Journal of Catalysis, 1981, 71(1), 78-87.

Mechanism of the interaction of ethylene with atomic oxygen on a silver surface, Wachs, Israel E.; Kelemen, Simon R., Studies in Surface Science and Catalysis, 1981, 7 (Pt. A, New Horiz. Catal.), 682-97.

Comparison of the oxidation of ethylene, ethane, and acetylene by atomic oxygen on silver (110), Wachs, Israel E.; Kelemen, Simon R., Journal of Catalysis, 1981, 68(1), 213-17.

 

1980 [top]

The oxidation of ethylene, ethane, and acetylene by atomic oxygen on silver, Wachs, Israel E.; Kelemen, Simon R., Preprints - American Chemical Society, Division of Petroleum Chemistry, 1980, 25(2), 332-3.

The surface intermediate H2COO, Wachs, Israel E.; Madix, Robert J., Applications of Surface Science, 1980, 5(4), 426-8.

Auger electron spectroscopy of surface carbon on silver(110), Kelemen, S. R.; Wachs, I. E., Surface Science, 1980, 97(2-3), L370-L374.

MBRS measurements of overlayer effects on surface lifetimes and reaction probabilities, Wachs, Israel E.; Madix, Robert J., Journal of Catalysis, 1980, 61(2), 310-15.

 

1979 [top]

The oxidation of formaldehyde on a copper(110) surface, Wachs, Israel E.; Madix, Robert J., Surface Science, 1979, 84(2), 375-86.

 

1978 [top]

The oxidation of ethanol on copper(110) and silver(110) catalysts, Wachs, Israel E.; Madix, Robert J., Applications of Surface Science, 1978, 1(3), 303-28.

The oxidation of methanol on a silver (110) catalyst, Wachs, Israel E.; Madix, Robert J., Surface Science, 1978, 76(2), 531-58.

The selective oxidation of methanol to formaldehyde on a copper(110) catalyst, Wachs, Israel E.; Madix, Robert J., Journal of Catalysis, 1978, 53(2), 208-27.

 

1977 [top]

The kinetics and mechanism of catalytic reactions by molecular beam relaxation spectroscopy: formic acid decomposition, Wachs, Israel E.; Madix, Robert J., Surface Science, 1977, 65(1), 287-313.

 

1976 [top]

On the hydrogen-deuterium exchange on stepped platinum surfaces, Wachs, Israel E.; Madix, Robert J., Surface Science, 1976, 58(2), 590-6.

 

[back to top]