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Markov Decision Process

e States: 51, 5,53, and Actions: ag, a1, - -;
e Transition Probabilities: T(Sj|ai, Si)
— probability of transition to State S; from State S; by taking Action aj;

o Expected Rewards: R(Sj|aj, Si) - reward of transition to State S; by
taking Action a; at State S;.

Value
Functions

o000
Actions

State Transition Diagram MDP model
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Solution to an MDP

A policy 7 : S — A maps each state to a desirable action.
Optimal solution optimizes the expected discounted rewards over a horizon
[0, T]:

T

Z YR (se+1]m(st), st)

t=0

Value function of State s is defined as

V(s)=)_ T(s'a,5)[R(s'|a,s) +yV(s)]

Bellman equation: value iteration

Vita(s) = max {Z T(s'la, s) [R(s'|a, s) + 7\/1(5’)]}

s/
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Applications: Wireless Network with Energy Harvesting

o Wireless Internet of Things (loT) for ITS;

e Smart sensors for underwater infrastructure monitoring;

e Cellular base stations powered by renewable energy.

Element Cluster

spacing spacing
L | L

L \

D

Ypm suel

o

loT for Intelligent Transportation Systems

Y. R. Zheng

Cellphon i-Fi Mobi
Wi-Fi obile
Tower antenr@ Vehicle
Cellphone %
antenpa
o Bridge De«
V4 Wi-Fi
Y antenna Pier
Gateway| River bank
Node
5! ¢y Hydrophone Current flow Water
Transducer Scour hole
- (] O 0
Acoustic> °
Communication =
Smart rocks \\«\
Natural roc|
Soil deposits AlES

Smart Rocks for Bridge Scour Monitoring

5\ 25



Introduction Problem Formulation Resource Allocation Numerical Results Related Works

Network Resource Allocation

Design Goals:
o Utilize harvested energy as much as possible;
e Ensure network performance.

Research Challenges:

o Harvested energy is non-stable: follows
statistical models;

e Mobile communication channels are
time-variant and stochastic.

Existing Approaches:

e Online vs. Offline = Dynamic vs. Static;

e Channel State Information: Instantaneous vs.
Statistics Wireless Base Station Powered by

e Gaussian Inputs vs. Finite Alphabet Inputs Renewable Energy Sources

Y. R. Zheng hastic Dynamic Programming 6\ 25




Introduction Problem Formulation Resource Allocation Numerical Results Related Works

System Model

Energy TT Nia
Harvester

G[t] -

T User 1 T-Y Ny

Energy Buffer State
B[] Bmax -

Y. YN

Regular Energy R Elt) . TT N.u
Source T
Transmitter -

User U

yE:’,)k,d = HS,)k “Pukd 'XE:’,)k,d + “E,’,)k with HS,)k =Quk - wﬁ,ke(u.)k‘bﬁ,k

i :index for channel realization; v =1 : U user index
k =1: K subchannel index; d =1: D MCR index.
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MIMO Communication Networks

OFDMA — Orthogonal Frequency-Division Multiple Access
SC-FDMA - Single-Carrier Frequency-Division Multiple Access

OFDMA: Channel CDIR,, = {ay Dy ko Yy k}
by |MCR| _| Precodd _|Subcarrien |iper| | cpi| || _|Front |DFT | _|Subcarrien | 5 Detect
" - Decode >
rd Py k,d [ Mapping Ft PIS [ 77| End F DT et I p—1 ™| Decode
Su,k,d | H | Su,k,d [i] uk.d
Xu,k,d L
¢ ¢ iy ¢ ¢
SC-FDMA: Users 2:U ! % ! Users 2:U
& -
by |McR| _| DFT | | Sl\zbcarfief IDFT| | CPI| | | _|Front| |DFT | |Subcarier | 2 IDFT | | Detect | _
ry ;recode Suaiip:j"g Ft PIS [ T End E Es)e;mjp—> UEJ- = DeE?de Decode
oy u,k,d ok [ u,k, i
uk, -

Spectral efficiency rg = ¢4 - Ny - log, My.

where ¢y — coding rate; My — Constellation Size of Modulation;
Linear precoders P i 4 : Ny x Ny complex matrices;
Binary indicators s, x 4[t] € {0,1} — resource assignment table
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Objectives of Resource Allocation

Network Throughput = Expected Sum of Average Mutual Information (AMI)
T(Pyk.a|Qus) = Nilog My — o Z Ew, En, log Z e/’
d m=1
where Vinn = [[HukPuk,d(Xm.d — Xn.d) + Nu k> = [0 k%
Contrast to Gaussian Inputs with Instantaneous

Channel State Information:

T9(PuilHux) = log det (1 + HykPuiP] H /o)

Probability

: “"\‘\‘\\
g uo \\“\\‘{q

AR
: .“‘t
550 ou S

Solution is classic waterfilling for Gaussian inputs
or mercury waterfilling for finite alphabet.
However, Rx cannot distinguish symbol from noise;

i i i Magnitude of y Magnitude of x
Channel estimated at t; is different from that at t. QPSK modulation vs. Gaussian inputs

2 -2
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Online vs. Offline

. Current Frame |
Previous Frame —— L Next Frame
Channel Statistics |

B-[T+1=B}1] B}2] -+ B{ - B[] B[T+1]=B*]
NN
T 1 2 t T 1

N T S T T N

Energy dynamics: B[t + 1] = min(B[t] + G[t] — (E[t] — TP/)", Bmax);
Battery states: B[t] = Bi : Bu; Harvested energy G[t] = Gy : GJ;
Actions: energy allocation E[t] = E; : En;

where
U K D
Et] = Z Z Zsu,k,d[t] - Eukdlt]
u=1 k=1 d=1
with Eu,k,d[t] =7-Tr Pu,k,d[t] . Py,k,d[t])
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Online Resource Allocation

SDP: . ) . . .
maximize Rsym(P,S)  (j=1: T;time slot index)

subject to B[T +1] > Qg, E[t] < 7P, + B[t]
U D
Z Zsu,k,d[t] <1, Vk,t.
u=1d=1

Value function:

;
R (P.S) = Ri(PILL S|, BL1) + Y Es{Re(PItl Sltl|2 Bl }
t=j+1
where Plt] = {Pukalt] : Vu, k, d} — P = {P[t] : Vt}
S[t] = {su,kd[t] : Vu, k,d} — S = {S][t] : Vt}

U K D
Rf(P[tLS[tHQ’ B[t]) =W- Zpu Z Z rd - su,k,d[t]

u=1 k=1 d=1
with Z(Pukd[t]|Quk) > ra - sukalt], Vu k,d
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Break the Curse of Dimensionality

Existing energy harvesting designs

e Offline designs with non-causal
energy arrival profile:
[0Ozel2011,JSAC],
[Gregori2013,TC]

e Online designs with causal
energy arrival profile:
SISO - [Ho2012,TSP]
Heuristic — [Ng2013,TWC]

Our approach:

e Layered decomposition achieves
global optimal solution with low
complexity

IIléaX RuL (5 )

s.t.: energy buffer life requirement Qp

i (B1B) &

|
|
|
Y

Rig (E|B) = max R (S)

s.t.: total energy requirement E

*
Pu,k,d

Vu. ke, d S

]
|
|
|
Y

Orkd = Hgn o(P)

s.t.: spectral efficiency requirement r4

W. Zeng, Y.R. Zheng, and R. Schober, “Online Resource Allocation for Energy Harvesting Downlink Multiuser Systems: Precoding with
Modulation, Coding Rate, and Subchannel Selection,” IEEE Trans. Wireless Commun., Oct. 2015.
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The Upper Layer: a One-Dimensional SDP Problem

T

maximize Ry (€) = Ry (E[1]|B[1]) + > EB{R,\*AL(E[tHB[t])} (1a)
t=2
subject to B[T +1] > Qg (1b)
Bt +1] = min{ B[t] + Glt] - (E[t] = 7P.)", Bmax }, ¥t (1)
E[t] < 7P, + B[t], Vt (1d)
Direction for Backward Recursion
Time Slot Time Slot Time Slot  Time Slot Time Slot Time Slot Virtual
t—1 t t+1 T Time Slot

1 2
State B, Q—),’\

State 5, @

State 5, @ @
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The Middle Layer: a Knapsack Problem

Related Works

U K D
maximize RuL(S) =W - Z Pu Z rd * Su,k,d
u=1  k=1d=1
U K D
subject to Z Z ZSU?k’d “okd SEZTP, +B
u=1 k=1 d=1

Method of Lagrangian Multiplier with x4 for the energy constraint:
Step 1 Solve K convex optimization problems:

maxsimize Li(Sk, 1) subject to ZZS"!‘@" <1
. u=1d=1

where  Li(Sk, 1) Zzsukd W'/)urd—,U"PZ,k,d)
u=1 d=1
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The Middle Layer Solution

Step 2 For a given u, compute

X

g(p) = max|sm|ze L(S,u) = ; Li(Sk, ) +p- E
Step 3 Solve for
minimize g(u)

n>0

Since g(u) is piecewise linear in . — Step 3 is solved by subgradient-aided
bisection search.
The gradient is computed at g(u) at pw = (u + 1n)/2 as

K D
VEOEY-EDSEY Sl(fl),d *Pink,d
d=

u=1 k=1 1

where S(lfk),d: Optimal solution in Step 1 with a given pu.

u
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The Lower Layer: Power Allocation

Rate maximization: H=[21;11], H,=svd(H) = [2.6180 0; 0 0.3820]
4[| ~6- H,, Gaussian, CWF : o ‘ : H
.. —p-.H_, Gaussian, No WF 3 /
maXLmlze I(P|Qu7k) _'_H:‘QPSK‘OpllmaIP S 4
= || —e=H, QPSK, Max Div o i
. H 33 _._Hd‘QPSK, MWF :' ,;' 1
subjectto 7-Tr(P-P" ) <E 2 || opsknowe | /) 5
S ||-m-H, QPSK CcWF / o
Two Optimization Methods: £ e ]
e Convex optimization w.r.t Gram 3
. = |
Matrix (HP)THP;
e Maximize a Tight Upper Bound of
Mutual Information. 0 o ow gy »

The dual problem:

aa =g A= T(0 -0 71
> ry

subject to  Z(P|Qy.x) Yu, k,d. (4b)

C. Xiao, Y. R. Zheng, and Z. Ding, “Globally Optimal Linear Precoders for Finite Alphabet Signals over Complex Vector Gaussian Channels,”
IEEE Trans. SP, July 2011.

W. Zeng, C. Xiao, M. Wang, and J. Lu, “Linear precoding for finite alphabet inputs over MIMO fading channels with statistical CSI," IEEE Trans.
SP, June 2012.
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The Lower Layer Solution

Step 1: SVD channel correlation matrix ®, , = U, Xy (V. k

Let P =U-/Diag(A)- V. Set U= U,.

Set V as the modulation diversity matrix.
Step 2: Approximate the average mutual information by

Ta(A|Quk) = N: log I\/Id——ZIogZH( ”kw” & D.ag(x)zu,ké(;,’n))f

dml n=1 gq

where ngqi is the g-th eigenvalue of the receive correlation matrix W, .

Step 3: Solve for the power allocation A by
minimize 7-1TA
py
subject to Zao(A|Quk) >ra and A >0

With the interior-point algorithm with the log-barrier function.
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Simulation Setup

e Network Resource Profile
» # of subchannels K = 128, # of MCR schemes D = 12;
> # of Users U =9, user priority weights p, = 1 for all u ;
e MIMO Fading Channel Profile
» COST231-Hata propagation model with 6 multipath taps
Per User: 2 x 2 MIMO
transmit correlation matrix Wy = W(0.95)
receive correlation matrix W, = W(0.5)
the (i,j)-th element of W(p) follows the exponential model

vVYyVvyy

W), = ol pe [0,1) and i,j=1,---,N:or N,

e Energy Harvesting Profile
> initial battery state: 1 unit; battery capacity Bmax = 10
> harvested energy Ex, Vk, takes its value in set {0,1,2} with equal
probability; the length of time slot 7 = 1.
> battery state set and power choice set are discretized as {0,1, - , Bmax}
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Performance: Upper Layer

1000

900

800

_ —#¥— Proposed Precoder: Dynamic Programming
/ @ —%— - Proposed Precoder: Greedy Method
/ —&— No Precoding: Dynamic Programming |
/ —D— - No Precoding: Greedy Method
—©— Max. Capacity: Dynamic Programming
—O— - Max. Capacity: Greedy Method
I I

Sum of Average Mutual Information (Mbit)
~
o
o

i T

0 0.5 1 1.5 2 25 3
Power from Stable Energy Source: Pr

Achievable AMI vs. regular power source P, with T = 40 and Bmnax = 10.
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Performance: Middle Layer

Related Works

The proposed algorithm approaches the Gaussian input upper bound.

Y. R. Zheng

Sum of Average Mutual Information (Mbps)

w
o

N
a1
T

T
Max. Capacity: Gaussian inputs with Subchannel Selection
— — - Linear Programming: MCR and Subchannel Selection

%  Proposed Precoder: MCR and Subchannel Selection
—+&— No Precoding: MCR and Subchannel Selection
—O— Max. Capacity: MCR and Subchannel Selection

N
o
T

-
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T

10
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Energy Consumption (dB)
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Performance: Lower Layer

7 T T
Max. Capacity: Gaussian
— %— - Proposed Precoder: BPSK, QPSK, 16-QAM * /:! ]
6 — - - No Precoding: BPSK, QPSK, 16-QAM )k-/ 7’ 0/ i
— @~ - Max. Capacity: BPSK, QPSK, 16-QAM L7, / o

~ (¢}

w

Average Mutual Information (bps/Hz)

-20 -15 -10 -5 0 5 10
Energy Consumption (dB)

Energy consumption vs. AMI for 2 x 2 correlated MIMO channels.
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Concluding Remarks

e Online resource allocation for energy harvesting wireless networks:
multi-dimensional SDP problem.

e An innovative layered decomposition approach solves the SDP
optimization with preserved optimality

e Computational complexity with KUD subchannels, MJN battery/energy
levels, and 2Nt2KUD real-valued precoder coefficients:

Direct computation of SDP: The Proposed 3-layer algorithm:
O(TMJ - (N2MKUP 4 oKUP) . ) O TMIN-+N-KUD++/Ni-KUD- ).

fo = complexity for computing the fa =7.2 x 10~8fy for QPSK
MIMO Average Mutual Information. fa = 3.2 x 1075/, for BPSK.
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Security in Cognitive Radio Networks

/
max'i)mize RSC(P|Q) = Z 12’21 [EH/.I(X,'; yi)— Eng(x,-; Zj)Tr

i-1
subject to Tr(PTP) <7y & Tr(PT@;P) < v, Vk.
where Q={6,,0,,06}, Vij, k.

ST — secondary transmitter to design precoder P;
PR-k — kth primary user with channel Fy;
SR-j — ith secondary receiver with channel H;;
ED-j — jth eavesdropper with channel Gj;
Algorithms:
e ST utilizes channel statistical information €;
e Difference of Convex Functions in terms of
W = P'HHP;
e Generalized Quadratic Matrix Programming
(GQMP).

ED-1 ED-2 ED-)

J. Jin, Y.R. Zheng, W. Chen, and C. Xiao, “Generalized Quadratic Matrix Programming: A Unified Framework for Linear Precoding With
Arbitrary Input Distributions,” IEEE Trans. Signal Processing. Accepted June 2017.

Y. R. Zheng
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High Data-Rate Underwater Acoustic Communications

Severe Multlpath and Doppler Fadmg Channels Cause Phase Rotation.

Algorithms: .

e Multiple-Input y MMO | LiRs wae | B,
Multiple-Output LC-M'ISASE decoder
(MlMO)’ equalizer

e TD and FD Turbo - -

Equalization; HT 5T is X

® Adaptive Channel ) lterative MiMO | $-ERSx | map | Pus
Estimation or Direct ~ Pt} chamel ) L2(cy,) | decoder >
Adaptation estimator 74—-47

Y.R.Zheng, J. Wu, and C. Xiao, “Turbo Equalization for Underwater Acoustic Communications,” IEEE Commun. Mag., Vol. 53, No. 11, pp.
79-87, Nov. 2015.

Y.R.Zheng and Weimin Duan, “Improved Turbo Receivers for underwater acoustic communications,” US Patent Application #62483358.
Pending. April 9, 2017.
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Compressive Sensing Using L1 Optimization

Near-Field SAR Image Reconstruction 3D SAR Transform by NUFFT:
SAR(Q) R—SAR(Q_l) S(X7 Y, Z) ‘FQD {]:NU {F ka k,V7 }}
f(xly’w) fA(Xfyxw) with F(k, ky,w) = Fap {f(x, y,w)} exp(—jzok:)
and wavenumber k, = \/4k? — k2 — k2
[ om0 ][ o] g
7 I f Matrix form CS-SAR by minimizating:
R e
o 1 T(s) = Ae||Wsll, + A TV(s) + | — 02|

w=Z ki where W — sparsifying domain; ® —

Pl measurement matrix; £ — SAR transform.
Algorithms:
Totd e Adaptive Bases Selection within CS
(Truncation) N .
Iterations (i.e. OMP, ADM, CG);
e Split-Bregman Algorithm for 3D CS-SAR
S(kx,ky.z) / Fast C .
T | w/ Fast Convergence;
=0 ! e Adaptive Measurement via Non-reference
stx.y.2) Image Quality Assessment.

D. Bi and L. Ma and X. Xie and Y. Xie and X. Li and Y. R. Zheng, “A Splitting Bregman-Based Compressed Sensing Approach for Radial UTE
MRI,” IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, pp. 1-5. Oct. 2016.

X. Yang, Y.R. Zheng, M. T. Ghasr, and K. Donnell Hilgedick, “Microwave Imaging from Sparse Measurements for Nearfield Synthetic Aperture
Radar (SAR),” IEEE Trans. Instrumentation Measurement, In press Mar. 2017.
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