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Abstract. This paper extends existing commodity valuation models to allow for stochastic volatility and

simultaneous jumps in the spot price and spot volatility. Closed-form valuation formulas for forwards,

futures, futures options, geometric Asian options and commodity-linked bonds are obtained using the

Heston (1993) and Bakshi and Madan (2000) methodology. Stochastic volatility and jumps do not affect

the futures price at a given point in time. However, numerical examples indicate that they play important

roles in pricing options on futures.
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The past decade or so has seen a proliferation of financial instruments linked to the
price of commodities, such as futures, futures options and commodity-linked bonds.
With the crude oil price tripled between late 1998 and early 2000, there is now a resur-
gent interest in commodity risk management. Valuation of commodity derivatives,
which are major vehicles for commodity hedging, is becoming an increasingly impor-
tant problem in financial economics.

The first generationof commodity contingent claimsmodels1 assume that all the uncer-
tainty is summarized in one factor: the spot price of the commodity. It soon became ap-
parent, however, that more factors are needed to properly value commodity contingent
claims. In their two-factor model,Gibson and Schwartz (1990) assume that the spot price
and the spot convenience yield followa joint stochastic process. In his presidential address,
Schwartz (1997) develops a three-factor model in which interest rates, in addition to con-
venience yields and spot prices, are also stochastic. Hillard and Reis (1998) introduce
jumps in the spot price of the commodity anduse the initial term structure of interest rates
to eliminate the market price of interest rate risk in their pricing equation.Miltersen and
Schwartz (1998) propose a general frameworkof pricing commodity futures options using
the Heath, Jarrow andMorton (1992) methodology. However, their model is not useful in
pricing futures because they take the entire term structure of futures prices as given. It is
striking that all of the above models assume that the volatility of spot prices is constant.By
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now it is a common place observation that the volatility of financial returns (stocks, bonds
and currencies) changes over time.What is special about commodities?

Yan (2001) examines the commodity return distributions using gold and crude oil data.
Several important characteristics of commodity returnswere uncovered in his study.First,
commodity returns are leptokurtic. Second, the volatility of commodity returns changes
randomly over time.Third, there exist simultaneous abrupt changes in price and volatility.
Fourth, commodity options display ‘‘volatility smiles.’’Finally,unlike that of stock indices,
commodity return distributions are not negatively skewed and are not characterized by
asymmetric volatility (volatility goes up more when price goes down).

To capture the above-mentioned features of commodity returns, I propose a model
that incorporates stochastic convenience yields, stochastic interest rates, stochastic vola-
tility and simultaneous jumps in the spot price and volatility. Closed-form solutions are
obtained for a variety of commodity derivatives, including futures, forwards, futures op-
tions, geometric Asian options and commodity-linked bonds. The futures pricing for-
mula shares a similar feature with existing models in that it is exponentially linear in
the factors. The futures price is not a function of either spot volatility or jumps or their
associated parameters.This is because the futures price is the expected future spot price
(the first moment) under the risk neutral probability. While stochastic volatility and
jumps affect the higher-order moments of the terminal spot price distribution, they do
not alter the first moment. Closed-form futures option prices are obtained using the
technique developed by Heston (1993) and Bakshi and Madan (2000). Numerical exam-
ples show that stochastic volatility and jumps both play important roles in pricing fu-
tures options.

The remainder of the paper is organized as follows.The proposed valuation model is
presented in Section 1.Closed-form formulas for futures and futures options are derived.
Section 1 alsobriefly discusses the estimation and implementation of the model. Section 2
shows how to price geometric Asian options and a simple class of commodity-linked
bonds within the proposed framework. Section 3 concludes.

1. The Valuation Model

1.1. The Setup

The standard modeling procedure for the purpose of derivatives pricing typically in-
volves the following steps. First of all, researchers specify the stochastic process followed
by state variables in the objective measure. Secondly, suitable assumptions about the
market prices of risks are made. The objective measure is then adjusted by the market
price of risks to obtain the risk neutral measure. Finally, derivative prices are obtained
by computing the expected discounted future payoff under the risk neutral measure.To
save space, I will specify from the outset a stochastic structure under the risk neutral
probability measure. As shown by Harrison and Kreps (1979) and Harrison and Pliska
(1981), under very general conditions the absence of arbitrage opportunities implies the
existence of a risk neutral probability measure. Under this measure the instantaneous
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expected rate of return of any financial asset that has a positive price is equal to the
instantaneous riskless rate. The following assumptions are maintained.

Assumption 1 Trading takes place continuously.

Assumption 2 There are no transactions costs, taxes and short sale constraints.

Assumption 3 The dynamics of commodity prices are given by the following stochastic

differential equation

dS=S ¼ ðr � � � ��J Þ dt þ �S d!1 þ
ffiffiffiffi
V

p
d!2 þ J dq (1)

Prob ðdq ¼ 1Þ ¼ � dt (2)

lnð1þ JÞ � N lnð1þ �J Þ � 1
2�

2
J ; �

2
J

� �
: (3)

Assumption 4 Spot interest rates follow the square-root process

dr ¼ ð�r � �rrÞ dt þ �r

ffiffi
r

p
d!r: (4)

Assumption 5 Spot convenience yields follow the Ornstein-Uhlenbeck (OU) process

d� ¼ ð�� � ���Þ dt þ �� d!�: (5)

The convenience yield includesboththe reduction in costofacquiring inventoryand the
value of being able to profit from temporary local shortage of the commodity. Brennan
(1991) proposes that the convenience yield follows an exogenously specified Markov pro-
cess.This autonomous convenience yield may be regarded as the reduced form of a more
general model inwhich the convenience yield is endogenously determined by production,
consumption and storage decisions.

Assumption 6 The spot volatility follows a square-root jump-diffusion process

dV ¼ð�V � �VV Þ dt þ �V

ffiffiffiffi
V

p
d!V þ JV dq (6)

JV � exponentialð�Þ � > 0: (7)

Spot prices and volatilities jump simultaneously. The jump size of volatility follows
an exponential distribution. That is, volatility can only jump up. This assumption, com-
bined with the assumption of a square-root process, guarantees that spot volatility is
always positive.

Assumption 7 Spot convenience yields and spot volatilities are both correlated with the

return process. Correlations between other Brownian Motions are zero
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covðd!1; d!�Þ ¼ �1 dt (8)

covðd!2; d!V Þ ¼ �2 dt: (9)

Bakshi, Cao and Chen (1997) and Bates (1996, 2000) have shown that the correlation
between the return process and the volatility process is critical in generating skewness
and excess kurtosis in the return.2 This correlation is also able to produce ‘‘asymmetric
volatility.’’ Specifically, if this correlation is positive, then positive returns are associated
with higher volatilities. If this correlation is negative, negative returns are associated with
higher volatilities. I expect this parameter to be close to zero for commodities since
Yan (2001) finds that ‘‘asymmetric volatility’’ is not a characteristic of commodity
returns. Brennan (1991) examines the empirical relationship between inventories of
the commodity, spot prices and convenience yields and finds that there is a positive corre-
lation between prices and convenience yields.

The assumption of zero correlations between all other Brownian Motions is necessary
for obtaining analytical solutions. For instance, as the instantaneous interest rate and the
instantaneous volatility both follow the square root process, a non-zero correlation be-
tween d!r and d!V would make the model intractable.

The above commodity return distributional assumptions offer a sufficiently flexible
structure that can accommodate most of the desired features. For instance, skewness in
the commodity return distributions is controlled by either the correlation �2 or the mean
jump size�J ,whereas the amountof kurtosis ismanagedbyeither the volatilityof volatility
�V or the variability of the jump component in the commodity prices. Jumps in volatility
can also help generate excess kurtosis.

1.2. Fundamental PDE

The proposed model falls into the class of affine models in that the drift terms and the
squared diffusion terms in S, r, �, and V processes are all linear in state variables.
Additionally, the intensity parameter of jumps is constant (hence linear in factors).
These assumptions make it possible to obtain closed-form solutions for a variety of
commodity derivatives.

Under the risk neutral measure, the instantaneous expected rate of return on any con-
tingent claimwith a positive price Fðt; �Þ is the risk-free rate: EQðdFðt; �ÞÞ ¼ r dt.Define
LðtÞ ¼ lnðSðtÞÞ. Expanding EQðdFðt; �ÞÞ by the generalized Ito’s lemma, I obtain the
following PDE that Fðt; �Þ has to satisfy
1
2 ð�

2
S þ V ÞFLL þ 1

2�
2
r rFrr þ 1

2�
2
�F�� þ 1

2�
2
VVFVV þ �S���1FL� þ �VV�2FLV

þ r � � � ��J � 1
2�

2
S � 1

2V
� �

FL þ ð�r � �rrÞFr þ ð�� � ���ÞF� þ ð�V � �VV ÞFV

� F� � rF þ �EfFðt; � ; Lþ lnð1þ JÞ; V þ JV Þ � Fðt; � ; L; V Þg ¼ 0 (10)

subject to security-specific boundary conditions.
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1.3. Bond Price

The price of a riskfree discount bond is given in Cox, Ingersoll and Ross (1985):

Bðt; �Þ ¼ exp½�	0ð�Þ � 	1ð�Þr� (11)

where

	0ð�Þ ¼
�r
�2
r

ð$� �rÞ� þ 2 ln 1� ð1� e�$� Þð$� �rÞ
2$

� �� �

	1ð�Þ ¼
2ð1� e�$� Þ

2$� ½$� �r�ð1� e�$� Þ

$ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r þ 2�2

r

q
:

1.4. Futures Price

1.4.1. Futures Pricing Formula

LetHðt; �Þ denote the futures price at time t with a time to maturity �.Cox, Ingersoll and
Ross (1981) and others have shown that the futures price is a martingale under the risk
neutral measure. Since futures contracts cost nothing to enter, its expected return must
be zero:EQ½dHðt; �Þ� ¼ 0.Expanding the left hand side using the generalized Ito’s lemma,
I obtain the following PDEHðt; �Þmust satisfy

1
2 ð�

2
S þ V ÞHLL þ 1

2�
2
r rHrr þ 1

2�
2
�H�� þ 1

2�
2
VVHVV þ �S���1HL� þ �VV�2HLV

þ r � � � ��J � 1
2�

2
S � 1

2V
� �

HL þ ð�r � �rrÞHr þ ð�� � ���ÞH� þ ð�V � �VV ÞHV

� H� þ �EfHðt; � ; Lþ lnð1þ JÞ; V þ JV Þ � Hðt; � ; L; V Þg ¼ 0 (12)

subject toHðt þ �; 0Þ ¼ Sðt þ �Þ. In Appendix 1, I show thatHðt; �Þ is:

Hðt; �Þ ¼ expflnðSÞ þ 
0ð�Þ þ 
rð�Þr þ 
�ð�Þ�g (13)

where


rð�Þ ¼
2ð1� e��r� Þ

2�r � ½�r � �r�ð1� e��r� Þ


�ð�Þ ¼
�ð1� e���� Þ

��
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�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r þ 2�2

r

q


0ð�Þ ¼� �r
�2
r

2 ln 1� ð�r � �rÞð1� e��r�Þ
2�r

� 	
þ ð�r � �rÞ�

� �
þ �2

��

2�2
�

� �S���1 þ ��
��

�

� ð�S���1 þ ��Þe����

�2
�

þ 4�2
�e

���� � �2
�e

�2���

4�3
�

þ �S���1 þ ��

�2
�

� 3�2
�

4�3
�

:

The futures price is not a function of spot volatility, jumps or their associated para-
meters. It should be emphasized, however, that this result does not imply that stochastic
volatility and jumps are unimportant.They are important for capturing the dynamics of
spot prices. But they are not important for pricing futures at a given point in time.This
is because the futures price is the expectation of the future spot price under the risk
neutral measure.While stochastic volatility and jumps affect the higher-order moments
of the terminal spot price distribution, they do not alter the first moment. In contrast, it
will be shown that stochastic volatility and jumps play critical roles in pricing options.
This is because option prices are sensitive to higher-order moments of the distribution
of terminal prices.

1.4.2. The Basis

The basis is the difference between the futures price and the cash price. Alternatively, it
canbe defined as the difference between the log futures price and the log cash price.Using
the second definition and the futures pricing formula (13), I find that the basis is:

lnðHðt; �ÞÞ � lnðSÞ ¼ 
0ð�Þ þ 
rð�Þr þ 
�ð�Þ�: (14)

Since both r and � are stochastic andmean reverting, the basis is also stochastic andmean
reverting. In addition, the basis is a function of time tomaturity of the futures contract.

1.4.3. Futures Return Volatility

From the futures pricing formula (13), I obtain the instantaneous volatility of
future returns:

�2
H ð�Þ ¼ �2

S þ V þ � �2
J þ e�

2
J � 1


 �
ð1þ �J Þ2

h i
þ 
2

r r�
2
r þ 
2

��
2
� þ �1
��S��: (15)

Since V and r are stochastic, the volatility of futures returns is also stochastic. Equation
(15) can be used to examine the validity of Samuelson hypothesis. Samuelson hypothesis
states that the futures volatility is higher closer to delivery. In this model, 
r is positive and
increasing in �. 
� is negative and decreasing in �.The 
2

r term and the 
2
� term therefore

affect the futures volatility in the same direction. 
� has the opposite effect, however.
Hence,whether the futures returnvolatility is decreasing in time tomaturitydepends upon
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the relative magnitude of these two effects.The lower right plot of Figure 1 shows that the
futures volatility is first decreasing and then increasing with time to maturity under the
parameter values given in Section 2.7.

1.5. Forward Price

By standard arguments [see Duffie (1996)], the forward price is:

Fðt; �Þ ¼
EQ e

�
R tþ�

t
rðuÞdu � Sðt þ �Þ

� �

EQ e
�
R tþ�

t
rðuÞdu

� � : (16)

Figure 1. Comparative Statics of Futures Prices. Comparative statics of futures price with respect to the spot
interest rate, spot convenience yield, the correlation between the return process and the convenient yield process
(�1) and time tomaturity.Baseline parameter values are given in Section 2.7.Inthe first three plots,the dashed line
corresponds to the futureswith 0.5 years tomaturity and the solid line corresponds to the futureswith 0.2 years to
maturity. Interest rates and convenience yields are annualized.The time tomaturity is in years.
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It is obvious that if r is uncorrelated with S then the forward price is the same as the
futures price. The denominator is the price of the discount bond given in (11). The
numerator,which can be computed similarly as the futures price, is the price of a contin-
gent claim that pays Sðt þ �Þ at t þ �

Fðt; �Þ ¼ expfLþ ’0ð�Þ þ ’�ð�Þ�g
Bðt; �Þ (17)

where

’�ð�Þ ¼
e���� � 1

��

’0ð�Þ ¼
�S���1 þ ��

���
þ �2

�

2�2
�

� 	
� þ�ð�S���1 þ ��Þ

�2
�

e����

� �2
�

4�3
�

e�2��� þ �2
�

�3
�

e���� þ 3�2
� � 4��ð�S���1 þ ��Þ

�4�3
�

:

1.6. Futures Option

Let Cðt; �Þ denote the price of an European call option on the futures contract that ma-
tures in ~�� > �, where � is the time to maturity of the option contract and K is the strike
price.3 The European option is priced as the expected discounted payoffs under the risk
neutral measure,

Cðt; �Þ ¼ EQ e
�
R tþ�

t
rðuÞdu �max Hðt þ �; ~�� � �Þ � K; 0ð Þ

� �
:

Following Heston (1993), Bates (1996), and Bakshi and Madan (2000), I show in
Appendix 2 that Cðt; �Þ can be decomposed to:

Cðt; �Þ ¼ Gðt; �Þ�1ðt; �Þ � KBðt; �Þ�2ðt; �Þ (18)

where

Bðt; �Þ ¼EQ exp �
Z tþ�

t

rðuÞdu
� 	� �

(19)

Gðt; �Þ ¼EQ exp �
Z tþ�

t

rðuÞdu
� 	

� H t; ~��ð Þ
� �

(20)

�1ðt; �Þ ¼
1

Gðt; �Þ � EQ exp �
Z tþ�

t

rðuÞdu
� 	

� Hðt; ~��ÞjHðt; ~��Þ � K

� �
(21)

�2ðt; �Þ ¼
1

Bðt; �Þ � EQ exp �
Z tþ�

t

rðuÞdu
� 	����H t; ~��ð Þ � K

� �
: (22)

258 YAN



Bðt; �Þ is the discountbondprice.Gðt; �Þ is the price ofa contingent claim that paysHðt þ
�; ~�� � �Þ at t þ �.�1 and�2 are two risk neutralized probabilities that the option expires
in the money. Define the discounted characteristic function of the logarithm of the fu-
tures price

f ðt; � ; �Þ � EQ exp �
Z tþ�

t

rðuÞdu
� 	

� ei� lnHðt; ~��Þ
� �

: (23)

Bakshi and Madan (2000) show that Bðt; �Þ, Gðt; �Þ, f1ðt; � ; �Þ and f2ðt; � ; �Þ (the
characteristic functions of �1 and �2 respectively) are related to f ðt; � ; �Þ in the
following way:

Bðt; �Þ ¼ f ðt; � ; 0Þ (24)

Gðt; �Þ ¼ f t; � ;
1
i

� 	
(25)

f1ðt; � ; �Þ ¼
1

Gðt; �Þ � f t; � ;
1
i
þ �

� 	
(26)

f2ðt; � ; �Þ ¼
1

Bðt; �Þ � f ðt; � ; �Þ: (27)

Hence, the key is to find a closed-form solution for f ðt; � ; �Þ. Since f ðt; � ; �Þ is the
price of a contingent claim that pays ei� lnHðtþ�; ~����Þ at t þ �, it satisfies the fundamental
PDE (10) subject to f ðt þ �; 0Þ ¼ ei� lnHðtþ�; ~����Þ.

It is shown in Appendix 2 that f ðt; � ; �Þ is:

f ðt; � ; �Þ ¼ exp i�Lþ #0ð�Þ þ #rr þ #�� þ #V ð�ÞVf

þ i� 
0 ~�� � �ð Þ þ 
r ~�� � �ð Þr þ 
� ~�� � �ð Þ�½ �g (28)

where

#r ¼
2 i�� 1� 1

2�
2
r�

2
2
r � �ri�
r

 �
1� e���r �
� �

2��r � ½��r � �r þ �2
r i�
r� 1� e���r �ð Þ

#� ¼
ði�þ i�
���Þ e���� � 1ð Þ

��

#V ¼
i�ði�� 1Þ 1� e���

V
�

� �
2��V � ½��V � �V þ �V�2i�� 1� e���

V
�

� �
��r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2

r i�
r � �rÞ2 � 2�2
r i�� 1� 1

2�
2
r�

2
2
r � �ri�
r

 �q
��V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�V � �V�2i�Þ2 � i�ði�� 1Þ�2

V

q

and #0ð�Þ is given in Appendix 2.
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After obtaining a closed-form solution for f ðt; � ; �Þ, one can compute Gðt; �Þ,
f1ðt; � ; �Þ and f2ðt; � ; �Þ using (25), (26) and (27). �1 and �2 are then recovered by
Fourier inversion.4 For j ¼ 1; 2,

�jðt; �Þ ¼
1
2
þ 1


Z 1

0
Re

e�i� lnK � fjðt; � ; �Þ
i�

� �
d�: (29)

Finally, the option price is given by (18).The closed-form option pricing formula makes
it possible to derive comparative statics and hedge ratios analytically

�H ¼ @C

@H
¼ Gðt; �Þ

Hðt; �Þ �1: (30)

The above formula is obtained by using the property that the call option price is homoge-
neous of degree one inH and K

�V ¼ @C

@V
¼ Gðt; �Þ @�1

@V
þ KBðt; �Þ @�2

@V
(31)

�r ¼
@C

@r
¼ Gðt; �Þ @�1

@r
þ @Gðt; �Þ

@r
�1 þ KBðt; �Þ @�2

@r
þ 	1ð�Þ�2

� �
(32)

�� ¼
@C

@�
¼ Gðt; �Þ @�1

@�
þ @Gðt; �Þ

@�
�1 þ KBðt; �Þ @�2

@�
: (33)

@�j

@r ,
@�j

@V , and
@�j

@� can be computed similarly as�1 and�2 by exchanging integrals and deri-
vatives. @Gðt; �Þ@r , and @Gðt; �Þ

@� are easy to compute because Gðt; �Þ is exponentially linear in r

and �.

1.7. Numerical Examples

In this section, I use numerical examples to examine if stochastic volatility, stochastic con-
venience yields, stochastic interest rates and jumps have significant impacts on futures and
futures option prices. I compare five models.

Model 1: Stochastic prices, stochastic convenience yields, stochastic interest rates,
stochastic volatility and jumps.

Model 2: Stochastic prices, stochastic convenience yields, stochastic interest rates and
stochastic volatility.

Model 3: Stochastic prices, stochastic convenience yields and stochastic interest rates.

Model 4: Stochastic prices and stochastic convenience yields.

Model 5: Stochastic prices.

260 YAN



The following parameter values used in Model 1 are partly based on Schwartz (1997).
S ¼ 100; r ¼ 0:06; � ¼ 0:03; � ¼ 1; �J ¼ 0; �S ¼ 0:1; V ¼ 0:04; �r ¼ 0:015; �r ¼
0:25; �r ¼ 0:1; �� ¼ 0:03; �� ¼ 1; �� ¼ 0:2; �V ¼ 0:08; �V ¼ 2; �V ¼ 0:1; �J ¼ 0:05;
� ¼ 0:01, �1 ¼ 0:8, �2 ¼ 0. � can take on two values 0.2 years or 0.5 years. ~�� � � is either
0.05 years or 0.25 years.Whenever appropriate, the parameter values are annualized. For
instance, a spot interest rate of 0.06 should be interpreted as 6% per year. A jump intensity
of 1 indicates that there is on average one jumpper year.For ease of interpretation, I fix the
spot price to 100.The futures price, strike price and option price canbe interpreted as per-
centages of the spot price.The possible values for K are 70, 80, 90, 100, 110, 120, 130.The
parameter values of Models 2, 3, 4, 5 are derived fromModel 1 parameters while keeping
the total volatility unchanged.5

Figure 1 graphs how the futures price underModel 1 changeswith the spot interest rate
(r), the spot convenience yield (�), the correlation between spot returns and convenience
yields (�1) and the time tomaturity (�).Not surprisingly,the futures price is increasing in r
anddecreasing in �.The futuresprice isdecreasing in�1.This isbecausehigher�1 generates
strongermean reversion effect in commodity prices.The futuresprice ishump-shapedover
� under the above parameter values. In general,thismodel can generate monotonically in-
creasing,decreasing, hump- andbell-shaped term structure of futures prices.

Tables 1 and 2 compare futures call option prices for Models 1^5 under different ma-
turities and strike prices. Tables 1 and 2 also report the ratios between option prices
under Models 2^5 and the option prices under Model 1. Assuming Model 1 is the right
model, these ratios essentially give the percentage pricing errors.6 As can be seen in
Tables 1 and 2, jumps, stochastic volatility and stochastic convenience yields are all
important factors in determining option prices. The stochastic interest rate is the least
important factor, especially for short term options. Not surprisingly, the percentage pri-
cing error is much higher for the Out-of-The-Money (OTM) and At-The-Money (ATM)
options. Generally speaking, Model 5 tends to overprice options while other models
tend to underprice, relative to Model 1.

Figure 2 gives the comparative statics of Model 1 futures call option prices.The option
prices are most sensitive to the spot volatility.The futures option price is increasing in spot
interest rates. Additionally, the futures option price is decreasing in the spot convenience
yield.The volatility of volatility is not a significant factor.

1.8. Implementation and Estimation of the Model

As the convenience yields and volatility are not traded assets, one needs to estimate the
market prices of risks in order to implement the proposed model. In principle, one can
estimate this model using futures data and/or futures option data. Like most continu-
ous-time models in the literature, the exact conditional density function is unknown for
this model.Hence, direct maximum likelihood estimation is not feasible. I propose a two-
step estimation procedure,which takes advantage of the unique features of the model. In
the first step, futures and interest rate data are used to estimate the parameters associated
with the spot price, spot interest rates and spot convenience yield processes, i.e., equations
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(1)^(5).This step can be done using Kalman filter, as done in Schwartz (1997). In the sec-
ond step,one canuse the option data to estimate the parameters associatedwithvolatilitity
and jump processes as done in Bates (2000) and Bakshi,Cao andChen (1997).This above
separation is efficient because (a) the stochastic volatility and jump parameters do not en-
ter the future pricing formula and (b) option prices are most sensitive to volatility and
jump parameters.

2. Other Commodity Derivatives

The proposed commodity valuation model is capable of generating closed-form solutions
for avariety of exotic commodity derivatives. In the following, I demonstrate this by show-
ing how to price geometric Asian options and a simple class of commodity-linked bonds
within the proposed model.

Table 1. Comparison of European Futures Call Option Prices I
Models 1^5 are described in Sections 1.1 and 1.7. � is the time tomaturityof the futures options and ~�� is the time

tomaturityof the futures,both inyears.Parameter values are given in Section 1.7.The numbers in parentheses are
the ratios of the option prices with respect to the corresponding option prices of Model 1.

Strike Model 1 Model 2 Model 3 Model 4 Model 5

� ¼ 0:2, ~�� ¼ 0:25

70 30.35 30.34 (0.99) 30.33 (0.99) 30.33 (0.99) 30.37 (1.00)
80 20.50 20.49 (0.99) 20.48 (0.99) 20.48 (0.99) 20.53 (1.00)
90 11.20 11.16 (0.99) 11.15 (0.99) 11.15 (0.99) 11.57 (1.03)
100 4.29 4.25 (0.98) 4.24 (0.98) 4.24 (0.98) 4.42 (1.02)
110 1.07 1.03 (0.96) 1.02 (0.95) 1.02 (0.95) 1.15 (1.06)
120 0.18 0.16 (0.89) 0.15 (0.82) 0.15 (0.82) 0.19 (1.04)
130 0.02 0.02 (0.76) 0.01 (0.19) 0.01 (0.21) 0.01 (0.55)

� ¼ 0:2, ~�� ¼ 0:45

70 30.80 30.78 (0.99) 30.77 (0.99) 30.77 (0.99) 30.88 (1.00)
80 20.94 20.92 0.99) 20.91 (0.99) 20.91 (0.99) 21.04 (1.00)
90 11.55 11.50 (0.99) 11.49 (0.99) 11.49 (0.99) 11.72 (1.01)
100 4.45 4.38 (0.98) 4.37 (0.98) 4.37 (0.98) 4.71 (1.05)
110 1.10 1.04 (0.94) 1.03 (0.93) 1.03 (0.93) 1.56 (1.41)
120 0.18 0.15 (0.86) 0.14 (0.78) 0.14 (0.78) 0.22 (1.20)
130 0.02 0.02 (0.67) 0.01 (0.10) 0.01 (0.12) 0.02 (0.72)

� ¼ 0:5, ~�� ¼ 0:55

70 30.64 30.60 (0.99) 30.56 (0.99) 30.55 (0.99) 30.72 (1.00)
80 21.59 21.51 (0.99) 21.16 (0.98) 21.16 (0.98) 21.40 (0.99)
90 13.03 12.89 (0.98) 12.85 (0.98) 12.84 (0.98) 13.22 (1.01)
100 6.87 6.69 (0.97) 6.65 (0.96) 6.65 (0.96) 7.10 (1.03)
110 3.11 2.96 (0.94) 2.91 (0.93) 2.90 (0.93) 3.30 (1.05)
120 1.54 1.13 (0.73) 1.07 (0.69) 1.07 (0.69) 1.32 (0.85)
130 0.44 0.38 (0.85) 0.31 (0.70) 0.31 (0.70) 0.45 (1.01)
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2.1. Asian Options

TheAsian option based on the geometric average of futures prices can be evaluated as in
Bakshi and Madan (2000). Recall that the futures price is exponentially linear in state
variables.This turns out to be critical to generate a closed-form solution for geometric
Asian options.

The geometric Asian call can be expressed as:

ĈCðt; �Þ ¼ E
Q
t exp �

Z tþ�

t

rðuÞdu
� 	

�max exp
1

t þ �

Z tþ�

0
lnH u; ~��ð Þdu

� �
� K; 0

� 	� �
(34)

Table 2. Comparison of European Futures Call Option Prices II
Models 1^5 are described in Sections 1.1 and 1.7. � is the time tomaturityof the futures options and ~�� is the time

tomaturityof the futures,both inyears.Parameter values are given in Section 1.7.The numbers in parentheses are
the ratios of the option prices with respect to the corresponding option prices of Model 1.

Strike Model 1 Model 2 Model 3 Model 4 Model 5

� ¼ 0:5, ~�� ¼ 0:75

70 31.08 31.03 (0.99) 30.98 (0.99) 31.02 (0.99) 31.52 (1.01)
80 21.69 21.60 (0.99) 21.54 (0.99) 21.54 (0.99) 21.88 (1.01)
90 13.35 13.18 (0.98) 13.13 (0.98) 13.12 (0.98) 13.63 (1.02)
100 7.06 6.84 (0.96) 6.80 (0.96) 6.79 (0.96) 7.39 (1.05)
110 3.21 3.01 (0.93) 2.96 (0.92) 2.95 (0.92) 3.47 (1.08)
120 1.57 1.14 (0.72) 1.08 (0.68) 1.07 (0.68) 1.41 (0.90)
130 0.45 0.38 (0.83) 0.31 (0.68) 0.31 (0.68) 0.49 (1.07)

� ¼ 1, ~�� ¼ 1:05

70 31.33 31.18 (0.99) 31.04 (0.99) 31.02 (0.99) 31.45 (1.00)
80 22.84 22.60 (0.98) 22.45 (0.98) 22.44 (0.98) 23.00 (1.01)
90 15.58 15.24 (0.97) 15.09 (0.96) 15.07 (0.96) 15.78 (1.01)
100 9.95 9.54 (0.95) 9.40 (0.94) 9.38 (0.94) 10.15 (1.02)
110 5.98 5.58 (0.93) 5.43 (0.90) 5.42 (0.90) 6.13(1.03)
120 3.42 3.08 (0.90) 2.91 (0.85) 2.90 (0.85) 3.49 (1.02)
130 1.87 1.62 (0.86) 1.43 (0.76) 1.43 (0.76) 1.87 (1.00)

� ¼ 1, ~�� ¼ 1:25

70 31.78 31.61 (0.99) 31.46 (0.99) 31.45 (0.98) 31.92 (1.00)
80 23.27 22.99 (0.98) 22.84 (0.98) 22.82 (0.98) 23.44 (1.01)
90 15.95 15.56 (0.97) 15.41 (0.96) 15.39 (0.96) 16.16 (1.01)
100 10.24 9.79 (0.95) 9.64 (0.94) 9.62 (0.93) 10.45 (1.02)
110 6.20 5.75 (0.92) 5.60 (0.90) 5.57 (0.90) 6.35 (1.03)
120 3.56 3.19 (0.89) 3.01 (0.84) 3.00 (0.84) 3.64 (1.02)
130 1.97 1.68 (0.85) 1.49 (0.75) 1.49 (0.75) 1.96 (1.00)
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with the exercise region being:

Z tþ�

t

lnH t; ~��ð Þ du � ðt þ �Þ lnK �
Z t

0
lnH u; ~��ð Þdu:

Thediscountedcharacteristic function for the remaining log futurespriceuncertainty is:

hðt; � ; �Þ � Et exp �
Z tþ�

t

rðuÞdu
� 	

� exp i�

Z tþ�

t

lnH u; ~��ð Þdu
� 	� �

(35)

Figure 2. Comparative Statics of Futures Call Option Prices. Comparative statics of futures call option prices
with respect to the spot volatility, spot interest rate, spot convenience yield and the volatilityof spot volatility.Base-
line parameter values are given in Section 1.7 except the strike price and the years to maturity,which are given
below. In each of the four plots, the first line from top is associatedwith a time tomaturity of 0.5 years and a strike
price of 80.The second line is associatedwith a time tomaturityof 0.2 years and a strike price of 80.The third line
is associatedwith a time tomaturity of 0.5 years and a strike price of 100.The fourth line is associatedwith a time
tomaturityof 0.2 years and a strike price of 100.The fifth line is associatedwitha time tomaturityof 0.5 years and
a strike price of 120.The sixth line is associatedwith a time tomaturity of 0.2 years and a strike price of 120.
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then

ĈCðt; �Þ ¼ Nðt; �Þ � exp
GðtÞ
t þ �

� �
� �1ðt; �Þ � KBðt; �Þ�2ðt; �Þ (36)

where

GðtÞ �
Z t

0
lnF u; ~��ð Þdu

and for j ¼ 1; 2,

�jðt; �Þ ¼
1
2
þ 1


Z 1

0
Re expð�i�ðt þ �Þ lnK þ i�GðtÞÞ hjðt; � ; �Þ

i�

� �
d�

with

Bðt; �Þ ¼ hðt; � ; 0Þ (37)

Nðt; �Þ ¼ h t; � ;
1

iðt þ �Þ

� 	
(38)

and

h1ðt; � ; �Þ ¼
1

Nðt; �Þ � h t; � ; �þ 1
iðt þ �Þ

� 	
(39)

h2ðt; � ; �Þ ¼
1

Bðt; �Þ � hðt; � ; �Þ: (40)

I can rewrite hðt; �Þ as:

hðt; � ; �Þ ¼ E
Q
t exp �

Z tþ�

t

rðuÞ � i� lnH u; ~��ð Þ½ �du
� �

: (41)

ByFeynman^Kac theorem, it satisfies the following PDE:

1
2 ð�

2
S þ V ÞhLL þ 1

2�
2
�h�� þ 1

2�
2
VVhVV þ �S���1hL� þ �VV�2hLV

þ r � � � ��J � 1
2�

2
S � 1

2V
� �

hL þ ð�r � �rÞhr þ ð�� � ��Þh� þ ð�V � �V ÞhV
� h� � r � i� lnH t; ~��ð Þð Þhþ �Efhðt; Lþ lnð1þ JÞ;V þ JV Þ � hðt; L;V Þg ¼ 0 (42)

subject to hðt þ �; 0Þ ¼ 1.

Note that lnHðt; ~��Þ is linear in r, � andV .Hencewehave a PDEwithall the coefficients
linear in state variables. It can be solved using the Heston (1993) and Bakshi and Madan
(2000) method

hðt; �Þ ¼ expf�0ð�Þ þ �rð�Þr þ ��ð�Þ� þ �V ð�ÞV þ i��Lg (43)
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where

�r ¼
2ði�� þ i�
r � 1Þð1� e��r� Þ
2�r � ½�r � �r�ð1� e��r� Þ

�V ¼ ði�� þ �2�2Þð1� e��V � Þ
2�V � ½�V � �V þ �V�2i��ð1� e��r�Þ

�� ¼
i�
� � i��

��
ð1� e���� Þ

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r � 2�2

r ði�� þ i�
r � 1Þ
q

�V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�V � �V�2i�Þ2 þ �2

V ði�� þ �2�Þ
q

and �0 is given in Appendix 3.

2.2. Commodity-Linked Bonds

Consider a simple class of commodity-linked bonds. At maturity t þ �, the issuing com-
pany promises to pay a face value F or N units of the commodity whose current price is
SðtÞ. If we can ignore the default risk, the price of this bond B̂Bðt; �Þ can be nicely decom-
posed into two components

B̂Bðt; �Þ ¼ FBðt; �Þ þ Cðt; �Þ: (44)

The first term is the discount bond price with a face value of F.The second term is a call
optionon the bundle of the commodity with a strike price ofF.The discountbondprice in
this model is given by (11).The option component can be readily derived from the futures
option pricing formulaby setting ~�� ¼ �, i.e., the maturity of the option and the maturity of
the underlying futures contract are identical.

3. Conclusion

This paper proposes a new model to value commodity derivatives with stochastic conve-
nience yields, stochastic interest rates, stochastic volatility and simultaneous jumps in the
spot price and spot volatility.This model can capture many important character-istics of
commodity returns.Two new features of the proposed model are stochastic volatility and
simultaneous jumps in the spot price and spot volatility.They are employed to improve the
pricing of commodity derivatives and options in particular. Closed-form valuation
formulas for forwards, futures, futures options, geometric Asian options and commodity-
linkedbonds are obtained.I find that stochastic volatilityand jumps do not alter the futures
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price at a givenpoint in time.However, numerical examples show that they play important
roles in pricing options on futures.Testing the proposed model using commodity futures
and options data is left for future research.

Appendix 1: Futures Pricing Formula

The futures pricing formula is of the form in (13).The partial derivatives ofH are:HL ¼ H ,
HLL ¼ H , Hr ¼ 
rH, Hrr ¼ 
2

r H, H� ¼ 
�H, H�� ¼ 
2
�H, HL� ¼ 
�H, H� ¼ ½
0

0þ
r
0

r þ �
0
��H . Substitute the above partial derivatives into (12). Grouping the resulting

PDE by state variables r and �, I obtain the following ordinary differential equations
(ODEs):


0
r ¼ 1

2�
2
r


2
r � �r
r þ 1


0
� ¼�1� ��
�


0
0 ¼ 1

2

2
� þ �S���1
� þ �r
r þ ��
�:

Solving the above ODEs subject to 
rð0Þ ¼ 0, 
�ð0Þ ¼ 0 and 
0ð0Þ ¼ 0 gives (13).

Appendix 2: Futures Options Pricing Formula

Cðt; �Þ ¼EQ exp �
Z tþ�

t

rðuÞdu
� 	

�max 0; H t þ �; ~�� � �ð Þ � Kð Þ
� �

¼EQ exp �
Z tþ�

t

rðuÞdu
� 	

� H t þ �; ~�� � �ð ÞjH > K

� �

� KEQ exp �
Z tþ�

t

rðuÞdu
� 	����H > K

� �

¼Gðt; �ÞEQ

exp �
Z tþ�

t

rðuÞdu
� 	

Gðt; �Þ � H t þ �; ~�� � �ð ÞjH > K

8>><
>>:

9>>=
>>;

� KEQ

exp �
Z tþ�

t

rðuÞ
� 	

du

Bðt; �Þ

��������
H > K

8>><
>>:

9>>=
>>;

¼Gðt; �Þ�1ðt; �Þ � KBðt; �Þ�2ðt; �Þ:
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Similar to those of futures, I obtain the following ODEs:

#0
r ¼ 1

2�
2
r#

2
r þ �2

r i�
r � �r

 �
#r þ i�� 1� 1

2�
2
r�

2
2
r � �ri�
r

#0
� ¼�i�� i�
��� � ��#�

#0
V ¼ 1

2�
2
V#

2
V þ ð�V�2i�� �V Þ#V � 1

2 i�� 1
2�

2

#0
0 ¼ 1

2�
2
�#

2
� þ �2

� i�
�#� þ �S���1i�#� þ ��#� þ �r#r þ �V#V

þ �ei�ðlnð1þ�J Þ�0:5�2
J
Þ�0:5�2�2

J

1� �#V

� �� 1
2�

2
S�

2 � 1
2�

2
S�

2
2
�

� �2
��S���1 � ��J i�� 1
2�

2
Si�þ �ri�
r þ ��i�
�:

Solving the above ODEs subject to #rð0Þ ¼ 0; #V ð0Þ ¼ 0; #�ð0Þ ¼ 0; #0ð0Þ ¼ 0 yields
the formula

#0ð�Þ

¼ � �V

�2
V

2 ln 1�
ð��V � �V þ �V�2i�Þ 1� e���

V
�

� �
2��V

� 	� �

� �r
�2
r

2 ln 1�
ð��r � �r þ �2

r i�
rÞ 1� e���r �
� �

2��r

� 	� �

� �V

�2
V

½��V � �V þ �V�2i��� �
�r
�2
r

½��r � �r þ �2
r i�
r��

� �þ 1
2�

2
S�

2 þ 1
2�

2
��

2
2
� þ �2
��S���1 þ ��J i�þ 1

2�
2
Si�� �ri�
r � ��i�
�

� �
�

þ ��2
��

2ð1þ 
�Þ2

2�2
�

� ði�þ i�
�Þð�2
� i�
� þ �S���1i�þ ��Þ

��

 !
�

þ ð�i�� i�
�Þð�2
� i�
� þ �S���1i�þ ��Þ

�2
�

e���� þ �2
�ði�þ i�
�Þ2

�4�3
�

e�2���

þ �2
�ði�þ i�
�Þ2

�3
�

e����

þ 3�2
�ði�þ i�
�Þ2 � 4��ði�þ i�
�Þð�2

� i�
� þ �S���1i�þ ��Þ
�4�3

�

þ �Mð��V þ �V � �V�2i�Þ
�

��V þ �V � �V�2i�� �i�ði�� 1Þ
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� lnð2��V � ½��V � �V þ �V�2i�þ �i�ði�� 1Þ�ð1� e���
V
� ÞÞ

���V ð��V þ �V � �V�2i�� �i�ði�� 1ÞÞ

þ �Mð��V � �V þ �V�2i�Þ
1

���V ½��V � �V þ �V�2i�þ �i�ði�� 1Þ�

� ln 2��V � ½��V � �V þ �V�2i�þ �i�ði�� 1Þ� 1� e���
V
�

� �� �

þ lnð2��V Þ�M
��V þ �V � �V�2i�

���V ð��V þ �V � �V�2i�� �i�ði�� 1ÞÞ

�

� ��V � �V þ �V�2i�

���V ½��V � �V þ �V�2i�þ �i�ði�� 1Þ�

	

where

M ¼ ei� lnð1þ�J Þ�1
2�

2
Jð Þ�1

2�
2�2

J :

Appendix 3: Asian Option Pricing Formula

�0ð�Þ ¼ � �V

�2
V

2 ln 1� ð�V � �V þ �V�2� i�Þ 1� e��V �ð Þ
2��V

� 	� �

� �r
�2
r

2 ln 1� ð�r � �rÞ 1� e��r�ð Þ
2�r

� 	� �

� �V

�2
V

½�V � �V þ �V�2� i��� �
�r
�2
r

½�r � �r��

þ �1
2�

2
S�

2�2 � ��J i�� þ i�
0 � �
� �

�

þ ði�
� � i��Þð�S���1i�� þ ��Þ
���

þ �2
�ði�
� � i��Þ2

�2
�

 !
�

þ ð�i�
� þ i��Þð�S���1i�� þ ��Þ
�2
�

e���� þ �2
�ði�
� � i��Þ2

�4�3
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e�2���

� �2
�ði�
� � i��Þ2

��3
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�ði�
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�
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þ �Mð�V þ �V � �V�2i�Þ
�

�V þ �V � �V�2i�� �ði�� þ �2�2Þ

�
lnð2�V � �V � �V þ �V�2i�þ �i�� þ ��2�2Þ 1� e��V �ð Þ

� �
ð�V þ �V � �V�2i�� �ði�� þ �2�2ÞÞ�V

þ �M
�V � �V þ �V�2i�

ð�V � �V þ �V�2i�þ �i�� þ ��2�2Þ�V

� lnð2�V � ð�V � �V þ �V�2i�þ �i�� þ ��2�2Þ 1� e��V � Þð Þ þ �M

� lnð2�V Þ
�V þ �V � �V�2i�

ð�V þ �V � �V�2i�� �ði�� þ �2�2ÞÞ�V

�

� �V � �V þ �V�2i�

ð�V � �V þ �V�2i�þ �i�� þ ��2�2Þ�V

	

where

M ¼ ei� lnð1þ�J Þ�1
2�

2
Jð Þ�1

2�
2�2

J :
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Notes

1. See Schwartz (1982), Brennan and Schwartz (1985) andGibson and Schwartz (1991).
2. See alsoBakshi,Cao andChen (2000) and Eraker, Johannes and Polson (2002).
3. Most exchange-traded commodity options are options on futures rather than options on spots because fu-

tures markets are more established and standardized.
4. In practice, one needs to value the integration numerically. I call this formula a closed-form formula in the

same sense as the Black-Scholes formula,which involves numerically computing normal probabilities.
5. Specifically, the total futures return volatility under Model 1 is given by (15): �2H ð�Þ ¼ �2S þ V þ �½�2

J

þðe�2J � 1Þð1þ �J Þ2� þ
2
r r�

2
r þ 
2

� �
2
� þ �1
��S��.Take Model 2 as an example. Recall that Model 2 does

not allow for jumps,but allows for stochastic convenience yields, stochastic interest rates and stochastic vola-
tility. The value of V that keeps the total volatility the same as Model 1 would be V (of model 1)
þ�½�2

J þ ðe�2J � 1Þð1þ �J Þ2�,which is 0.0425.Correspondingly, �V , the parameter that determines the long
run mean of V , is now 0.085, or 2 (�V )� 0.0425.

6. I would like to thank Charles Cao for suggesting doing this.
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