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Recent studies find mixed evidence on the performance of volatility-managed portfolios. We show that 

strategies scaled by downside volatility exhibit significantly better performance than strategies scaled by 

total volatility. The improved performance is evident in spanning regressions, direct Sharpe-ratio compar- 

isons, and real-time trading strategies. A decomposition analysis indicates that the enhanced performance 

of downside volatility-managed portfolios is primarily due to return timing, i.e., downside volatility neg- 

atively predicts future returns. We find that employing fixed-weight strategies significantly improves the 

performance of volatility-managed portfolios for real-time investors. Our results hold for nine equity fac- 

tors and a broad sample of 94 anomaly portfolios. 
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. Introduction 

Volatility-managed strategies have been the subject of consid- 

rable research during the past few years. These strategies are 

haracterized by conservative positions in the underlying factors 

hen volatility was recently high and more aggressively levered 

ositions when volatility was recently low. Barroso and Santa- 

lara (2015) and Daniel and Moskowitz (2016) show that volatility- 

anaged momentum strategies virtually eliminate momentum 

rashes and nearly double the Sharpe ratio of the original momen- 

um strategy. Moreira and Muir (2017) extend the analysis to nine 

quity factors and find that volatility-scaled factors produce sig- 

ificantly positive alphas relative to their unscaled counterparts. 

owever, Cederburg et al. (2020) show that the trading strategies 

mplied by the spanning regressions of Moreira and Muir (2017) ’s 

re not implementable in real time and reasonable out-of-sample 

ersions do not outperform simple investments in the original, un- 

anaged portfolios. 2 
∗ Corresponding author. 

E-mail addresses: wangf10@miamioh.edu (F. Wang), xuy219@lehigh.edu (X.S. 

an). 
1 We thank Geert Bekaert (the editor), Scott Cederburg, Mike O’Doherty, Lu 

hang, two anonymous referees, and session participants at the 2017 Midwest Fi- 

ance Association Meetings for helpful discussions and comments. 
2 Barroso and Maio (2018) and Eisdorfer and Misirli (2020) find that volatility- 

caled betting-against-beta and financial distress strategies significantly outperform 

heir corresponding unscaled strategies. Liu et al. (2019) argue that the volatility- 

anaged strategies of Moreira and Muir (2017) contain a look-ahead-bias and can- 

ot be implemented in real time. Barroso and Detzel (2021) examine whether 

olatility-managed strategies survive trading cost. Much of this recent literature fol- 

ows from Fleming et al. (2001) and Fleming et al. (2003) , who document large 
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378-4266/© 2021 Elsevier B.V. All rights reserved. 
Previous studies of volatility-managed strategies focus exclu- 

ively on total volatility. In this paper, we examine downside 

olatility-managed strategies. The motivation for our focus on 

ownside volatility is twofold. First, there is a long-standing lit- 

rature contending that downside risk is a more appropriate mea- 

ure of risk because investors typically associate risk with down- 

ide losses rather than upside gains. Markowitz (1959) , for ex- 

mple, advocates the use of semivariance as a measure of risk. 

econd, there is considerable evidence that downside volatility 

ontains valuable information about future volatility and returns 

e.g., Barndorff-Nielsen et al., 2010; Feunou et al., 2013; Patton 

nd Sheppard, 2015; Bollerslev et al., 2020; Atilgan et al., 2020 ). 

f downside volatility is persistent and negatively predicts future 

eturns, then downside volatility-managed strategies should ex- 

ibit superior performance because taking less risk when downside 

olatility was recently high not only avoids high future volatility 

ut also avoids poor future returns. 

We estimate downside volatility from negative returns by 

ollowing the approach of Patton and Sheppard (2015) and 

ollerslev et al. (2020) . We then construct downside volatility- 

anaged portfolios similarly to total volatility-managed portfo- 

ios except that we scale returns by lagged downside volatil- 

ty instead of lagged total volatility. For ease of compari- 

on, we examine the same nine equity factors studied by 

oreira and Muir (2017) , namely, MKT , SMB , and HML from 

he Fama and French (1993) three-factor model, M OM from 

he Carhart (1997) four-factor model, RMW and CWA from the 
conomic gains from volatility timing for short-term investors across several asset 

lasses. 

https://doi.org/10.1016/j.jbankfin.2021.106198
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jbf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbankfin.2021.106198&domain=pdf
mailto:wangf10@miamioh.edu
mailto:xuy219@lehigh.edu
https://doi.org/10.1016/j.jbankfin.2021.106198
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ama and French (2015) five-factor model, ROE and IA from 

ou et al. (2015) ’s q -factor model, and lastly the BAB factor of

razzini and Pedersen (2014) . 3 We also examine the 94 anomaly 

ortfolios considered by Cederburg et al. (2020) in order to draw 

ore general conclusions. We follow the previous literature and 

valuate the performance of volatility-managed portfolios by using 

hree approaches: Spanning regressions, real-time trading strate- 

ies, and direct Sharpe ratio comparisons. Our general finding is 

hat downside volatility-managed portfolios exhibit significantly 

etter performance than total volatility-managed portfolios. The 

mproved performance in out-of-sample real-time trading strate- 

ies is especially noteworthy in light of the recent controversy 

bout the real-time performance of volatility-managed portfolios 

 Cederburg et al., 2020 ). 

Our first approach to evaluating the performance of volatility- 

anaged portfolios is to estimate the spanning regressions of 

oreira and Muir (2017) , i.e., regressing volatility-managed fac- 

ors on their corresponding unmanaged factors. We confirm 

he findings of Moreira and Muir (2017) and find significantly 

ositive spanning regression alphas for volatility-managed MKT , 

M L , M OM , RM W , ROE, IA , and BAB and insignificant alphas

or volatility-managed SMB and CMA . In comparison, down- 

ide volatility-managed factors exhibit positive and significant 

panning regression alphas across all nine factors examined by 

oreira and Muir (2017) . The two factors for which Moreira and 

uir (2017) find insignificant alphas now generate positive alphas 

hat are statistically significant at the 10% level. This performance 

mprovement extends to the sample of 94 anomalies. Looking at 

otal volatility-managed portfolios, we find that about two thirds 

f the anomalies (62 out of 94 anomalies) exhibit positive span- 

ing regression alphas. This finding is consistent with Moreira and 

uir (2017) and Cederburg et al. (2020) . In comparison, nearly 95% 

f the anomalies (89 out of 94 anomalies) exhibit positive alphas 

or downside volatility-managed portfolios. Overall, our results in- 

icate that downside volatility-managed portfolios perform signif- 

cantly better than total volatility-managed portfolios in spanning 

egressions. 

To explore the sources of the performance of volatility-managed 

ortfolios, we decompose the spanning regression alpha into two 

omponents, volatility timing and return timing. The volatility tim- 

ng component is positive if lagged volatility is positively related to 

uture volatility. The return timing component is positive if lagged 

olatility is negatively related to future returns. Volatility clustering 

s one of the most robust stylized facts in finance, so the volatil- 

ty timing component is likely to be positive. However, the litera- 

ure is ambiguous about the volatility-return relation (e.g., French 

t al., 1987; Glosten et al., 1993; Brandt and Kang, 2004 ). 4 If the

onditional expected return is positively related to lagged volatil- 

ty, then the benefit of volatility timing is likely to be offset by the 

ost of negative return timing and, as a result, volatility-managed 

trategies will not work. If the conditional expected return is un- 

orrelated or even negatively correlated with lagged volatility, then 

olatility-managed strategies are likely to perform well because 

hey take advantage of the attractive risk-return trade-off when 

olatility is low and avoids the poor risk-return trade-off when 

olatility is high. 

Our decomposition results indicate that the positive alphas of 

otal volatility-managed portfolios stem primarily from volatility 

iming. The large contribution from volatility timing is unsurpris- 

ng because volatility is highly persistent. The small, and some- 
3 Moreira and Muir (2017) also examine a currency carry trade factor. Similar to 

ederburg et al. (2020) , we focus on their nine equity factors. 
4 Barroso and Maio (2019) is the first study on the risk-return trade-off of long- 

hort equity factors. They find the trade-offs to be weak or nonexistent for most 

actors. 
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2 
imes even negative contribution from return timing suggests that 

otal volatility is largely unrelated to future returns. Volatility tim- 

ng also plays a major role in explaining the superior performance 

f downside volatility-managed strategies. However, the enhanced 

erformance of downside volatility-managed strategies relative to 

otal volatility-managed portfolios is almost entirely attributable to 

he return-timing component. For total volatility-managed strate- 

ies, the return-timing component is positive among just two of 

he nine equity factors and 42 of the 94 anomalies. In contrast, 

ight of the nine equity factors and 71 of the 94 anomalies ex- 

ibit a positive return-timing component for downside volatility- 

anaged strategies. The positive return-timing component asso- 

iated with downside volatility-managed strategies suggests that 

igh downside volatility tends to be associated with low future 

eturns. In summary, we find that the superior performance of 

ownside volatility-managed factors is a result of both volatil- 

ty timing and return timing, but the improvement over total 

olatility-managed portfolios is attributed to return timing. 

Cederburg et al. (2020) point out that the trading strate- 

ies implied by the spanning regressions, i.e., combining the 

olatility-managed portfolio and the unmanaged portfolio using 

x post optimal weights, are not implementable in real time be- 

ause the optimal weights for the volatility-managed portfolio 

nd the unmanaged portfolio depend on full-sample return mo- 

ents, which are not known to real-time investors. Therefore, 

n our second approach we evaluate the real-time (i.e., out-of- 

ample) performance of volatility-managed strategies. We follow 

ederburg et al. (2020) and compare the performance of two real- 

ime strategies: the combination strategy and the original, unman- 

ged strategy. Consistent with Cederburg et al. (2020) , we find lit- 

le evidence that managing total volatility is systematically advan- 

ageous for real-time investors—the combination strategy that in- 

orporates total volatility-managed portfolios outperforms the un- 

anaged strategy in 50 of the 103 equity factors and anomaly 

ortfolios, while underperforming in the remaining 53. Manag- 

ng downside volatility, however, significantly improves the perfor- 

ance of the combination strategy. Specifically, the combination 

trategy that incorporates downside volatility-managed portfolios 

utperforms the original, unmanaged strategy in 70 of the 103 eq- 

ity factors and anomalies. A simple binomial test indicates that 

he null hypothesis of equal performance between the combination 

trategy and the unmanaged strategy is rejected at the 1 percent 

evel. 

The relatively poor out-of-sample performance of the real-time 

ombination strategies is primarily due to parameter instability 

nd estimation risk ( Cederburg et al., 2020 ). A potential remedy 

or this issue, therefore, is to examine combination strategies that 

se fixed portfolio weights. These fixed weights, e.g., 50% in the 

olatility-managed portfolio and 50% in the original portfolio, are 

nlikely to be optimal ex post, but employing them removes the 

eed to estimate “optimal” weights in real time and therefore may 

mprove performance. We find that fixed-weight strategies indeed 

erform better than standard real-time strategies. Depending on 

he specific weight, we show that the combination strategy that 

ncorporates total volatility-managed portfolios outperforms the 

riginal, unmanaged strategy in 64–68 (out of 103) equity factors 

nd anomalies. Recall that the corresponding number is only 50 

or standard real-time strategies. For downside volatility-managed 

ortfolios, the combination strategy with fixed weights outper- 

orms the original, unmanaged strategy in 80–81 equity factors and 

nomalies (compared to 70 for standard real-time strategies). In 

ummary, we find that fixed-weight strategies outperform standard 

eal-time strategies. Moreover, we continue to find that downside 

olatility-managed portfolios significantly outperform the perfor- 

ance of total volatility-managed portfolios. 
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Most prior studies (e.g., Barroso and Santa-Clara, 2015; Daniel 

nd Moskowitz, 2016; Barroso and Maio, 2018; Cederburg et al., 

020; Eisdorfer and Misirli, 2020 ) assess the value of volatility 

anagement by directly comparing the Sharpe ratios of volatility- 

anaged portfolios with the Sharpe ratios of unmanaged portfo- 

ios. We follow these studies and employ direct Sharpe ratio com- 

arison as our third approach to evaluating the performance of 

olatility-managed portfolios. Our findings are similar to those for 

he spanning regressions and real-time trading strategies. That is, 

ownside volatility-managed portfolios perform significantly bet- 

er than the total volatility-managed portfolios. Specifically, to- 

al volatility-managed portfolios exhibit higher Sharpe ratios than 

riginal, unmanaged portfolios among 63 (out of 103) equity fac- 

ors and anomalies. The corresponding number increases sharply 

o 93 for downside volatility-managed portfolios, suggesting that, 

s stand-alone investment, downside volatility-managed portfo- 

ios are also beneficial to investors. A direct comparison between 

ownside and total volatility-managed portfolios indicates that 

ownside volatility-managed portfolios exhibit higher Sharpe ra- 

ios in 8 out of 9 equity factors and 80 out of 94 anomalies. 

Our paper makes several contributions to the growing litera- 

ure on volatility-managed strategies. First, we show that manag- 

ng downside volatility instead of total volatility significantly im- 

roves the performance of volatility-managed portfolios. This find- 

ng is important in light of the recent controversy on whether to- 

al volatility-managed portfolios are systematically beneficial to in- 

estors. In contrast to the inconsistent, and sometimes mediocre 

erformance of total volatility-managed portfolios, we find that 

ownside volatility-managed portfolios exhibit superior perfor- 

ance across all methodologies, i.e., spanning regressions, real- 

ime trading strategies, and direct Sharpe ratio comparisons. 5 

Second, we provide a first analysis of the sources of the per- 

ormance of volatility-managed portfolios. We find that the pos- 

tive spanning regression alphas of total volatility-managed port- 

olios are driven entirely by volatility timing, whereas the su- 

erior performance of downside volatility-managed portfolios are 

ue to both return timing and volatility timing. Moreover, the en- 

anced performance of downside volatility-managed portfolios rel- 

tive to total volatility-managed portfolios is due to return timing, 

.e., downside volatility negatively predicts future returns. 

Third, we propose an approach to improving the poor out- 

f-sample performance of real-time volatility-managed strategies. 

pecifically, we show that fixed-weight strategies significantly out- 

erform standard strategies that estimate portfolio weights in real 

ime. Fixed-weight strategies remove the need to estimate portfolio 

eights in real time and therefore mitigates the parameter insta- 

ility and estimation risk concerns. Our approach is general (i.e., 

ot specific to volatility-managed portfolios) and can be applied to 

ther settings that involve real-time trading strategies. 

The remainder of the paper is organized as follows. 

ection 2 describes the data and empirical methods to evaluate the 

erformance of volatility managed strategies. Section 3 presents 

he empirical results. Section 4 concludes. 
5 Qiao et al. (2020) also find that downside volatility-managed portfolios expand 

he mean-variance frontiers constructed using the original portfolios and the total 

olatility-managed portfolios. Our paper differs from Qiao et al. (2020) in several 

mportant ways. First, in addition to spanning regressions, we also evaluate the per- 

ormance of downside volatility-managed portfolios using real-time trading strate- 

ies and direct Sharpe ratio comparisons. Second, in addition to equity factors, we 

lso examine 94 anomaly portfolios. Third, we explore the sources of the superior 

erformance of downside volatility-managed portfolios. Fourth, we perform a trad- 

ng cost analysis for downside volatility-managed strategies. Finally, we show that 

sing fixed-weights significantly improves the real-time performance of volatility- 

anaged strategies. 

t

(

2

c

s

a

W

t

3 
. Data and methodology 

.1. Data 

We use two sets of test assets. The first group consists of 

he nine equity factors considered by Moreira and Muir (2017) , 

.e., the market ( MKT ), size ( SMB ), and value ( HML ) factors from

he Fama and French (1993) three-factor model, the momentum 

 M OM ) factor from Carhart (1997) ’ 4-factor model, the profitabil- 

ty ( RMW ) and investment ( CMA ) factors from the Fama and

rench (2015) five-factor model, the profitability ( ROE) and invest- 

ent ( IA ) from Hou et al. (2015) ’s q -factor model, and the betting-

gainst-beta factor ( BAB ) from Frazzini and Pedersen (2014) . We 

btain daily and monthly excess returns for the above factors 

rom Kenneth French’s website, Andrea Frazzini’s website, and Lu 

hang. 6 The sample period starts in August 1926 for M KT , SM B ,

nd HML ; January 1927 for MOM; August 1963 for RMW and CMA ;

ebruary 1967 for ROE and IA ; and February 1931 for BAB . The 

ample periods end in December 2018. 

The second group of test assets includes 94 stock mar- 

et anomalies. Although the nine equity factors examined by 

oreira and Muir (2017) provide a reasonable representation of 

actors in leading asset pricing models, recent studies suggest that 

ore characteristics are needed to summarize the cross-section of 

tock returns (e.g., Kelly et al., 2019; Kozak et al., 2020 ). We there-

ore follow Cederburg et al. (2020) and augment the nine equity 

actors with a comprehensive sample of stock market anomalies 

rom Hou et al. (2015) and McLean and Pontiff (2016) . We restrict 

ur sample to anomaly variables that are continuous (rather than 

n indicator variable) and can be constructed using the CRSP, COM- 

USTAT, and I/B/E/S data. We also exclude anomalies that are based 

n industry-level variables. Table A.1 in the appendix contains the 

etailed list of the 94 anomaly variables along with their defini- 

ions, sources, and sample periods. Many anomalies are based on 

elated characteristics. We follow Hou et al. (2015) and group them 

nto seven major categories, including accrual ( N = 10), intangibles 

 N = 10), investment ( N = 9), momentum ( N = 8), profitability

 N = 20), trading ( N = 19), and value ( N = 18). 

We construct the anomaly variables following the descrip- 

ions in Hou et al. (2015) , McLean and Pontiff (2016) , and 

ederburg et al. (2020) . We begin with all NYSE, AMEX, and NAS- 

AQ common stocks (with a CRSP share code of 10 or 11) dur- 

ng the period from 1926 to 2018 with data necessary to compute 

nomaly variables and subsequent stock returns. We exclude finan- 

ial stocks and stocks with a price lower than $5 at the portfolio 

ormation date. We also remove stocks whose market capitaliza- 

ion is ranked in the lowest NYSE decile at the portfolio formation 

ate. We remove low-priced and micro-cap stocks to ensure that 

ur results are not driven by small, illiquid stocks that comprise a 

iny fraction of the market. We sort all sample stocks into deciles 

ased on each anomaly variable and then construct value-weighted 

ortfolios. The hedge strategy goes long on stocks in the top decile 

nd short those stocks in the bottom decile, where the top (bot- 

om) decile includes the stocks that are expected to outperform 

underperform) based on prior literature. 

.2. Construction of volatility-managed portfolios 

We follow prior literature ( Barroso and Santa-Clara, 2015 ) and 

onstruct the volatility-managed portfolio as a scaled version of 
6 Data on M KT , SM B , HM L , M OM , RM W , and CM A are from Kenneth French’s web- 

ite at http://www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/ . Data on BAB 

re from Andrea Frazzini’s website at http://www.people.stern.nyu.edu/afrazzin/ . 

e thank Kenneth French and Andrea Frazzini for making these data available. We 

hank Lu Zhang for sharing the data on ROE and IA . 

http://www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/
http://www.people.stern.nyu.edu/afrazzin/
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Table 1 

Spalnning regressions for the 9 equity factors. This table reports results from spanning regressions of volatility-managed factor returns on the corresponding original 

factor returns. The spanning regressions are given by f σ,t = α + β f t + εt , where f σ,t is the monthly return for volatility-managed factor, and f t is the monthly return for 

the original factor. Panel A reports results for total volatility-managed strategies, and Panel B reports those for the downside volatility-managed strategies. In addition to 

univariate spanning regressions, we also control for the Fama and French (1993) three factors. The reported alphas are in annualized, percentage terms. The appraisal ratio 

is α/σε , where σε is the root mean square error. MKT , SMB and HML are obtained from Fama and French (1993) , M OM is from Carhart (1997) , RMW and CMA are from 

Fama and French (2015) , ROE and IA are from Hou et al. (2015) , and BAB is from Frazzini and Pedersen (2014) . Numbers in parentheses are t-statistics based on White 

(1980) standard errors. 

MKT SMB HML M OM RMW CMA ROE IA BAB 

Panel A: Total volatility-managed strategy 

Panel A.1: Univariate regressions 

Alpha, α 3.34 0.44 1.48 9.36 1.35 0.08 3.32 0.75 3.99 

(3.39) (0.78) (2.21) (6.74) (2.26) (0.20) (4.64) (1.93) (5.96) 

R 2 0.72 0.72 0.65 0.62 0.67 0.78 0.76 0.80 0.71 

Panel A.2: Controlling for Fama and French (1993) three factors 

Alpha, α 3.99 0.24 2.14 7.31 1.95 0.21 3.68 0.44 3.81 

(4.06) (0.44) (3.15) (6.30) (3.25) (0.52) (5.13) (1.10) (5.46) 

R 2 0.73 0.73 0.67 0.65 0.73 0.78 0.78 0.80 0.72 

Panel B: Downside volatility-managed strategy 

Panel B.1: Univariate regressions 

Alpha, α 4.83 1.11 3.47 8.32 2.83 0.88 4.41 1.70 6.16 

(4.10) (1.66) (4.83) (5.33) (4.14) (1.73) (5.18) (3.76) (8.25) 

R 2 0.62 0.60 0.60 0.41 0.53 0.67 0.52 0.70 0.51 

Panel B.2: Controlling for Fama and French (1993) three factors 

Alpha, α 5.27 1.37 4.11 6.57 3.49 0.56 4.52 1.50 5.95 

(4.50) (2.02) (5.63) (4.97) (4.80) (1.50) (5.66) (3.15) (7.86) 

R 2 0.62 0.60 0.62 0.43 0.57 0.67 0.53 0.70 0.51 
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he original portfolio, with the investment position proportional to 

he inverse of lagged realized volatility: 7 

f σ,t = 

c ∗

σt−1 

f t , (1) 

here f t is the monthly excess return for the original portfolio, 

t−1 is the realized volatility of the original portfolio in month t −
 computed from daily returns, and c ∗ is a constant chosen such 

hat f t and f σ,t have the same full-sample volatility. We note that 

 

∗ is not known to investors in real time, but some performance 

easures such as Sharpe ratios and appraisal ratios are invariant 

o the choice of this parameter. We also note that f t is the excess 

eturn of a zero-cost portfolio. Therefore, the dynamic investment 

osition in the original portfolio, c ∗/ σt−1 , is a measure of leverage. 

For a given asset pricing factor or stock market anomaly, we 

onstruct two versions of volatility-managed portfolios following 

q. (1) , one scaled by total volatility and the other scaled by down- 

ide volatility. We first compute realized total volatility and down- 

ide volatility in month t as follows: 

Total,t = 

√ √ √ √ 

N t ∑ 

j=1 

f 2 
j 
, (2) 

Down,t = 

√ √ √ √ 

N t ∑ 

j=1 

f 2 
j 
I [ f j < 0] , (3) 

here f j represents the return on day j in month t , and N t is 

he number of daily returns in month t . That is, we compute total 

olatility using all daily returns in month t and compute downside 

olatility using only negative daily returns in month t . If the num- 

er of negative daily returns is less than three in month t , then 

Down,t is measured using negative daily returns over both month 

and month t − 1 . 
7 Moreira and Muir (2017) scale factor returns by lagged realized variance. We 

ecide to use lagged realized volatility primarily because it leads to less extreme 

nvestment weights and hence lower turnover and trading cost. Our results are 

lightly weaker if we use realized variance instead of realized volatility, but the 

ain conclusions are qualitatively unchanged. 

W

b

m

v

4 
We then construct total volatility- and downside volatility- 

anaged portfolios as follows: 

f Total 
σ,t = 

c ∗

σTotal,t−1 

f t , (4) 

f Down 
σ,t = 

˜ c ∗

σDown,t−1 

f t , (5) 

To understand the relation between total volatility- and down- 

ide volatility-managed portfolios, we can express f Down 
σ,t as a func- 

ion of f Total 
σ,t : 

f Down 
σ,t = 

c † (
σDown,t−1 

σTotal,t−1 

) f Total 
σ,t , (6) 

here c † = ˜ c ∗/c ∗. 

Essentially, one can think of f Down 
σ,t as a managed portfolio of 

f Total 
σ,t , taking a larger position in f Total 

σ,t when downside volatility 

s relatively low and vice versa. Eq. (6) suggests that, if the total 

olatility-managed portfolio tends to perform better when down- 

ide volatility is relatively low, then downside volatility-managed 

ortfolio will tend to outperform total volatility-managed portfo- 

io. 8 

. Empirical results 

.1. Spanning regressions 

Our first approach to evaluating the performance of volatility- 

anaged portfolios is to estimate the spanning regressions of 

oreira and Muir (2017) , i.e., regressing volatility-managed port- 

olio returns on their corresponding unmanaged portfolio returns 

s follows: 

f σ,t = α + β f t + εt . (7) 

e extend Moreira and Muir (2017) by estimating Eq. (7) for 

oth total volatility-managed portfolios and downside volatility- 

anaged portfolios. 
8 We thank an anonymous referee for suggesting this connection between total 

olatility- and downside volatility- managed portfolios. 
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.1.1. Baseline results 

Table 1 presents the annualized alphas from the spanning re- 

ressions for the nine equity factors. Panel A reports the results 

or total volatility-managed factors. Consistent with Moreira and 

uir (2017) , we find that volatility-managed factors often pro- 

uce positive and significant alphas relative to their corresponding 

nmanaged factors. Specifically, the spanning regression alpha is 

ositive and statistically significant at the 5% level for volatility- 

anaged M KT , HM L , M OM , RM W , ROE, and BAB , and is posi-

ive and significant at the 10% level for volatility-managed IA . The 

olatility-managed CMA and SMB exhibit insignificant alphas. 

Panel B of Table 1 presents the spanning regression results 

or downside volatility-managed factors. We find that downside 

olatility-managed factors perform significantly better than total 

olatility-managed factors. In particular, all nine equity factors ex- 

ibit positive and significant spanning regression alphas in Panel 

. The two factors for which Moreira and Muir (2017) find in- 

ignificant spanning regression alphas now generate positive al- 

has that are statistically significant at the 10% level. Specifically, 

ownside volatility-managed SMB has an alpha of 1.11% per year ( t- 

tatistic = 1.66), compared to-0.44% ( t-statistic = 0.78) for the to- 

al volatility-managed SMB . Similarly, downside volatility-managed 

MA has an alpha of 0.88% per year ( t-statistic = 1.73), com- 

ared to 0.08% ( t-statistic = 0.20) for total volatility-managed 

MA . Moreover, among six of the remaining seven factors, down- 

ide volatility-managed factors exhibit larger alphas and higher t- 

tatistics than total volatility-managed factors. For example, total 

olatility-managed MKT has an alpha of 3.34% per year with a t- 

tatistic of 3.39, while downside volatility-managed MKT exhibits 

n alpha of 4.83% with a t-statistic of 4.10. 9 

We follow Moreira and Muir (2017) and also control for the 

ama and French (1993) three factors in the spanning regressions. 

rom an economic perspective, including the Fama and French fac- 

ors as controls likely provides a better characterization of the 

nvestment opportunity set for investors sophisticated enough to 

onsider volatility-managed strategies. Our results indicate that 

ownside volatility-managed portfolios continue to outperform to- 

al volatility-managed portfolios in spanning regressions when we 

nclude Fama-French three factors as controls. 10 

We also extend the analyses to the sample of 94 anomalies in 

rder to draw broader conclusions. The results are summarized in 

able 2 . To conserve space, we report the total number of pos- 

tive and negative alphas, as well as the number of significant 

lphas across the 94 anomalies instead of detailed anomaly-by- 

nomaly results. Looking at total volatility-managed portfolios, we 

nd that two thirds of the anomalies (62 out of 94 anomalies) 

xhibit positive spanning regression alphas, with 15 of them sta- 

istically significant at the 5% level. The number of negative al- 

has is 32, with only 2 being statistically significant. This evidence 

s consistent with Cederburg et al. (2020) and supports the find- 

ng of Moreira and Muir (2017) . In comparison, when we examine 

ownside volatility-managed portfolios, nearly 95% of the anoma- 

ies (89 out of 94 anomalies) exhibit positive alphas, and 34 of 

hem are statistically significant at the 5% level. Among the five 

nomalies with negative alphas, none is statistically significant. 

his broad sample evidence confirms our previous finding from 

he nine equity factors that downside volatility-managed portfolios 
9 The betting-against-beta factor ( BAB ) from Frazzini and Pedersen (2014) is beta- 

ank-weighted. Novy-Marx and Velikov (2018) show that the value-weighted BAB 

actor exhibits insignificant average returns. We are able to confirm this finding. 

oreover, we find that the spanning regression alpha of the value-weighted BAB 

actor is positive but statistically insignificant when scaled by total volatility and is 

ositive and marginally significant when scaled by downside volatility. 
10 In Table IA.1 in the Internet Appendix, we show that our results are robust to 

ncluding Fama-French five factors ( Fama and French, 2015 ) or six factors ( Fama and 

rench, 2018 ) as controls. 

t

f

s

l

p

u

5 
xhibit significantly higher spanning regression alphas than total 

olatility-managed portfolios. 

To further demonstrate that downside volatility-managed port- 

olios outperform total volatility-managed portfolios, we estimate 

n alternative spanning regression in which we regress the re- 

urn of the downside volatility-managed portfolio on the return of 

he total volatility-managed portfolio. In essence, we are trying to 

auge whether downside volatility-managed portfolios are spanned 

y total volatility-managed portfolios. We present the results of 

his analysis in Table 3 . Panel A presents the results for the nine

quity factors, and Panel B presents the results for 94 anomalies. 

ur results are overwhelmingly in favor of downside volatility- 

anaged portfolios. Specifically, we find that the spanning regres- 

ion alpha is significantly positive among eight of the nine equity 

actors in Panel A. The only exception is the momentum factor, for 

hich the alpha is insignificant. Among the 94 anomalies, we find 

hat the alpha is positive in 84 anomalies, with 43 statistically sig- 

ificant. Among the 10 negative alphas, none is statistically signifi- 

ant. These results suggest that downside volatility-managed port- 

olios are not spanned by total volatility-managed portfolios and 

hat they provide significant incremental benefits to investors be- 

ond those offered by total volatility-managed portfolios. 

.1.2. Transaction costs 

Implementing volatility-managed investment strategies requires 

ignificant amount of trading. Therefore, an important question is 

hether the significant spanning regression alphas of volatility- 

anaged portfolios are robust to transaction costs. We note that 

t is beyond the scope of this paper to provide detailed transac- 

ion cost estimates associated with the construction of the equity 

actors and anomaly portfolios by using stock-level data. Instead, 

e consider several reasonable estimates of trading cost. Specifi- 

ally, we follow Moreira and Muir (2017) and consider the trading 

osts of 1 basis point, 10 basis points, and 14 basis points. The 1 

asis cost is from Fleming et al. (2003) and is a reasonable trad- 

ng cost only for the market factor. The 10 and 14 basis points 

re motivated by Frazzini et al. (2015) and represent a reason- 

ble trading cost for sophisticated institutional investors who are 

ble to time their trades to minimize liquidity demands and asso- 

iated costs. In addition, we also consider 25 and 50 basis points, 

hich are more relevant for regular liquidity-demanding investors. 

hese larger trading cost estimates are consistent with those doc- 

mented by Hasbrouck (2009) , Novy-Marx and Velikov (2016) , and 

arroso and Detzel (2021) . 

We report before- as well as after-cost spanning regression al- 

has of both total- and downside-volatility managed portfolios for 

he nine equity factors in Table 4 . We also compute the break-even 

ransaction costs that render the spanning regression alpha zero. 

n addition, we report the average absolute change in investment 

eights, which is an estimate of turnover in the equity factors. 11 

Panel A presents the results for total volatility-managed port- 

olios. We find that most of the spanning regression alphas re- 

ain positive for low-level transaction costs, i.e., 1, 10, and 14 basis 

oints. However, at 25 and 50 basis points, most of the equity fac- 

ors exhibit negative spanning regression alphas. This latter finding 

s consistent with Barroso and Detzel (2021) , who find that only 

he volatility-managed market factor survives trading cost. 

Panel B presents the results for downside volatility-managed 

actors. Here, we again find evidence that the spanning regres- 

ion alphas are robust to low levels of trading cost. At higher 

evels of trading cost, some of the alphas turn negative. Com- 

aring between Panel A and Panel B, we find that downside 
11 This turnover estimate does not account for the stock-level turnover of the eq- 

ity factors themselves. 
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Table 2 

Spanning regressions for the 94 anomalies. This table summarizes results from spanning regressions for the 94 stock market anomalies. The spanning regressions are given 

by f σ,t = α + β f t + εt , where f σ,t is the monthly return for volatility-managed anomaly returns, and f t is the monthly return for the original strategy. Panel A reports 

results for total volatility-managed strategies, and Panel B reports those for the downside volatility-managed strategies. The results in columns (3) and (4) correspond to 

univariate spanning regressions, and those in columns (5) and (6) are for regressions that add the Fama and French (1993) three factors as controls. The table reports 

the number of alphas that are positive, positive and significant at the 5% level, negative, and negative and significant at the 5% level. Statistical significance of the alpha 

estimates is based on White (1980) standard errors. 

Univariate regressions Controlling for Fama and French (1993) factors 

α > 0 [Signif.] α < 0 [Signif.] α > 0 [Signif.] α < 0 [Signif.] 

(1) (2) (3) (4) (5) (6) 

Panel A: Total volatility-managed strategy 

All 94 62[15] 32[2] 60[14] 34[2] 

Accruals 10 7[2] 3[0] 6[1] 4[0] 

Intangibles 10 4[1] 6[0] 4[0] 6[0] 

Investment 9 4[0] 5[0] 4[0] 5[0] 

Momentum 8 8[7] 0[0] 8[7] 0[0] 

Profitability 20 17[0] 3[0] 17[2] 3[0] 

Trading 19 13[3] 6[1] 13[3] 6[2] 

Value 18 9[2] 9[1] 8[1] 10[0] 

Panel B: Downside volatility-managed strategy 

All 94 89[34] 5[0] 84[37] 10[0] 

Accruals 10 10[3] 0[0] 10[5] 0[0] 

Intangibles 10 10[2] 0[0] 10[2] 0[0] 

Investment 9 8[2] 1[0] 7[2] 2[0] 

Momentum 8 8[6] 0[0] 8[6] 0[0] 

Profitability 20 19[8] 1[0] 19[11] 1[0] 

Trading 19 17[7] 2[0] 13[5] 6[0] 

Value 18 17[6] 1[0] 17[6] 1[0] 

Table 3 

Spanning regression of downside volatility-managed strategies on total volatility-managed strategies. This table reports results from spanning regressions of downside 

volatility-managed portfolio returns on the corresponding total volatility-managed returns. The spanning regressions are given by f Down 
σ,t = α + β f Total 

σ,t + εt or f Down 
σ,t = α + 

β f Total 
σ,t + f t + εt , where f Total 

σ,t ( f Down 
σ,t ) is the monthly return for total volatility-managed (downside volatility-managed) portfolio returns and f t is the monthly return for 

the original factor. Panel A reports results from spanning regressions for the nine equity factors. The reported alphas are in annualized, percentage terms. Numbers in 

parentheses are t-statistics based on White (1980) standard errors. The appraisal ratio is α/σε . Panel B presents summary results of the number of alphas that are positive, 

positive and significant at the 5% level, negative, and negative and significant at the 5% level for the 94 anomaly portfolios. 

Panel A: Factors 

MKT SMB HML MOM RMW CMA ROE IA BAB 

Panel A.1: Results from f Down 
σ,t = α + β f Total 

σ,t + εt 

Alpha, α 1.53 1.52 2.22 0.30 1.55 0.78 1.33 0.96 2.51 

(2.53) (3.17) (5.45) (0.40) (4.64) (2.40) (3.22) (3.74) (5.77) 

R 2 0.90 0.82 0.86 0.77 0.83 0.87 0.75 0.90 0.75 

Panel A.2: Results from f Down 
σ,t = α + β f Total 

σ,t + f t + εt 

Alpha, α 1.49 1.50 2.19 0.88 1.55 0.80 1.16 0.97 2.45 

(2.48) (3.04) (5.5) (1.19) (4.67) (2.42) (2.98) (3.77) (5.58) 

R 2 0.90 0.82 0.86 0.78 0.83 0.87 0.75 0.90 0.76 

Panel B: Anomalies 

Total α > 0 [Signif.] α < 0 [Signif.] 

Panel B.1: Results from f Down 
σ,t = α + β f Total 

σ,t + εt 

All 94 84[43] 10[0] 

Accruals 10 10[4] 0[0] 

Intangibles 10 10[7] 0[0] 

Investment 9 9[3] 0[0] 

Momentum 8 5[0] 3[0] 

Profitability 20 20[12] 0[0] 

Trading 19 13[6] 6[0] 

Value 18 17[11] 1[0] 

Panel B.2: Results from f Down 
σ,t = α + β f Total 

σ,t + f t + εt 

All 94 83[43] 11[0] 

Accruals 10 10[4] 0[0] 

Intangibles 10 10[7] 0[0] 

Investment 9 9[3] 0[0] 

Momentum 8 4[0] 4[0] 

Profitability 20 20[12] 0[0] 

Trading 19 13[6] 6[0] 

Value 18 17[11] 1[0] 
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olatility-managed portfolios exhibit higher turnover rates than to- 

al volatility-managed portfolios. In addition, downside volatility- 

anaged portfolios tend to have higher alphas than total volatility- 

anaged portfolios at lower levels of trading costs, but perform 

imilarly to total volatility-managed portfolios at higher levels of 

rading costs. This finding, along with the turnover result, suggests 
6 
hat the superior before-cost performance of downside volatility- 

anaged portfolios may be due to limits to arbitrage. 

We also implement the above analysis for the 94 anomaly port- 

olios. For brevity, we report the results in Table IA.2 in the Inter- 

et Appendix. We find that total volatility-managed portfolios tend 

o exhibit positive alphas at trading costs up to 14 basis points, 
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Table 4 

Transaction costs of volatility managed factors. This table reports the alphas of volatility managed factors after accounting for transaction costs. | �w | is the average 

absolute change in monthly weights. We consider five levels of transaction costs: 1 bps, 10 bps, 14 bps, 25 bps, and 50 bps. αBreak −e v en is the implied transaction costs 

needed to drive alphas to zero. All results are in annualized, percentage terms. M KT , SM B and HM L are obtained from Fama and French (1993) , M OM is from Carhart (1997) , 

RMW and CMA are from Fama and French (2015) , ROE and IA are from Hou et al. (2015) , and BAB is from Frazzini and Pedersen (2014) . 

MKT SMB HML M OM RMW CMA ROE IA BAB 

Panel A: Total volatility-managed strategy 

α 3.34 0.44 1.48 9.36 1.35 0.08 3.32 0.75 3.99 

| �w | 0.36 0.31 0.38 0.49 0.33 0.28 0.29 0.27 0.33 

α1 bps 3.30 0.48 1.43 9.30 1.31 0.05 3.29 0.72 3.95 

α10 bps 2.91 0.81 1.03 8.77 0.96 0.26 2.97 0.42 3.59 

α14 bps 2.74 0.96 0.85 8.54 0.80 0.39 2.84 0.29 3.43 

α25 bps 2.27 1.37 0.35 7.90 0.37 0.77 2.45 0.07 2.99 

α50 bps 1.21 2.30 0.77 6.43 0.61 1.61 1.59 0.89 2.00 

αBreak −e v en 0.78 0.12 0.33 1.60 0.34 0.02 0.96 0.23 1.00 

Panel B: Downside volatility-managed strategy 

α 4.83 1.11 3.47 8.32 2.83 0.88 4.41 1.70 6.16 

| �w | 0.69 0.49 0.53 0.75 0.46 0.45 0.48 0.42 0.51 

α1 bps 4.75 1.05 3.41 8.23 2.77 0.83 4.35 1.65 6.10 

α10 bps 4.00 0.53 2.83 7.42 2.28 0.33 3.84 1.19 5.55 

α14 bps 3.67 0.29 2.58 7.05 2.05 0.12 3.61 0.99 5.31 

α25 bps 2.76 0.35 1.88 6.06 1.45 0.48 2.98 0.43 4.64 

α50 bps 0.69 1.81 0.29 3.80 0.06 1.85 1.55 0.83 3.12 

αBreak −e v en 0.58 0.19 0.55 0.92 0.51 0.16 0.77 0.34 1.01 
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hile downside volatility-managed portfolios tend to exhibit pos- 

tive alphas at trading costs up to 25 basis points. Both total and 

ownside volatility-managed portfolios tend to exhibit negative al- 

has at the trading cost of 50 basis points. 

Overall, our results suggest that some investors, particularly 

rading cost savy institutional investors, may be able to implement 

olatility-managed strategies profitably. However, for investors fac- 

ng high trading cost and for anomaly portfolios that are expensive 

o construct and trade, the volatility-managed trading strategies 

re unlikely to be profitable. Finally, downside volatility-managed 

ortfolios tend to outperform total volatility-managed portfolios at 

ow levels of trading costs, but the outperformance evaporates at 

igh levels of trading costs. 

.2. Decomposition 

To understand the sources of the superior performance of 

ownside volatility-managed portfolios, consider an investor who 

llocates between a risky asset and a risk-free asset. To maximize 

he unconditional Sharpe ratio of the investor’s portfolio, the opti- 

al weight placed on the risky asset should be proportional to the 

atio between the conditional expected return and the conditional 

ariance ( Daniel and Moskowitz, 2016; Moreira and Muir, 2019 ). 

olatility-managed strategies, i.e., increasing (decreasing) the in- 

estment position when volatility was recently low (high), are 

herefore consistent with Sharpe ratio maximization if (i) lagged 

olatility is positively related to future volatility (volatility timing), 

nd (ii) lagged volatility is not strongly and positively related to fu- 

ure returns (return timing). Volatility clustering is one of the most 

obust stylized facts in finance, so (i) is likely to be true. The liter- 

ture is ambiguous about the volatility-return relation (e.g., French 

t al., 1987; Glosten et al., 1993; Brandt and Kang, 2004 ), so (ii)

s uncertain. If the conditional expected return is positively re- 

ated to lagged volatility, then the benefit of volatility timing is 

ikely to be offset by the cost of negative return timing and, as 

 result, volatility-managed strategies will not work. If the con- 

itional expected return is uncorrelated or even negatively corre- 

ated with lagged volatility, then volatility-managed strategies are 

ikely to perform well because they take advantage of the attrac- 

ive risk-return trade-off when volatility is low and avoid the poor 

isk-return trade-off when volatility is high. 

We formalize the above idea by building on prior work on con- 

itional asset pricing models ( Lewellen and Nagel, 2006; Boguth 
7 
t al., 2011; Cederburg and O’Doherty, 2016 ) and decomposing 

he spanning regression alpha of volatility managed strategies into 

eturn-timing and volatility-timing components. The return-timing 

omponent reflects the relation between lagged volatility and the 

onditional returns, and the volatility-timing component reflects 

he relation between lagged volatility and future volatility. 

We begin with the definition of the volatility-managed portfo- 

io in Eq. (1) , f σ,t = w t f t , where w t = c ∗/σt−1 . Taking unconditional

xpectations, we obtain 

 ( f σ,t ) = E (w t ) E ( f t ) + cov (w t , f t ) . (8)

he spanning regression alpha of f σ,t relative to f t is given by 

ˆ = E ( f σ,t ) − ˆ βE ( f t ) (9) 

 E ( f t )[ E (w t ) − ˆ β] + cov (w t , f t ) . (10) 

et w t = E (w t ) + e t , where e t is the time-varying component of the

nvestment position in the original portfolio, f t . The unconditional 

eta is 

ˆ = 

cov ( f σ,t , f t ) 

Var ( f t ) 
(11) 

 

cov [( f t ( E (w t ) + e t ) , f t ] 

Var ( f t ) 
(12) 

 

E (w t ) Var ( f t ) + cov (e t , f 
2 
t ) − cov (e t , f t ) E ( f t ) 

Var ( f t ) 
(13) 

 E (w t ) − E ( f t ) 

Var ( f t ) 
cov (w t , f t ) + 

cov (w t , f 
2 
t ) 

Var ( f t ) 
(14) 

ubstituting Eq. (14) into Eq. (10) , we obtain 

ˆ = 

(
1 + 

E 

2 ( f ) 

Var ( f t ) 

)
cov (w t , f t ) − E ( f t ) 

Var ( f t ) 
cov (w t , f 

2 
t ) . (15) 

q. (15) shows that the spanning regression alpha can be 

ecomposed into return-timing and volatility-timing compo- 

ents, ˆ α = RT + VT , where RT = (1 + 

E 2 ( f ) 
Var ( f t ) 

) cov (w t , f t ) and VT =
E ( f t ) 

Var( f t ) 
cov (w t , f 

2 
t ) . The return-timing component depends on the 

ovariance between the investment weight and portfolio returns, 
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Table 5 

Decomposition for the 9 equity factors. This table provides alpha decomposition of volatility-managed factors attributable to return timing and volatility timing. The return- 

timing effect is estimated as (1 + 

E 2 ( f t ) 
Var( f t ) 

) cov ( c ∗
σt−1 

, f t ) , and the volatility-timing effect is estimated as − E( f t ) 
Var( f t ) 

cov ( c ∗
σt−1 

, f 2 t ) , where σt−1 is a volatility measure from month 

t − 1 , and f t is the monthly return for the original factor, and c ∗ is a constant chosen such that the original strategy and the volatility-managed strategy have the same 

full-sample volatility. E( f t ) and Var( f t ) are the expected return and variance of the original factor returns. Panel A reports results for total-volatility managed factors, and 

Panel B provides results for downside volatility-managed factors. All results are converted to annualized, percentage terms. 

MKT SMB HML MOM RMW CMA ROE IA BAB 

Panel A: Total volatility-managed strategy 

Return Timing 0.09 1.35 1.16 2.88 0.28 1.07 0.87 0.60 0.51 

Volatility Timing 3.43 0.91 2.65 6.49 1.64 1.15 2.45 1.35 4.50 

Total 3.34 0.44 1.48 9.36 1.35 0.08 3.32 0.75 3.99 

Panel B: Downside volatility-managed strategy 

Return Timing 0.79 0.29 1.13 2.93 1.34 0.09 2.01 0.49 2.33 

Volatility Timing 4.04 0.83 2.34 5.39 1.49 0.97 2.40 1.22 3.83 

Total 4.83 1.11 3.47 8.32 2.83 0.88 4.41 1.70 6.16 
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Table 6 

Decomposition for the 94 anomalies. This table summarizes results from al- 

pha decomposition of volatility-managed factors attributable to return timing 

and volatility timing for the 94 anomalies. The return-timing effect is esti- 

mated as (1 + 

E 2 ( f t ) 
Var( f t ) 

) cov ( c ∗
σt−1 

, f t ) , and the volatility-timing effect is estimated 

as − E( f t ) 
Var( f t ) 

cov ( c ∗
σt−1 

, f 2 t ) , where σt−1 , where σt−1 is a volatility measure from 

month t − 1 , and f t is the monthly return for the original portfolio. c ∗ is a con- 

stant chosen such that the original strategy and the volatility-managed strat- 

egy have the same full-sample volatility. E( f t ) and Var( f t ) are the expected 

return and variance of the original portfolio returns. Panel A reports results 

for total volatility-managed anomalies, and Panel B provides results for down- 

side volatility-managed anomalies. The table reports the number of return- 

(volatility-) timing that are positive and negative. 

Return timing Volatility timing 

Positive Negative Positive Negative 

Panel A: Total volatility-managed strategy 

All 94 42 52 80 14 

Accruals 10 3 7 10 0 

Intangibles 10 2 8 7 3 

Investment 9 3 6 9 0 

Momentum 8 8 0 7 1 

Profitability 20 10 10 16 4 

Trading 19 11 8 14 5 

Value 18 5 13 17 1 

Panel B: Downside volatility-managed strategy 

All 94 71 23 80 14 

Accruals 10 7 3 10 0 

Intangibles 10 8 2 7 3 

Investment 9 5 4 9 0 

Momentum 8 7 1 7 1 

Profitability 20 19 1 16 4 

Trading 19 12 7 14 5 

Value 18 13 5 17 1 
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nd the volatility-timing component is determined by the covari- 

nce between the investment weight and the second moment of 

he portfolio returns. Given that w t = c ∗/σt−1 , the return-timing 

omponent will be positive when lagged volatility is negatively re- 

ated to current factor return, and the volatility-timing component 

ill be positive when lagged volatility is positively related to cur- 

ent factor volatility. 

A positive spanning regression alpha can arise either from re- 

urn timing or volatility timing, or both. To assess the relative 

ontribution of volatility timing and return timing to the perfor- 

ance of volatility-managed portfolios, we perform a decompo- 

ition according to Eq. (15) . We present the results for the nine 

quity factors in Table 5 . Panel A reports the alpha decompo- 

ition for total volatility-managed factors. We find that all nine 

olatility-managed factors have positive volatility-timing compo- 

ents, consistent with volatility persistence. However, the return- 

iming component is negative among seven of the nine equity fac- 

ors. In the case of SMB , the negative return timing effect (1.35%) is 

arge enough to offset the positive volatility timing effect (0.91%), 

esulting in a negative spanning regression alpha of-0.44% per year. 

verall, we find that the positive spanning regression alphas of to- 

al volatility-managed factors are primarily due to volatility tim- 

ng, and the return-timing component is often negative. It is worth 

oting that volatility-managed M OM has large and positive volatil- 

ty timing as well as return timing components. This explains why 

he volatility-managed momentum strategies perform so well in 

arroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) . 

Panel B of Table 5 presents the decomposition results for 

ownside volatility-managed factors. We find that, similar to to- 

al volatility-managed factors, the volatility-timing component is 

ositive across all nine factors. In addition, the magnitudes of the 

olatility timing component are similar between total volatility- 

anaged factors and downside volatility-managed factors. For ex- 

mple, total volatility-managed ROE has a volatility-timing compo- 

ent of 2.45% per year, while the downside volatility-managed ROE

as a volatility-timing component of 2.40% per year. In contrast to 

he results for total volatility-managed factors, we find that the 

eturn-timing component for downside volatility-managed factors 

s positive for eight of the nine equity factors (the only exception is 

MA ). Recall that the return-timing component is negative among 

even of the nine factors for total volatility-managed factors. There- 

ore, although volatility timing contributes significantly to the su- 

erior performance of downside volatility-managed factors, the 

eturn-timing component is the reason why downside volatility- 

anaged factors outperform total volatility-managed factors. For 

xample, the return-timing component for total volatility-managed 

MB is-1.35%, but it increases to 0.29% for downside volatility- 

anaged SMB . Given that volatility-timing components are simi- 

ar, the spanning regression alpha increases from-0.44% for total 

olatility-managed SMB to 1.11% for downside volatility-managed 
m

8 
MB . This pattern of negative return timing changing to positive 

eturn timing also applies to five other equity factors, i.e., MKT , 

M L , RM W , IA and BAB . The improvement in the return timing

omponent is also quite large for ROE (from 0.87% to 2.01%) and 

MA (from-1.07% to-0.09%). For the remaining factor M OM , down- 

ide volatility-managed factor has a similar return-timing compo- 

ent to the total volatility-managed factor. 

Table 6 summarizes alpha decomposition results for the 94 

nomalies. We find qualitatively similar results to those in Table 5 . 

or both total and downside volatility-managed portfolios, we find 

hat the volatility-timing component is positive among 80 out of 

4 anomalies. There is, however, a large difference in the return 

iming component between total volatility and downside volatility- 

anaged portfolios. For total volatility-managed portfolios, the 

eturn-timing component is positive in just 42 of the 94 anomalies. 

n contrast, 71 of the 94 anomalies exhibit a positive return-timing 

omponent for downside volatility-managed strategies. The posi- 

ive return-timing component associated with downside volatility- 

anaged strategies suggests that downside volatility tends to neg- 
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12 We follow Cederburg et al. (2020) and assume γ is equal to 5. Our results are 

robust to alternative risk aversion values. 
13 Let ˆ μi and ˆ σi be the mean and standard deviation of excess returns for port- 

folio i over a period of length T . Similarly, ˆ μ j and ˆ σ j are the mean and standard 

deviation for portfolio j, and ˆ σi, j is the covariance between excess returns for the 

two portfolios. ˆ λi and ˆ λ j denote the estimated Sharpe ratios for portfolios i and j. 

To test the null hypothesis of equal Sharpe ratios for portfolios i and j, we compute 

the test statistic, which is asymptotically distributed as a standard normal: 

ˆ z = 

√ 

T 

( 

ˆ λ j − ˆ λi √ 

ˆ V λ

) 

, 

To estimate ˆ V λ , we follow Kirby and Ostdiek (2012) and use the generalized method 

of moments to construct the following estimator. Let 

e t ( ̂  θ ) = 

⎛ 

⎜ ⎜ ⎝ 

r i − ˆ σi ̂
 λi 

r j − ˆ σ j ̂
 λ j 

(r i − ˆ σi ̂
 λi ) 

2 − ˆ σ 2 
i 

(r j − ˆ σ j ̂
 λ j ) 

2 − ˆ σ 2 
j 

⎞ 

⎟ ⎟ ⎠ 

where ˆ θ = ( ̂ λi , ̂
 λ j , ̂  σ

2 
i 
, ̂  σ 2 

j 
) ′ . 

√ 

T ( ̂ θ − θ ) 
a ∼ N(0 , ̂  D −1 ˆ S ̂ D −1 ′ ) , where ˆ D = 

(1 /T ) 
∑ T+ L 

t= L +1 ∂e t ( ̂ θ ) ∂ ̂  θ ′ and ˆ S = 

ˆ �0 + 

∑ m 
l=1 (1 − l/ (m + 1))( ̂ �l + ̂

 �′ 
l 
) with 

ˆ �l = (1 /T ) 
∑ T+ L 

t= L + l+1 e t ( ̂
 θ ) e t−l ( ̂ θ ) ′ . We follow Kirby and Ostdiek (2012) and set 

m = 5. ˆ V λ = ̂

 V 22 − 2 ̂ V 21 + ̂

 V 11 , where ˆ V ≡ ˆ D −1 ˆ S ̂ D −1 ′ . 
tively predict future returns. At first glance, this result appears 

o be at odds with prior finding (e.g., Kelly and Jiang, 2014 ) that

ownside risk or tail risk commands a return premium. We note 

hat a critical difference between our analysis and prior studies is 

hat we focus on the downside risk of equity factors and anomaly 

ortfolios rather than the downside risk of individual stock returns. 

To summarize, our decomposition analysis in this section indi- 

ates that volatility timing, i.e., volatility persistence, is an impor- 

ant reason for the positive spanning regression alphas for both 

otal and downside volatility-managed portfolios. The volatility- 

iming component, however, is similar across total volatility and 

ownside volatility managed portfolios. The enhanced performance 

f managing downside volatility relative to managing total volatil- 

ty, therefore, primarily arises from the return-timing component. 

lthough downside volatility and total volatility are highly corre- 

ated with each other, they differ significantly in their predictive 

ontent for future returns. It is this difference that explains the su- 

erior performance of downside volatility-managed portfolios. 

.3. Real-time strategies 

The spanning regression results indicate substantial in-sample 

enefits of volatility management. Cederburg et al. (2020) , how- 

ver, point out that the trading strategies implied by the span- 

ing regressions are not implementable in real time because they 

equire investors to combine the volatility-managed portfolio and 

he unmanaged portfolio using ex post optimal weights, which are 

ot known to real-time investors. A natural question is whether 

eal-time investors can capture the economic gains implied by the 

panning regression. Therefore, in our second approach we evalu- 

te the out-of-sample performance of real-time trading strategies 

mplied by the spanning regressions. Prior literature suggests that 

stimation risk and parameter instability are key factors in the out- 

f-sample, mean-variance portfolio choice problem, making real- 

ime portfolios often underperform relative to their in-sample op- 

imal counterparts. 

.3.1. Methodology 

As in Cederburg et al. (2020) , our out-of-sample tests fo- 

us on quantifying the impact of incorporating a volatility- 

anaged portfolio in the investment opportunity set. We follow 

ederburg et al. (2020) and compare the performance of two 

eal-time strategies: (1) a strategy that allocates between a given 

olatility-managed portfolio, its corresponding original, unman- 

ged portfolio, and a risk-free asset; and (2) a strategy constrained 

o invest only in the original portfolio and the risk-free asset. For 

ase of exposition, we refer to the first strategy as the “combina- 

ion strategy” and the second one as the “unmanaged strategy”. 

For each asset pricing factor and stock market anomaly, we start 

ith T monthly excess return observations. We use the first K

onths as the training period to estimate the return moments to 

ecide the weights to construct the combination strategy and the 

nmanaged strategy, respectively. We evaluate the portfolio perfor- 

ance over the out-of-sample period of T − K months. Following 

ederburg et al. (2020) , we set our initial training period as K = 

20 months, and employ an expanding-window approach to esti- 

ate the relevant parameters. At the beginning of each month t

n the out-of-sample period, we first estimate the real-time scal- 

ng parameter, c ∗t , as the constant that allows the original and 

olatility-managed portfolios to have the same volatility over the 

raining period preceding month t . 

To determine the portfolio weights for the combination strat- 

gy in month t , consider an investor with mean-variance utility 

ho is allocating between volatility-managed portfolio ( f σ,t ), and 

nmanaged portfolio ( f t ). The optimal allocation to f σ,t and f t is 
9 
he solution to the following problem: 

ax 
w t 

U(w t ) = w 

� 
t ˆ μt − γ

2 

w 

� 
t 

ˆ �t w t , (16) 

here ˆ μt = [ ̄f σ,t , f̄ t ] 
� is the vector of mean excess returns and 

ˆ �t 

s the variance-covariance matrix over the training period before 

onth t , and γ is the investor’s risk aversion parameter. 12 The vec- 

or of optimal weights on f σ,t and f t for month t is 

 t = 

[
x σ,t 

x t 

]
= 

1 

γ
ˆ �−1 

t ˆ μt . (17) 

he setup implicitly allows the investor to have access to a risk- 

ree asset. The investor’s optimal policy allocates a weight of x σ,t to 

he volatility-managed portfolio and a weight of x t to the unman- 

ged portfolio. Given the definition of the volatility-managed port- 

olio, i.e., f σ,t = 

c ∗t 
σt−1 

f t , the combination strategy can be considered 

ased on a dynamic investment rule on the unmanaged portfolio, 

ith the weight ( w 

c 
t ) of x t + 

c ∗t 
σt−1 

x σ,t . Therefore, the excess return

f the combination strategy for month t is w 

c 
t f t . Similarly, for the 

nmanaged strategy the optimal weight ( w 

u 
t ) on f t is simply 1 

γ
μ̄
ˆ σ 2 , 

here μ̄ and ˆ σ 2 are the mean and variance of f t over the training 

eriod preceding month t . Accordingly, we construct the portfolio 

xcess return for the unmanaged strategy as w 

u 
t f t . 

The magnitude of w 

c 
t and w 

u 
t is essentially a measure of lever- 

ge. Extreme leverage may occur in out-of-sample analysis for 

wo reasons. First, volatility-managed portfolios, by definition, call 

or substantial leverage following periods of low volatility. Sec- 

nd, mean-variance optimization often leads to extreme values of 

ortfolio weights. Following Cederburg et al. (2020) , we impose 

 leverage constraint of | w 

c 
t | (| w 

u 
t | ) ≤ 5 . The above out-of-sample

eal-time trading strategy results in a time series of T - K monthly 

xcess returns for the combination strategy and the unmanaged 

trategy, respectively. We compute the Sharpe ratio for each strat- 

gy and the difference in Sharpe ratio between the two strategies. 

e assess whether the Sharpe ratio difference is statistically sig- 

ificant following the approach of Kirby and Ostdiek (2012) . 13 

.3.2. Results 

Table 7 reports results for the out-of-sample performance of the 

ombination strategy and the unmanaged strategy for the nine eq- 

ity factors. We consider two combination strategies, one based on 

otal volatility-managed factors and the other based on downside 
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Table 7 

Real time performance for the 9 equity factors. The table reports results for real-time strategies that combine original factors and volatility-managed factors. The initial 

training period length ( K) is 120 months. We use an expanding-window design for the out-of-sample tests, and the out-of-sample period runs from month K+1 to month 

T , where T is the total number of sample months for a given factor. The “unmanaged strategy” ([S1]) results correspond to the real-time combination of the original factor 

and the risk-free asset, and the “combination strategy” results correspond to the real-time combination of the original factor, the volatility-managed factor, and the risk-free 

asset. [S2] refers to the combination strategy based on total volatility-managed factor, and [S3] refers to the combination strategy based on downside volatility-managed 

factor. For each strategy, the table shows the annualized Sharpe ratio in percentage per year over the out-of-sample period. The numbers in brackets are p-values for the 

Sharpe ratio differences. The p-values are computed following the approach in Kirby and Ostdiek (2012) . We use a risk aversion parameter of γ = 5 and impose a leverage 

constraint that the sum of absolute weights on the risky factors is less than or equal to five. 

MKT SMB HML MOM RMW CMA ROE IA BAB 

[S1] Unmanaged strategy 0.46 0.18 0.39 0.49 0.34 0.51 0.78 0.63 0.83 

[S2] Combination Strategy - Total volatility 0.48 0.12 0.36 0.97 0.43 0.46 1.17 0.63 1.09 

[S3] Combination Strategy - Down volatility 0.51 0.22 0.58 0.75 0.65 0.50 1.13 0.71 1.22 

[S2]-[S1] 0.02 0.06 0.03 0.48 0.09 0.05 0.39 0.00 0.27 

[0.76] [0.31] [0.63] [0.00] [0.65] [0.05] [0.00] [0.97] [0.00] 

[S3]-[S1] 0.05 0.04 0.19 0.26 0.31 0.00 0.34 0.08 0.39 

[0.63] [0.62] [0.01] [0.03] [0.13] [0.94] [0.00] [0.24] [0.00] 

[S3]-[S2] 0.02 0.10 0.23 0.22 0.22 0.04 0.04 0.08 0.12 

[0.65] [0.21] [0.00] [0.00] [0.00] [0.30] [0.46] [0.02] [0.00] 
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14 Merton (1980) shows that expected returns are particularly difficult to estimate 
olatility-managed factors. We present the Sharpe ratio of the un- 

anaged strategy as well as the Sharpe ratios of two combination 

trategies over the evaluation period from month K + 1 to month 

 . In addition, we report three pairwise Sharpe ratio differences 

mong the three strategies. 

The results indicate that, the combination strategy that incorpo- 

ates total volatility-managed factors significantly outperforms the 

nmanaged strategy among three of the nine factors, i.e., M OM , 

OE, and BAB . That is, the difference in Sharpe ratio between the 

ombination strategy and the unmanaged strategy is positive and 

tatistically significant for these three factors. Across the remaining 

ix factors, the difference in Sharpe ratio is not statistically signifi- 

ant. Half of them ( M KT , RM W , and IA ) show positive differences,

nd the other half ( SM B , HM L , and CM A ) show negative differences.

Incorporating downside volatility-managed factors improves the 

eal-time performance of the combination strategy. Specifically, the 

ifference in Sharpe ratio between the combination strategy and 

he unmanaged strategy is positive for eight equity factors, and is 

tatistically significant at the 5% level for four of them ( HM L , M OM ,

OE, and BAB ). For M KT , SM B , RM W , and IA , the combination strat-

gy outperforms the unmanaged strategy, but the difference is not 

tatistically significant. For the remaining factor, CMA , the com- 

ination strategy slightly underperforms the unmanaged strategy 

0.50 versus 0.51). 

To assess the relative merit of downside volatility management 

ersus total volatility management, we can also directly compare 

he performance of the combination strategy that incorporates 

ownside volatility-managed factors with the combination strategy 

hat incorporates total volatility-managed factors. This direct com- 

arison indicates that the Sharpe ratio of the combination strategy 

ased on downside volatility-managed factors is higher than that 

ased on total volatility-managed factors across seven equity fac- 

ors ( M KT , SM B , HM L , RM W , CM A , IA , and BAB ). The performance

mprovement ranges from 0.02 to 0.22, and statistically significant 

mong four factors. For example, the Sharpe ratio of the combi- 

ation strategy is 0.36 for total volatility-managed HML , and is 

.58 for downside-volatility-managed HML . For the remaining two 

actors ( M OM and ROE), the combination strategy based on total 

olatility-managed factors performs better than the combination 

trategy based on downside volatility-managed factors. 

We repeat the above real-time analyses for the broader sam- 

le of 94 anomalies. Table 8 summarizes the results. Specifically, 

he table shows the number of positive and negative Sharpe ra- 

io differences between the combination strategy and the unman- 

ged strategy. Panel A presents the results for total volatility- 

anaged portfolios. We find that the combination strategy outper- 

orms the unmanaged strategy among only 44 of the 94 anoma- 
p

10 
ies. For the remaining 50 anomalies, the combination strategy 

nderperforms the unmanaged strategy. In contrast, we find in 

anel B that the combination strategy that incorporates downside 

olatility-managed portfolios outperforms the original, unmanaged 

trategy in 62 of the 94 anomalies. A simple binomial test of the 

ull hypothesis that the combination strategy performs the same 

s the unmanaged strategy is rejected with a two-sided p-value 

f 0.002. In Panel C, we find that downside volatility-based com- 

ination strategy outperforms total volatility-based combination 

trategy among 69 out of 94 anomalies, while underperforming 

mong 25 anomalies. Our findings in this section are consistent 

ith Cederburg et al. (2020) that managing total volatility is not 

ystematically advantageous for real-time investors. However, man- 

ging downside volatility significantly improves the performance of 

he combination strategy and is beneficial for real-time investors. 

.3.3. Fixed-weight strategies 

Cederburg et al. (2020) point out that the relatively poor 

ut-of-sample performance of the real-time combination strat- 

gy is primarily due to parameter instability and estimation risk. 

eMiguel et al. (2009) note that optimal portfolios constructed 

rom sample moments often exhibit extreme weights that fluc- 

uate dramatically over time. They further demonstrate that such 

trategies often underperform simpler approaches to portfolio for- 

ation including a naïve rule of equally weighting the assets under 

onsideration. Prior literature (e.g., Jobson (1979) and Chopra and 

iemba (1993) ) also shows that the global minimum variance 

GMV) portfolio often performs better than other mean-variance 

fficient portfolios because we can estimate its weights without 

stimating expected returns, which alleviates a large part of the 

stimation risk. 14 With two assets, the GMV portfolio has an esti- 

ated weight on the first asset of the form 

ˆ 
 1 = 

ˆ σ 2 
2 − ˆ σ1 ̂  σ2 ̂  ρ12 

ˆ σ 2 
1 

+ ˆ σ 2 
2 

− 2 ̂  σ1 ̂  σ2 ̂  ρ12 

, (18) 

here ˆ ρ12 is the estimated correlation between the returns for the 

wo assets. Now suppose the two assets under consideration are 

he original, unmanaged factor ( f t ) and the volatility-managed fac- 

or ( f σ,t ). Because f σ,t is constructed such that it has the same es-

imated variance as f t , the estimated weights of the GMV portfolio 

re simply ˆ w 1 = 1 / 2 and ˆ w 2 = 1 / 2 for all values of ˆ ρ12 . This pro-

ides a rationale for looking at a naïve diversification strategy. 

Motivated by the above arguments, we next examine combina- 

ion strategies that assign fixed relative weights to the volatility- 
recisely. 
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Table 8 

Real time performance for the 94 anomalies. The table summarizes results for real-time portfolio strategies that combine original portfolios and volatility-managed port- 

folios for the 94 anomalies. The initial training period length ( K) is 120 months. We use an expanding-window design for the out-of-sample tests, and the out-of-sample 

period runs from month K + 1 to month T , where T is the total number of sample months for a given anomaly. The “unmanaged strategy” is based on the real-time 

combination of the original factor and the risk-free asset, and the “combination strategy” corresponds to the real-time combination of the original factor, the volatility- 

managed factor, and the risk-free asset. For each anomaly, we compute the difference between two strategies. The table reports the number of Sharpe ratio differences 

that are positive, positive and significant at the 5% level, negative, and negative and significant at the 5% level. Statistical significance of the Sharpe ratio is based on the 

approach in Kirby and Ostdiek (2012) . We use a risk aversion parameter of γ = 5 and impose a leverage constraint that the sum of absolute weights on the risky factors 

is less than or equal to five. 

Sharpe ratio difference 

Positive [Signif.] Negative [Signif.] 

Panel A: Combination strategy (Total volatility)-Unmanaged strategy 

All 94 44[6] 50[4] 

Accruals 10 3[0] 7[1] 

Intangibles 10 5[0] 5[0] 

Investment 9 3[0] 6[1] 

Momentum 8 8[3] 0[0] 

Profitability 20 8[1] 12[0] 

Trading 19 10[0] 9[1] 

Value 18 7[2] 11[1] 

Panel B: Combination strategy (Downside volatility)-Unmanaged strategy 

All 94 62[8] 32[1] 

Accruals 10 6[0] 4[0] 

Intangibles 10 7[2] 3[0] 

Investment 9 4[0] 5[0] 

Momentum 8 6[3] 2[0] 

Profitability 20 17[1] 3[0] 

Trading 19 11[0] 8[1] 

Value 18 11[2] 7[0] 

Panel C: Combination strategy (Downside volatility)-Combination strategy (Total volatility) 

All 94 69[11] 25[4] 

Accruals 10 8[1] 2[0] 

Intangibles 10 8[1] 2[0] 

Investment 9 8[0] 1[0] 

Momentum 8 1[0] 7[2] 

Profitability 20 19[6] 1[0] 

Trading 19 12[3] 7[1] 

Value 18 13[0] 5[1] 
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anaged and original portfolios. In addition to the naïvely diversi- 

ed portfolio (i.e., w = 50 %), we also consider the following relative 

eights in the volatility-managed portfolios: 10%, 25%, 75%, and 

0%. These fixed weights are unlikely to be optimal ex post, but 

mploying them removes the need to estimate portfolio weights 

n real time and therefore may improve performance. 

The real-time portfolio construction is similar to that outlined 

n Section 3.3.1 . We set an initial training sample of K = 120

onths paired with an expanding estimation window. At the be- 

inning of month t in the out-of-sample period, we first compute 

he scaling parameter for the volatility-managed portfolio, c ∗t , and 

hen form a combination of the volatility-scaled and unscaled port- 

olios using the specified static weight vector, for example, 50% 

nvested in the volatility-managed portfolio and 50% in the orig- 

nal strategy. Finally, the investor optimally allocates between the 

xed-weight risky portfolio and the risk-free asset. We benchmark 

his strategy by comparing it with a portfolio that allocates be- 

ween the original, unmanaged factor and the risk-free asset in 

eal time. The positive in-sample spanning regression intercepts 

or many volatility-scaled factors and anomaly portfolios suggest 

hat we should expect some static combination to perform well in 

ach case. The more interesting question is whether a specific fixed 

eight leads to consistent and economically large gains across the 

road set of strategies under consideration. 

Table 9 presents the results for the nine equity factors. 

anel A compares the combination strategy that incorporates to- 

al volatility-managed factors with the unmanaged strategy. For 

revity, we only report the Sharpe ratio difference between these 

wo strategies. A positive (negative) number suggests that the 

ombination strategy outperforms (underperforms) the unmanaged 
11 
trategy. We find that real-time strategies with fixed weights gen- 

rally produce better out-of-sample performance than that for 

he standard real-time strategies. For example, when the relative 

eight for the volatility-managed portfolio is fixed at 25%, the 

ut-of-sample performance for the combination strategy is better 

han that of the unmanaged strategy in eight out of the nine eq- 

ity factors. The only exception is SMB , where the combination 

trategy underperforms by 0.02 with a p-value of 0.39. Across all 

xed weights we examine, the combination strategy outperforms 

he unmanaged strategy for at least seven of the nine equity fac- 

ors. Recall that in the previous section we document that stan- 

ard combination strategy underperforms the unmanaged strategy 

mong three of the nine factors. 

Panel B of Table 9 shows results for the fixed-weight strategies 

hat incorporate downside volatility-managed factors. The results 

re striking. We find that, for each of the fixed weights we con- 

ider, the combination strategy outperforms the unmanaged strat- 

gy across all nine equity factors. The Sharpe ratio difference be- 

ween the combination strategy and the unmanaged strategy is 

tatistically significant in most cases. For example, for the fixed 

eight of 25% in the downside volatility-managed factor, seven of 

he nine Sharpe ratio differences are statistically significant at the 

% level and one at the 10% level. These results are stronger than 

he standard real-time strategies we examined in the previous sec- 

ion, where only four of the Sharpe ratio differences are statisti- 

ally significant at the 5% level and one Sharpe ratio difference is 

ctually negative. The results are also significantly stronger than 

hose reported in Panel A, and continue to suggest that downside 

olatility-managed strategies tend to outperform total volatility- 

anaged strategies. 
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Table 9 

Fixed-weight real time analysis for the 9 equity factors. The table reports results for real-time portfolio strategies combining original factors and volatility-managed factors 

with fixed relative weights. For each factor and out-of-sample design, we present the difference between the Sharpe ratio of the strategy that combines the original factor, 

the volatility-managed factor, and the risk-free asset (with fixed relative weights on the two risky assets) and that of the strategy that combines the original factor and the 

risk-free asset. The initial training period length ( K) is 120 months. We use an expanding-window design for the out-of-sample tests, and the out-of-sample period runs 

from month K+1 to month T , where T is the total number of sample months for a given anomaly. Panel A reports results for total volatility-managed strategies and Panel 

B reports those for the downside volatility-managed strategies. The numbers in brackets are p-values for the Sharpe ratio differences, following the approach in Kirby and 

Ostdiek (2012) . 

( w σ,t , w t ) MKT SMB HML MOM RMW CMA ROE IA BAB 

Panel A: Total volatility 

(0.10, 0.90) 0.01 0.01 0.01 0.07 0.02 0.00 0.03 0.01 0.04 

[0.10] [0.46] [0.18] [0.00] [0.00] [0.86] [0.00] [0.13] [0.00] 

(0.25, 0.75) 0.03 0.02 0.02 0.16 0.05 0.00 0.09 0.02 0.10 

[0.14] [0.39] [0.25] [0.00] [0.00] [0.97] [0.00] [0.17] [0.00] 

(0.50, 0.50) 0.05 0.04 0.03 0.29 0.10 0.01 0.18 0.03 0.18 

[0.24] [0.29] [0.41] [0.00] [0.00] [0.84] [0.00] [0.35] [0.00] 

(0.75, 0.25) 0.05 0.07 0.03 0.38 0.15 0.02 0.28 0.03 0.25 

[0.35] [0.22] [0.59] [0.00] [0.01] [0.66] [0.00] [0.52] [0.00] 

(0.90, 0.10) 0.05 0.09 0.02 0.42 0.18 0.03 0.33 0.03 0.28 

[0.41] [0.20] [0.69] [0.00] [0.02] [0.55] [0.00] [0.62] [0.00] 

Panel B: Downside volatility 

(0.10, 0.90) 0.02 0.01 0.04 0.06 0.04 0.01 0.04 0.02 0.06 

[0.02] [0.18] [0.00] [0.00] [0.00] [0.07] [0.00] [0.01] [0.00] 

(0.25, 0.75) 0.05 0.03 0.08 0.14 0.10 0.03 0.11 0.05 0.15 

[0.03] [0.21] [0.00] [0.00] [0.00] [0.08] [0.00] [0.01] [0.00] 

(0.50, 0.50) 0.08 0.05 0.14 0.23 0.20 0.06 0.22 0.07 0.28 

[0.08] [0.27] [0.00] [0.00] [0.00] [0.14] [0.00] [0.04] [0.00] 

(0.75, 0.25) 0.09 0.06 0.17 0.27 0.29 0.06 0.34 0.09 0.37 

[0.15] [0.34] [0.00] [0.00] [0.00] [0.26] [0.00] [0.07] [0.00] 

(0.90, 0.10) 0.09 0.06 0.19 0.28 0.35 0.06 0.41 0.10 0.41 

[0.21] [0.39] [0.00] [0.01] [0.00] [0.38] [0.00] [0.10] [0.00] 

Table 10 

Fixed-weight real time analysis for the 94 anomalies. The table reports results 

for portfolio strategies combining original anomalies and volatility-managed 

anomalies with fixed relative weights. For each anomaly and out-of-sample de- 

sign, we present the difference between the Sharpe ratio of the strategy that 

combines the original portfolio, the volatility-managed portfolio, and the risk- 

free asset (with fixed relative weights on the two risky assets) and that of the 

strategy that combines the original portfolio and the risk-free asset. The ini- 

tial training period length (K) is 120 months. We use an expanding-window 

design for the out-of-sample tests. Panel A reports results for total volatility- 

managed strategies, and Panel B reports those for the downside volatility- 

managed strategies. This table presents summary results of the number of 

Sharpe ratio differences that are positive, positive and significant at the 5% 

level, negative, and negative and significant at the 5% level for the 94 anomaly 

portfolios. The p-values are computed following the approach in Kirby and Ost- 

diek (2012) . 

Sharpe ratio difference 

Positive [Signif.] Negative [Signif.] 

Panel A: Total volatility 

(0.10, 0.90) 94 60[13] 34[1] 

(0.25, 0.75) 94 60[12] 34[1] 

(0.50, 0.50) 94 57[10] 37[2] 

(0.75, 0.25) 94 57[8] 37[3] 

(0.90, 0.10) 94 57[7] 37[3] 

Panel B: Downside volatility 

(0.10, 0.90) 94 72[31] 22[2] 

(0.25, 0.75) 94 72[29] 22[2] 

(0.50, 0.50) 94 72[27] 22[1] 

(0.75, 0.25) 94 72[23] 22[1] 

(0.90, 0.10) 94 71[19] 23[1] 
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We repeat the fixed weight real-time analysis for the ex- 

ended sample of 94 anomaly portfolios and report the results 

n Table 10 . We consider the same set of fixed weights as in

able 9 . As in Table 8 , we present the number of positive and

egative Sharpe ratio differences between the combination strat- 

gy and the unmanaged strategy across the 94 anomaly portfo- 

ios. The main takeaways are in line with those from Table 9 . 

n Panel A, we find that the combination strategy that incorpo- 
12 
ates total volatility-managed portfolios tends to outperform the 

nmanaged strategy. Depending on the specific weight, between 

7 and 60 (out of 94) stock market anomalies exhibit positive 

harpe ratio differences. Recall that the corresponding number is 

nly 44 for standard real-time strategies. In Panel B, for down- 

ide volatility-managed portfolios, the combination strategy with 

xed weights outperforms the original, unmanaged strategy in 71–

2 anomalies. These numbers are significantly higher than the 57–

0 for total volatility-managed strategies reported in Panel A. It is 

lso significantly higher than the corresponding number for the 

tandard real-time strategies (i.e., 62) reported in Table 8 . Over- 

ll, we continue to find that downside volatility-managed portfo- 

ios dominate the performance of total volatility-managed portfo- 

ios. Moreover, using fixed portfolio weights leads to significant 

mprovements in out-of-sample performance of the combination 

trategy. 

.4. Direct performance comparisons 

Most prior studies (e.g., Barroso and Santa-Clara, 2015; Daniel 

nd Moskowitz, 2016; Barroso and Maio, 2018; Cederburg et al., 

020; Eisdorfer and Misirli, 2020 ) assess the value of volatility 

anagement by directly comparing the Sharpe ratio of volatility- 

anaged portfolios with the Sharpe ratio of original, unman- 

ged portfolios. For example, Barroso and Santa-Clara (2015) and 

aniel and Moskowitz (2016) demonstrate that volatility-managed 

omentum factor exhibits significantly higher Sharpe ratios than 

he original, unmanaged momentum factor. We follow these stud- 

es and employ direct performance comparison as our third ap- 

roach to evaluating the performance of volatility-managed portfo- 

ios. In addition to Sharpe ratio, we also examine an alternate per- 

ormance measure—Sortino ratio, which is defined as the average 

xcess return divided by downside volatility. Sortino ratio is sim- 

lar to Sharpe ratio in that it captures a reward-to-volatility ratio. 

nstead of using total volatility, the Sortino ratio scales the average 

xcess return by downside volatility. This measure is appropriate 

or us because of our focus on downside risk. 
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Table 11 

Direct comparisons for the 9 equity factors. The table reports the Sharpe ratio and the Sortino ratio for original, total volatility-managed and downside volatility-managed 

factors. Sharpe ratios and Sortino ratios are annualized. Panel A reports results for Sharpe ratio, and Panel B provides those for Sortino ratio. The table also reports the 

difference between the Sharpe ratio (Sortino ratio) of the total (downside) volatility-managed factor and that of the original factor, as well as the difference between 

total volatility-managed strategy and downside volatility-managed strategy. The numbers in brackets are p-values for the Sharpe ratio (Sortino ratio) differences and are 

computed following the approach in Kirby and Ostdiek (2012) . 

MKT SMB HML MOM RMW CMA ROE IA BAB 

Panel A: Sharpe ratio 

[S1] Original strategy 0.42 0.22 0.37 0.49 0.41 0.49 0.75 0.70 0.81 

[S2] Total strategy 0.54 0.15 0.42 0.96 0.52 0.45 1.04 0.74 1.05 

[S3] Downside strategy 0.59 0.27 0.57 0.82 0.68 0.53 1.05 0.85 1.14 

[S2]-[S1] 0.12 0.07 0.05 0.47 0.11 0.05 0.28 0.04 0.24 

[0.05] [0.18] [0.40] [0.00] [0.19] [0.43] [0.00] [0.48] [0.00] 

[S3]-[S1] 0.17 0.05 0.20 0.34 0.27 0.04 0.30 0.15 0.33 

[0.01] [0.43] [0.00] [0.00] [0.00] [0.62] [0.00] [0.02] [0.00] 

[S3]-[S2] 0.05 0.12 0.15 0.14 0.16 0.08 0.01 0.11 0.09 

[0.09] [0.01] [0.00] [0.01] [0.00] [0.15] [0.84] [0.01] [0.05] 

Panel B: Sortino ratio 

[S1] Original strategy 0.57 0.40 0.64 0.46 0.55 0.84 0.92 1.20 0.94 

[S2] Total strategy 0.77 0.23 0.73 1.35 0.86 0.83 1.66 1.37 1.43 

[S3] Downside strategy 0.88 0.44 1.17 1.13 1.45 0.94 2.06 1.70 2.13 

[S2]-[S1] 0.20 0.17 0.08 0.90 0.32 0.01 0.74 0.17 0.48 

[0.04] [0.49] [0.01] [0.00] [0.01] [0.00] [0.00] [0.04] [0.00] 

[S3]-[S1] 0.31 0.05 0.53 0.68 0.90 0.10 1.14 0.50 1.19 

[0.14] [0.01] [0.00] [0.11] [0.00] [0.97] [0.01] [0.28] [0.00] 

[S3]-[S2] 0.11 0.21 0.45 0.22 0.58 0.11 0.40 0.33 0.70 

[0.41] [0.05] [0.68] [0.00] [0.04] [0.01] [0.43] [0.16] [0.27] 
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Table 11 presents results for the nine equity factors. Panel A 

resents the results for Sharpe ratio, while Panel B presents the 

esults for Sortino ratio. In each panel, we report the results for 

he original factor, total-volatility-managed factor, and downside 

olatility-managed factor. We also report the three pairwise dif- 

erences among these three versions of factors. We follow the ap- 

roach of Kirby and Ostdiek (2012) to determine whether each dif- 

erence is statistically significant. 

In Panel A, we find that total volatility-managed M KT , M OM , 

OE and BAB achieve statistically significant Sharpe ratio gains 

ompared to the original, unmanaged factor. The remaining five 

actors exhibit differences in Sharpe ratios that are statistically in- 

ignificant. We also find that downside volatility-managed factors 

xhibit higher Sharpe ratios than both the original factors and to- 

al volatility-managed factors. The Sharpe ratio difference between 

he downside volatility-managed factor and the original factor is 

ositive across all nine equity factors. Seven of these differences 

re statistically significant at the 5% level. Moreover, downside 

olatility-managed factors achieve higher Sharpe ratios than their 

otal volatility-managed counterparts among eight of the nine fac- 

ors, and statistically significant for four of these eight factors. For 

xample, total volatility-managed HML exhibits a Sharpe ratio of 

.42, while downside volatility-managed HML produces a Sharpe 

atio of 0.57. The momentum factor, again, is the only one for 

hich the downside volatility-managed factor does not outperform 

he total volatility-managed factor. 

The results for the Sortino ratio presented in Panel B are 

argely the same as those based on the Sharpe ratio. We find 

hat downside volatility-managed factors outperform the original 

actors across all nine factors, and significantly so for five fac- 

ors. Downside volatility-managed factors also outperform the to- 

al volatility-managed factors among eight of nine factors, and 

ignificantly so for four of them. Overall, we find that down- 

ide volatility-managed factors outperform their total volatility- 

anaged counterparts based on direct Sharpe ratio and Sortino ra- 

io comparisons. 

Table 12 summarizes the Sharpe ratio and Sortino ratio dif- 

erences among the volatility-managed and original portfolios for 

4 anomalies. Panel A compares total volatility-managed portfolios 

ith the original portfolios. Panel B compares downside volatility- 
13 
anaged portfolios with the original portfolios. Panel C com- 

ares total volatility-managed portfolios with downside volatility- 

anaged portfolios. 

In particular, each panel presents the number of Sharpe ratio or 

ortino ratio differences that are positive or negative and the num- 

er of these differences that are statistically significant at the 5% 

evel. In Panel A, we find that total volatility-managed portfolios 

xhibit higher Sharpe ratios than the original, unmanaged port- 

olios among 56 anomalies. In Panel B, the corresponding num- 

er increases sharply to 84 for downside volatility-managed port- 

olios. Panel C reveals that downside volatility-managed portfolios 

ave higher Sharpe ratios than total volatility-managed portfolios 

mong 80 of the 94 anomaly portfolios. The results for Sortino ra- 

io are qualitatively similar to those for Sharpe ratio. 

Therefore, the findings from the direct performance compari- 

on are similar to those for the first two approaches. That is, we 

nd that downside volatility-managed portfolios perform signifi- 

antly better than the total volatility-managed portfolios. Overall, 

cross all three approaches—spanning regressions, real-time trad- 

ng strategies, and direct Sharpe ratio comparisons—we find consis- 

ent evidence that downside volatility-managed portfolios exhibit 

ignificant improvement in performance relative to total volatility- 

anaged portfolios. 

.5. Robustness tests and additional analyses 

In this section, we discuss the results of a number of robustness 

ests and additional analyses. For brevity, we present the detailed 

esults of these analyses in the Internet Appendix. 

.5.1. Average return decomposition 

In Section 3.2 , we decompose the spanning regression alphas 

nto a return timing component and a volatility timing component. 

e find that the superior performance of downside volatility- 

anaged portfolios relative to the total volatility-managed port- 

olios stems primarily from the return timing component. In this 

ection, we present an alternative decomposition. 

Recall that each volatility-managed portfolio is constructed as 

f σ,t = 

c ∗

σt−1 

f t = w t f t , (19) 
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Table 12 

Direct comparisons for the 94 anomalies. Panel A (Panel B) summarizes results for the differences between the Sharpe ratio (Sortino ratio) of the total (downside) volatility- 

managed strategy and that of the original strategy for the 94 anomalies. Panel C summarizes results for the differences between the Sharpe ratio (Sortino ratio) of downside 

volatility-managed strategy and that of total volatility-managed strategy. The table reports the number of differences that are positive, positive and significant at the 5% 

level, negative, and negative and significant at the 5% level. Statistical significance is based on the approach in Kirby and Ostdiek (2012) . 

Sharpe ratio difference Sortino ratio difference 

Positive [Signif.] Negative [Signif.] Positive [Signif.] Negative [Signif.] 

Panel A: Total volatility-managed strategy-Original strategy 

All 94 56 [11] 38 [3] 57[27] 37[10] 

Accruals 10 5 [0] 5 [0] 6[1] 4[1] 

Intangibles 10 3 [0] 7 [0] 3[1] 7[3] 

Investment 9 4 [0] 5 [1] 4[2] 5[1] 

Momentum 8 8 [8] 0 [0] 8[7] 0[0] 

Profitability 20 16 [0] 4 [0] 16[4] 4[1] 

Trading 19 12 [2] 7 [1] 12[8] 7[3] 

Value 18 8 [1] 10 [1] 8[4] 10[1] 

Panel B: Downside volatility-managed strategy-Original strategy 

All 94 84 [18] 10 [0] 83[15] 11[2] 

Accruals 10 8 [1] 2 [0] 8[1] 2[0] 

Intangibles 10 10 [2] 0 [0] 10[2] 0[0] 

Investment 9 7 [0] 2 [0] 7[2] 2[0] 

Momentum 8 8 [3] 0 [0] 8[3] 0[0] 

Profitability 20 19 [5] 1 [0] 19[2] 1[0] 

Trading 19 16 [5] 3 [0] 15[5] 4[1] 

Value 18 16 [2] 2 [0] 16[0] 2[1] 

Panel C: Downside volatility-managed strategy-Total volatility-managed strategy 

All 94 80[33] 14[3] 77[25] 17[10] 

Accruals 10 10[2] 0[0] 9[2] 1[1] 

Intangibles 10 10[5] 0[0] 10[2] 0[0] 

Investment 9 9[2] 0[0] 8[3] 1[1] 

Momentum 8 1[0] 7[2] 1[1] 7[4] 

Profitability 20 20[10] 0[0] 19[6] 1[1] 

Trading 19 13[5] 6[1] 13[5] 6[2] 

Value 18 17[9] 1[0] 17[6] 1[1] 
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here c ∗ is a constant, and σt−1 is the realized volatility in month 

 − 1 . Because f t and f σ,t are constructed to have the same uncon-

itional standard deviation, comparing f t and f σ,t based on Sharpe 

atio is equivalent to comparing them based on average return. We 

an decompose the average return difference as 

f̄ σ,t − f̄ t = cov (w t , f t ) + f̄ t ( w̄ t − 1) , (20) 

here w̄ t is the volatility-managed portfolio’s average investment 

osition in the unmanaged portfolio. For a strategy with positive 

verage return ( ̄f t > 0 ), Eq. (20) shows that volatility management 

nhances average return and Sharpe ratio if the investment weight 

 t positively predicts the unscaled portfolio’s return (the return 

orecast component), and/or the scaled portfolio takes a levered 

osition (i.e., w̄ t > 1 ) in the unscaled portfolio on average (the 

everage component). The return forecast component here is anal- 

gous to the return timing in our decomposition in Section 3.2 . 

Panel A of Table IA.3 presents the results for the nine equity 

actors, while Panel B summarizes the results for the 94 anomalies. 

cross all nine equity factors, we find that the return forecast com- 

onent of downside volatility-managed portfolios is higher than 

hat for the total volatility-managed portfolios. Across 94 anoma- 

ies, we also find that the return forecast component is more likely 

o be positive in downside volatility-managed portfolios than in 

he total volatility-managed portfolios. These results confirm our 

nding in Section 3.2 that the enhanced performance of down- 

ide volatility-managed portfolios relative to the total volatility- 

anaged portfolios stems primarily from the ability of downside 

olatility to predict future returns. 

.5.2. Volatility-managed strategies based on past two-month and 

hree-month volatility 

In our main analysis, we follow Moreira and Muir (2017) and 

stimate volatility based on past one-month of daily returns. In 

his robustness test, we estimate volatility based on past two or 

hree months of daily returns and then re-estimate spanning re- 
14 
ression alphas. We present the detailed results in Tables IA.4 and 

A.5 in Internet Appendix. Overall, our results are qualitatively and 

uantitatively similar to our main results. 

.5.3. Volatility-managed strategies based on expected and 

nexpected volatility 

In this section, we decompose the realized volatility into ex- 

ected and unexpected volatility and examine which compo- 

ent is driving our results. Specifically, we decompose the re- 

lized volatility into expected and unexpected volatility compo- 

ents as σt+1 = μt z t+1 , where μt = E t (σt+1 ) and z t+1 ≥ 0 satis- 

es E t (z t+1 ) = 1 . To estimate μt , we use an exponential smoothing

odel by finding the value of λ that minimizes 
∑ T 

t=1 (σt − μt−1 ) 
2 , 

here μt = μt−1 + λ(σt − μt−1 ) with μ0 = (1 /T ) 
∑ T 

t=1 σt . The ex- 

ected volatility-managed portfolio is constructed as f μ,t = 

c ∗
μt−1 

f t , 

nd the unexpected volatility-managed strategy is given by f z,t = 

ˆ c ∗
z t−1 

f t , where c ∗ and ˆ c ∗ are constants. 

We then construct volatility-managed portfolios separately for 

xpected and unexpected volatility and then estimate spanning 

egression alphas. Tables IA.6 and IA.7 in the Internet Appendix 

resent the detailed results. Our main results can be summarized 

s follows. First, the expected volatility component is important for 

he performance of both total volatility- and downside volatility- 

anaged portfolios. Second, the unexpected volatility component 

oes not contribute to the performance of total volatility-managed 

ortfolios, but plays a positive role in the performance of down- 

ide volatility-managed portfolios. Third, the performance differ- 

nce between downside volatility-managed portfolios and total 

olatility-managed portfolios is primarily attributed to the unex- 

ected volatility component. 

.5.4. Daily volatility-managed strategies 

Existing literature has examined volatility-managed strategies 

t the monthly frequency. In this robustness test, we examine the 

erformance of daily volatility-managed strategies. We estimate 
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he daily volatility, σ j , based on the squared daily returns, f 2 
j 
. We 

btain the exponential smoothing estimator of σ 2 
j 

= E j ( f 2 
j+1 

) by 

inimizing 
∑ N 

j=1 ( f 2 
j 

− σ 2 
j−1 

) 2 over a length of period N, where 

2 
j 

= σ 2 
j−1 

+ λ( f 2 
j 

− σ 2 
j−1 

) with σ 2 
0 

= (1 /N) 
∑ N 

j=1 f 
2 
j 
. The volatility- 

anaged portfolio based on daily returns is constructed as 

f σ, j = 

c ∗

σ j−1 

f j , (21) 

here c ∗ is a constant chosen such that f j and f σ, j have the same

ull-sample volatility. 

To construct the daily downside volatility, we note that the ex- 

onential smoothing estimator can be expressed as 

2 
j = λ

( 

j−1 ∑ 

y =0 

(1 − λ) y f 2 j−y 

) 

+ (1 − λ) j (1 /N) 
N ∑ 

k =1 

f 2 k , 

hich can also be written as σ 2 
Total, j 

= σ 2 
Down, j 

+ σ 2 
U p, j 

. The esti- 

ated daily downside volatility is given by 

2 
Down , j = λ

( 

j−1 ∑ 

y =0 

( 1 − λ) 
y 
I [ f j−y < 0 ] f 

2 
j−y 

) 

+ ( 1 − λ) 
j 
( 1 /N ) 

N ∑ 

k =1 

I [ f k < 0 ] f 2 k , 

he downside volatility-managed portfolio based on daily returns 

s 

f Down 
σ, j = 

c ∗

σDown, j−1 

f j . (22) 

We present the results in Table IA.8 in the Internet Ap- 

endix. The qualitative results are similar to those for monthly 

olatility-managed portfolios. We find that both total and down- 

ide volatility-managed portfolios exhibit positive alphas, but 

ownside volatility-managed portfolios outperform total volatility- 

anaged portfolios. 

.5.5. Volatility-managed strategies based on realized variance 

Previous studies scale factor returns by either realized volatil- 

ty or realized variance. In this paper we use realized volatility 

ecause it leads to less extreme investment weights. As a robust- 

ess test, we re-estimate spanning regressions by using volatility- 

anaged portfolios scaled by realized variance. Table IA.9 presents 

he results. Overall, our results are slightly weaker than those for 

ealized volatility-scaled portfolios, but the main conclusions are 

ualitatively unchanged. 

.5.6. Upside volatility 

The innovation of our paper is to focus on downside volatil- 

ty instead of total volatility. For completeness, we also estimate 
Table A1 

List of anomalies. The table summarizes the firm characteristics used to construct the

organized by anomaly type (i.e., accruals, intangibles, investment, momentum, profitabili

scription and note the original study documenting the corresponding anomaly. We constr

and McLean and Pontiff (2016) , and the relevant source (i.e., “HXZ” or “MP”) for a given 

Anomaly Description Original study 

Panel A: Accruals 

IvC Inventory changes Thomas and Zh

IvG Inventory growth Belo and Lin (2

NOA Net operating assets Hirshleifer et al

OA Operating accruals Sloan (1996) 

POA Percent operating accruals Hafzalla et al. (

PTA Percent total accruals Hafzalla et al. (

TA Total accruals Richardson et a

�NCO Changes in net noncurrent operating assets Soliman (2008)

�NWC Changes in net non-cash working capital Soliman (2008)

NoaG Growth in net operating assets minus accruals Fairfield et al. (

Panel B: Intangibles 

AccQ Accrual quality Francis et al. (2

AD/M Advertisement expense-to-market Chan et al. (200

BC/A Brand capital-to-assets Belo et al. (2014

15 
panning regressions for upside volatility-managed portfolios. We 

resent the results in Table IA.10 in the Internet Appendix. Overall, 

e find that the performance of upside volatility-managed portfo- 

ios is significantly worse than that of downside volatility-managed 

ortfolios. 

. Conclusions 

The recent literature shows mixed evidence on the perfor- 

ance of volatility-managed portfolios ( Barroso and Santa-Clara, 

015; Daniel and Moskowitz, 2016; Moreira and Muir, 2017; Ceder- 

urg et al., 2020 ). We document that volatility-managed strate- 

ies that scale portfolio excess returns by prior downside volatility 

enerates significantly better performance than strategies scaled 

y total volatility. In contrast to the inconsistent, and sometimes 

ediocre performance of total volatility-managed portfolios, we 

nd that downside volatility-managed portfolios exhibit superior 

erformance in spanning regressions, direct Sharpe ratio compar- 

sons, and real-time trading strategies. The superior performance 

f managing downside volatility is confirmed across nine equity 

actors and a broad sample of market anomalies. We find that 

he positive spanning regression alphas of total volatility-managed 

ortfolios are driven entirely by volatility timing, whereas the su- 

erior performance of downside volatility-managed portfolios are 

ue to both return timing and volatility timing. Moreover, the en- 

anced performance of downside volatility-managed portfolios rel- 

tive to total volatility-managed portfolios is due to return tim- 

ng, i.e., downside volatility negatively predicts future returns. We 

nd that downside volatility-managed portfolios tend to outper- 

orm total volatility-managed portfolios at lower levels of trad- 

ng costs, but the outperformance evaporates at higher levels of 

rading costs. We also present evidence that real-time strategies 

ith fixed weights perform significantly better than standard real- 

ime strategies. This finding is particularly important in light of the 

ontroversy surrounding the real-time performance of volatility- 

anaged portfolios. A promising area of future research is to look 

nto why high downside volatility predicts low future returns. One 

ight also study whether the performance of downside volatility- 

anaged portfolios varies with macroeconomic conditions in order 

o better understand the underlying economics. 

ppendix A 
 long-short anomaly decile portfolios in the paper. The panels of the table are 

ty, trading, and value). For each characteristic, we provide a symbol and brief de- 

uct the anomaly variables following the descriptions provided by Hou et al. (2015) 

anomaly is listed in the final column of the table. 

Source Sample period 

ang (2002) HXZ 1963:08–2018:12 

012) HXZ 1963:08–2018:12 

. (2004) HXZ 1963:08–2018:12 

HXZ 1963:08–2018:12 

2011) HXZ 1963:08–2018:12 

2011) HXZ 1963:08–2018:12 

l. (2005) HXZ 1963:08–2018:12 

 MP 1963:08–2018:12 

 MP 1963:08–2018:12 

2003) MP 1963:08–2018:12 

005) HXZ 1966:08–2018:12 

1) HXZ 1974:08–2018:12 

b) HXZ 1980:08–2018:12 

( continued on next page ) 
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Table A1 ( continued ) 

H/N Hiring rate Belo et al. (2014a) HXZ 1963:08–2018:12 

OC/A Organizational capital-to-assets Eisfeldt and Papanikolaou (2013) HXZ 1963:08–2018:12 

OL Operating leverage Novy-Marx (2011) HXZ 1963:08–2018:12 

RC/A R & D capital-to-assets Li (2011) HXZ 1980:08–2018:12 

RD/M R & D-to-market Chan et al. (2001) HXZ 1976:08–2018:12 

RD/S R & D-to-sales Chan et al. (2001) HXZ 1976:08–2018:12 

Age Firm age Barry and Brown (1984) MP 1963:08–2018:12 

Panel C: Investment 

�PI/A Changes in PP&E plus changes in inventory Lyandres et al. (2008) HXZ 1963:08–2018:12 

ACI Abnormal corporate investment Titman et al. (2004) HXZ 1966:08–2018:12 

CEI Composite issuance Daniel and Titman (2006) HXZ 1931:08–2018:12 

I/A Investment-to-assets Cooper et al. (2008) HXZ 1963:08–2018:12 

IG Investment growth Xing (2008) HXZ 1963:08–2018:12 

NSI Net stock issues Pontiff and Woodgate (2008) HXZ 1963:08–2018:12 

NXF Net external financing Bradshaw et al. (2006) HXZ 1974:08–2018:12 

BeG Growth in book equity Lockwood and Prombutr (2010) MP 1963:08–2018:12 

I-ADJ Industry-adjusted growth in investment Abarbanell and Bushee (1998) MP 1965:08–2018:12 

Panel D: Momentum 

Abr-1 Cumulative abnormal stock returns around earnings announcements Chan et al. (1996) HXZ 1974:08–2018:12 

R11-1 Price momentum (11-month prior returns) Fama and French (1996) HXZ 1927:08–2018:12 

R6-1 Price momentum (6-month prior returns) Jegadeesh and Titman (1993) HXZ 1926:09-2018:12 

RE-1 Revisions in analysts’ earnings forecasts Chan et al. (1996) HXZ 1976:08-2018:12 

SUE-1 Earnings surprise Foster et al. (1984) HXZ 1976:08–2018:12 

R6-Lag Lagged momentum Novy-Marx (2012) MP 1927:08–2018:12 

Season Seasonality Heston and Sadka (2008) MP 1946:08–2018:12 

W52 52-week high George and Hwang (2004) MP 1927:08–2018:12 

Panel E: Profitability 

ATO Asset turnover Soliman (2008) HXZ 1963:08–2018:12 

CTO Capital turnover Haugen and Baker (1996) HXZ 1963:08–2018:12 

F F -score Piotroski (20 0 0) HXZ 1974:08–2018:12 

FP Failure probability Campbell et al. (2008) HXZ 1976:08–2018:12 

GP/A Gross profitability-to-assets Novy-Marx (2013) HXZ 1963:08–2018:12 

O O -score Dichev (1998) HXZ 1963:08–2018:12 

PM Profit margin Soliman (2008) HXZ 1963:08–2018:12 

RNA Return on net operating assets Soliman (2008) HXZ 1963:08–2018:12 

ROA Return on assets Balakrishnan et al. (2010) HXZ 1974:08–2018:12 

ROE Return on equity Haugen and Baker (1996) HXZ 1974:08–2018:12 

RS Revenue surprise Jegadeesh and Livnat (2006) HXZ 1976:08–2018:12 

TES Tax expense surprise Thomas and Zhang (2011) HXZ 1976:08–2018:12 

TI/BI Taxable income-to-book income Green et al. (2017) HXZ 1963:08–2018:12 

�ATO Change in asset turnover Soliman (2008) MP 1963:08–2018:12 

�PM Change in profit margin Soliman (2008) MP 1963:08–2018:12 

E-con Earnings consistency Alwathainani (2009) MP 1971:08–2018:12 

S/IV Change in sales minus change in inventory Abarbanell and Bushee (1998) MP 1963:08–2018:12 

S/P Sales-to-price Barbee et al. (1996) MP 1963:08–2018:12 

S/SG & A Change in sales minus change in SG & A Abarbanell and Bushee (1998) MP 1963:08–2018:12 

Z Z-score Dichev (1998) MP 1963:08–2018:12 

Panel F: Trading 

β-D Dimson’s beta (daily data) Dimson (1979) HXZ 1926:09–2018:12 

β-FP Frazzini and Pedersen’s beta Frazzini and Pedersen (2014) HXZ 1931:08–2018:12 

1/P 1/share price Miller and Scholes (1982) HXZ 1926:08–2018:12 

Disp Dispersion of analysts’ earnings forecasts Diether et al. (2002) HXZ 1976:08–2018:12 

Dvol Dollar trading volume Brennan et al. (1998) HXZ 1926:08–2018:12 

Illiq Illiquidity as absolute return-to-volume Amihud (2002) HXZ 1926:08–2018:12 

Ivol Idiosyncratic volatility Ang et al. (2006) HXZ 1926:09–2018:12 

MDR Maximum daily return Bali et al. (2011) HXZ 1926:09–2018:12 

ME Market equity Banz (1981) HXZ 1926:08–2018:12 

S-Rev Short-term reversal Jegadeesh (1990) HXZ 1926:08–2018:12 

Svol Systematic volatility Ang et al. (2006) HXZ 1986:08–2018:12 

Turn Share turnover Datar et al. (1998) HXZ 1926:08–2018:12 

Tvol Total volatility Ang et al. (2006) HXZ 1926:09–2018:12 

β-M Fama and MacBeth’s beta (monthly data) Fama and MacBeth (1973) MP 1931:08–2018:12 

σ (Dvol) Dollar volume volatility Chordia et al. (2001) MP 1929:08–2018:12 

B-A Bid-ask spread Amihud and Mendelson (1986) MP 1963:08–2018:12 

Short Short interest Dechow et al. (2001) MP 1973:08–2018:12 

Skew Coskewness Harvey and Siddique (20 0 0) MP 1931:08–2018:12 

Vol-T Volume trend Haugen and Baker (1996) MP 1931:08–2018:12 

Panel G: Value 

A/ME Market leverage Bhandari (1988) HXZ 1963:08–2018:12 

B/M Book-to-market equity Rosenberg et al. (1985) HXZ 1963:08–2018:12 

CF/P Cash flow-to-price Lakonishok et al. (1994) HXZ 1963:08–2018:12 

D/P Dividend yield Litzenberger and Ramaswamy (1979) HXZ 1927:08–2018:12 

Dur Equity duration Dechow et al. (2004) HXZ 1963:08–2018:12 

E/P Earnings-to-price Basu (1983) HXZ 1963:08–2018:12 

EF/P Analysts’ earnings forecasts-to-price Elgers et al. (2001) HXZ 1976:08–2018:12 

LTG Long-term growth forecasts of analysts La Porta (1996) HXZ 1982:08–2018:12 

NO/P Net payout yield Boudoukh et al. (2007) HXZ 1974:08–2018:12 

O/P Payout yield Boudoukh et al. (2007) HXZ 1974:08–2018:12 

Rev Long-term reversal De Bondt and Thaler (1985) HXZ 1931:08–2018:12 

SG Sales growth Lakonishok et al. (1994) HXZ 1967:08–2018:12 

An-V Analyst value Frankel and Lee (1998) MP 1976:08–2018:12 

σ (CF) Cash flow variance Haugen and Baker (1996) MP 1978:08–2018:12 

B/P-E Enterprise component of book-to-price Penman et al. (2007) MP 1984:08–2018:12 

B/P-Lev Leverage component of book-to-price Penman et al. (2007) MP 1984:08–2018:12 

Enter Enterprise multiple Loughran and Wellman (2012) MP 1963:08–2018:12 

Pension Pension funding status Franzoni and Marin (2006) MP 1981:08–2018:12 
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