Underwater Wireless Communications: Overview and Recent Progress

Yahong Rosa Zheng

Department of Electrical & Computer Engineering Lehigh University, Bethlehem, PA, 18015 yrz218@Lehigh.edu

The work is supported in part by USDoT, ONR and NSF

Why Underwater Wireless?

- Water covers >70% of Earth Surface, and 50% of USA territory lies under the sea.
- Ocean provides:
 - Food, Fuel, Fun;
- Life began in the ocean over 3.5 billion years ago, but over 95% of the ocean is unseen by human eyes

Gulf of Mexico Oil and Gas Sites

Underwater Wireless - Bottleneck

On 10 May 2014, *Nereus* was lost while exploring the Kermadec Trench at a depth of 9,900 meters (32,500 ft). Communications were cut off at around 2 p.m. local time, and debris retrieved later revealed that it imploded due to high pressure.

Robert Ballard: Ocean is the biggest natural history and human history museum.

Field Experiments @ Atlantic Ocean 2017-18

Underwater Communication Means

Radio Frequency (RF) does not work: Limited BW (1MHz), very short range < 1 m

□ Magneto-Inductive (MI) Communications: Small bandwidth (<500 kHz), Short range (~100 m) Optical Beams: Large BW, short range: 20 m – 200 m Sound Propagation (AComm): Short range (<1 km): 300 kHz (HF) Medium range (1-10 km): 10 - 100 kHz (MF)

Long range (1000 km): < 2 kHz (LF)

Acomm Multipath Channels

Inhomogeneous MIMO Channels

Received Signals @ SPACE08

	Gap	1 Tx	2 Tx	3 Tx	4 Tx	Gap	Total
Symbols	20000	117000	130000	143000	155000	20000+937.5	2343750/4
Time	2.048s					2.048+0.096	60s

Carrier frequency	13 kHz
Bandwidth	9.765625 kHz
Error correction code	Rate- ¹ / ₂ convolutional code [17, 13]

Moving MIMO Data

PHY-Layer Approaches

MIMO Single-Carrier Time-Domain Turbo Equalization
 MIMO Single-Carrier Frequency-Domain Turbo Equalization
 MIMO OFDM with Turbo ICI Cancellation

Figures adopted from Falconer's 1999 tutorial paper. Both are used for Cellular LTE.

SCM Acomm Challenges

Conventional Digital Receiver with Decision Feed-back Equalizer M. Stojanovic and J. Proakis: 1994 Coherent DFE w/ PLL

Architecture of MIMO Transceiver

Y.R. Zheng, J. Wu, and C. Xiao, "Turbo Equalization for Underwater Acoustic Communications," IEEE Commun. Mag., vol. 53, no. 11, pp. 79-87, Nov. 2015.

Time-Domain Turbo Equalizers

$$\mathbf{y}_{k} = \mathbf{H}\mathbf{s}_{n,k} + \mathbf{w}_{k}$$
$$\hat{s}_{n,k} = \mathbf{f}_{n}^{h}(\mathbf{y}_{k} - \mathbf{H}\tilde{\mathbf{s}}_{n,k})$$
$$\mathbf{H} = \begin{bmatrix} h_{L-1} & \cdots & h_{0} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & h_{L-1} & \cdots & h_{0} \end{bmatrix}$$
$$\hat{s}_{n,k} = (\mathbf{f}_{n,k}^{h}\mathbf{H}\mathbf{e}_{k}) s_{n,k} + \eta_{n,k},$$
$$\mathbf{f}_{n,k} = (\mathbf{H}\mathbf{V}_{k}\mathbf{H}^{h} + \sigma_{w}^{2}\mathbf{I}_{K})^{-1}\mathbf{H}\mathbf{e}_{k}$$
$$\mathbf{V}_{k} = \begin{bmatrix} 0 & \ddots & 0 & \cdots & \\ \cdots & 0 & 1 & 0 & \cdots \\ & \cdots & 0 & 1 & 0 & \cdots \\ & \cdots & 0 & 1 & 0 & \cdots \\ & \cdots & 0 & 1 & 0 & \cdots \\ & \cdots & 0 & v_{k+1} & 0 \\ & & \cdots & 0 & \ddots \end{bmatrix}$$

Soft-Decision Decoding & Equalization

Variance:
$$v_k = \sum_{\alpha_m \in S} |\alpha_m - \bar{s}_k|^2 P(s_k = \alpha_m)$$

Extrinsic Log-likelihood ratio (LLR)

$$\lambda_e(c_{k,q}) = \ln \frac{\sum_{\alpha_m:c_{k,q}=0} p(\hat{s}_k | \alpha_m) \prod_{\forall q', q' \neq q} P(c_{k,q'})}{\sum_{\alpha_m:c_{k,q}=1} p(\hat{s}_k | \alpha_m) \prod_{\forall q', q' \neq q} P(c_{k,q'})}$$

Soft Symbol Mapping

$$\bar{s}_{k} = E\left[s_{k} | \left\{\lambda_{a}\left(c_{k,q}\right)\right\}_{q=1}^{Q}\right] = \sum_{\alpha_{m} \in S} \alpha_{m} P(s_{k} = \alpha_{m})$$

$$P\left(s_{k} = \alpha_{m}\right) = \prod_{q=1}^{Q} \frac{1}{2} \left(1 + \tilde{s}_{m,q} \tanh\left(\lambda_{a}\left(c_{k,q}\right)/2\right)\right), \qquad \tilde{s}_{m,q} = \begin{cases} +1 & \text{if } s_{m,q} = 0\\ -1 & \text{if } s_{m,q} = 1. \end{cases}$$

Time-Domain Turbo Equalizers

High Order Modulation

Underwater Acomm Algorithms

TD Methods:

- TD Linear Equalizer
- ***** TD Block DFE, SDFE and SICE
- Bi-Directional SDFE
- Adaptive Channel Estimation
- Direct-Adaption Turbo Equalizer
- **FD** Turbo Equalizers:
 - ✤FD LE + Phase Correction
 - FDE-FDDF and FDE-TDDFTDE-FDDF

□ 12 algo tested over 20 experiments

Equalizer Implementation

B. Han, Z. Yang, and Y. R. Zheng, "FPGA Implementation of QR Decomposition for MIMO-OFDM Using Four CORDIC Cores," IEEE ICC 2013, Budapest, Hungary, June 9-13, 2013. pp. 1-6.

Hardware Implementation w/ TI MCU

MI Communication System

Version 3 MI system w/ 3-D antenna coils

Underwater Internet of Things

Bridge Scour Monitoring

Conclusion and Future Work

Underwater wireless communication is a lot harder than terrestrial communication;

Three means in underwater wireless communication:

Ultrasound (acoustic) communications (Acomm);

Optical Communications;

Magneto-Inductive (MI) Communications.

Future work:

Hardware Implementation and applications: IoT, IoUT

Innovative network protocols and secure communication.