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a b s t r a c t 

Using a comprehensive set of 103 equity strategies, we analyze the value of volatility- 

managed portfolios for real-time investors. Volatility-managed portfolios do not system- 

atically outperform their corresponding unmanaged portfolios in direct comparisons. Con- 

sistent with Moreira and Muir (2017), volatility-managed portfolios tend to exhibit signif- 

icantly positive alphas in spanning regressions. However, the trading strategies implied by 

these regressions are not implementable in real time, and reasonable out-of-sample ver- 

sions generally earn lower certainty equivalent returns and Sharpe ratios than do simple 

investments in the original, unmanaged portfolios. This poor out-of-sample performance 

for volatility-managed portfolios stems primarily from structural instability in the under- 

lying spanning regressions. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Recent studies show strong empirical performance for

volatility-managed versions of popular trading strategies,

including the market ( Ang, 2014; Moreira and Muir, 2019 ),

momentum ( Barroso and Santa-Clara, 2015; Daniel and

Moskowitz, 2016 ), betting-against-beta ( Barroso and Maio,

2018 ), and financial distress ( Eisdorfer and Misirli, 2020 )

factors. 1 These portfolios are characterized by conservative
� We thank Jessica Wachter (the referee), Andrew Detzel, Chris Lam- 

oureux, Jonathan Lewellen, Hai Lin, Rick Sias, Neal Stoughton, Mitch 

Towner, and seminar participants at the 2017 Wellington Finance Sum- 

mit, the 2018 Northern Finance Association, Iowa State University, North 

Carolina State University, and the University of Arizona for helpful com- 

ments and suggestions. 
∗ Corresponding author. 
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odohertym@missouri.edu (M.S. O’Doherty), wangf10@miamioh.edu (F. 

Wang), xuy219@lehigh.edu (X. Yan). 
1 Also see related work on volatility-managed currency strategies by 

Daniel et al. (2017) and Maurer et al. (2018) . Grobys et al. (2018) examine 

the properties of risk-managed industry momentum, and volatility scal- 
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positions in the underlying factors when volatility was

recently high and more aggressively levered positions

following periods of low volatility. Although each of the

papers noted above examines an individual volatility-

scaled strategy, Moreira and Muir (2017) find that the

empirical success of volatility management is a pervasive

phenomenon. They show that volatility-scaled strategies

earn systematically positive alphas across a wide range of

asset pricing factors, and these alphas imply pronounced

increases in Sharpe ratios and large utility gains for mean-

variance investors. Taken as a whole, existing studies leave

readers with the impression that volatility-managed equity

strategies routinely lead to improved performance. The

findings have important implications for investors, have
ing is also used in the time-series momentum literature (e.g., Moskowitz 

et al., 2012; Baltas and Kosowski, 2017 ). Kirby and Ostdiek (2012) consider 

volatility-timing strategies for portfolio allocations across multiple stock 

portfolios. Much of this recent work follows from Fleming et al. (2001, 

2003) , who demonstrate large economic benefits from volatility timing 

for short-horizon investors allocating across several asset classes. 

https://doi.org/10.1016/j.jfineco.2020.04.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2020.04.015&domain=pdf
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received considerable attention in the financial press, and 

have also had an impact on industry applications. 2 

In this paper, we assess whether volatility management 

is systematically advantageous for investors and place 

specific emphasis on real-time implementation. We con- 

tribute to the literature in three primary ways. First, based 

on a substantially broader sample of 103 equity trading 

strategies, we find no statistical or economic evidence that 

volatility-managed portfolios systematically earn higher 

Sharpe ratios than their unmanaged counterparts do. Sec- 

ond, despite this mixed evidence from direct performance 

comparisons, we confirm that Moreira and Muir ’s (2017) ) 

finding of systematically positive spanning regressions 

alphas for volatility-managed portfolios also holds in 

our extended sample. The trading strategies implied by 

the spanning regressions are not implementable in real 

time, however, as they require investors to combine the 

volatility-scaled and unscaled versions of a given port- 

folio using ex post optimal weights (e.g., Gibbons et al., 

1989 ). We explore an array of reasonable out-of-sample 

versions of these “combination” strategies and find that 

they typically underperform simple investments in the 

original, unscaled portfolios. Third, we examine why the 

in-sample alphas for volatility-managed portfolios do not 

readily translate into out-of-sample gains for investors. We 

provide evidence that this result is driven by substantial 

structural instability in the underlying spanning regres- 

sions for these strategies. Overall, our findings suggest 

a more tempered interpretation of the practical value of 

volatility-managed portfolios relative to prior literature. 

Our empirical tests evaluate the performance of 

volatility-managed versions of various trading strategies. 

Each of the managed portfolios is constructed as 

f σ,t = 

c ∗

ˆ σ 2 
t−1 

f t , (1) 

where f t is the original, unscaled portfolio’s excess return 

in month t ; ˆ σ 2 
t−1 

is the realized variance of daily portfolio 

returns in month t − 1 ; and c ∗ is a constant chosen such 

that f σ ,t and f t have the same full-sample variance. We 

consider the nine volatility-managed equity factors from 

Moreira and Muir (2017) and report detailed results for 

these factors in the paper. 3 Although this set of strate- 

gies provides a reasonable representation of factors from 

leading asset pricing models, recent studies suggest that 

a much larger number of characteristics is needed to 

summarize both covariance risk (e.g., Kelly et al., 2019 ) 

and cross-sectional variation in expected stock returns 
2 Representative examples of recent press coverage include “Re- 

assessing the classic risk-return tradeoff,” The Financial Times, March 9, 

2016 and “When markets get scary, panicking is smart,” CNBC, March 23, 

2016. For an example of volatility management in practice, BlackRock of- 

fers the following description of the investment strategy for its Managed 

Volatility V.I. Fund: “In periods of heightened volatility, the portfolio will 

de-risk into less volatile assets like fixed income and cash and re-risk 

when market turbulence subsides.”
3 The equity factors in Moreira and Muir (2017) include the market, 

size, and value factors from the Fama and French (1993) three-factor 

model, the momentum factor from the Carhart (1997) four-factor model, 

the profitability and investment factors from both the Fama and French 

(1993) five-factor model and the Hou et al. (2015) q -factor model, and 

Frazzini and Pedersen ’s (2014) betting-against-beta factor. 
(e.g., Kozak et al., 2020 ). We therefore augment Moreira 

and Muir ’s (2017) sample with a set of volatility-scaled 

portfolios formed on 94 anomaly variables from Hou et al. 

(2015) and McLean and Pontiff (2016) . Our combined 

sample of 103 trading strategies allows for a substantially 

broader assessment of the merits of volatility management. 

Most prior studies (e.g. Barroso and Santa-Clara, 2015; 

Daniel and Moskowitz, 2016; Barroso and Maio, 2018; Eis- 

dorfer and Misirli, 2020 ) assess the value of volatility man- 

agement by directly comparing the Sharpe ratios earned by 

scaled strategies similar to those in Eq. (1) with the Sharpe 

ratios earned by the corresponding unscaled strategies. We 

follow this approach and find no systematic evidence that 

volatility-managed portfolios outperform their unmanaged 

versions. Volatility scaling generates a higher Sharpe ratio 

for five of the nine equity factors examined by Moreira 

and Muir (2017) . In the more comprehensive sample of 

103 equity portfolios, the volatility-managed versions 

outperform in 53 cases, whereas the original versions 

outperform in 50 cases. We also find that only eight 

strategies in the broad sample yield statistically significant 

Sharpe ratio differences in favor of volatility management. 

These cases are concentrated among momentum-related 

strategies, in accord with the conclusions from Barroso 

and Santa-Clara (2015) and Daniel and Moskowitz (2016) . 

These initial tests suggest that stand-alone invest- 

ments in volatility-managed portfolios do not systemat- 

ically improve investment outcomes. Moreira and Muir ’s 

(2017) broad evidence on the value of volatility man- 

agement, however, is not based on direct performance 

comparisons of scaled and unscaled factors. For each 

factor, they instead estimate the following spanning re- 

gression using time-series data on monthly strategy excess 

returns: 

f σ,t = α + β f t + ε t . (2) 

Moreira and Muir (2017) find that, with the exception of 

the size factor, each of their volatility-managed portfolios 

yields a positive regression intercept, and almost all of 

the estimates are statistically and economically significant. 

They also confirm that the volatility-managed portfolios 

continue to exhibit large alphas when the Fama and 

French (1993) factors are included in Eq. (2) as additional 

controls. They interpret the results as strong evidence 

in favor of volatility management and highlight that the 

positive alphas are synonymous with increased Sharpe 

ratios and utility gains for mean-variance investors. 

We reproduce Moreira and Muir ’s (2017) in-sample 

spanning regression results for the nine equity factors and 

show that they extend to our broader sample of equity 

strategies. In particular, 77 out of the 103 volatility-scaled 

portfolios earn positive alphas in spanning tests, with 23 

significantly positive estimates compared with just 3 sig- 

nificantly negative ones. Spanning regressions that control 

for exposure to the market, size, and value factors produce 

70 positive intercepts. These findings offer a confirmation 

of the potential economic gains from volatility-managed 

portfolios. 

The investment implication of a positive spanning 

regression intercept is that the optimal ex post combi- 

nation of scaled and unscaled portfolios (with positive 
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4 An important contribution of Moreira and Muir (2017) is to demon- 

strate that several leading macrofinance models are unable to generate 

the large, positive estimate of the spanning regression alpha for the mar- 

ket portfolio. In the Internet Appendix, we complement their diagnos- 

tic by introducing a decomposition of spanning regression alpha into a 

component that measures the relation between lagged volatility and re- 

turn, (1 + f̄ 2 t / ̂ σ
2 
f 
) cov (c ∗/ ̂ σ 2 

t−1 , f t ) , and a component that measures the 

relation between lagged and current volatility, −( ̄f t / ̂ σ 2 
f 
) cov (c ∗/ ̂ σ 2 

t−1 , f 
2 
t ) . 

We decompose the market factor’s annualized spanning regression al- 

pha of 4.63% and find that the first and second components contribute 

−0.24% and 4.87%, respectively. This diagnostic indicates that an asset 
weight on the scaled portfolio) expands the mean-variance

frontier relative to the unscaled portfolio (e.g., Gibbons

et al., 1989 ). That is, the increased Sharpe ratios and

utility gains referenced in Moreira and Muir (2017) are

earned by combinations of two strategies rather than

by the volatility-managed portfolios themselves. This

interpretation highlights a concern with Moreira and

Muir ’s (2017) spanning regression evidence in terms of

its implications for real-time investors. Moreira and Muir

(2017) acknowledge the importance of out-of-sample

applications by emphasizing that their volatility-managed

strategies are “easy to implement in real time.” Although

a volatility-managed portfolio constructed according to

Eq. (1) is straightforward to construct in real time, the

investment strategy implied by Eq. (2) is not. Because the

optimal weighting of scaled and unscaled portfolios de-

pends on in-sample return moments, the required strategy

is not known prior to the end of the sample. 

A natural question is whether real-time investors can

capture the economic gains implied by the spanning

regressions. We conduct an extensive analysis of the

out-of-sample performance of combinations of volatility-

managed and original portfolios. We adopt the standard

approach of using a training sample of historical data to

estimate optimal allocations to the scaled and unscaled

versions of a given strategy. Prior literature suggests that

estimation risk is a key issue in the out-of-sample, mean-

variance portfolio choice problem associated with Eq.

(2) (e.g., Black and Litterman, 1992; Green and Hollifield,

1992; Jagannathan and Ma, 2003; DeMiguel et al., 2009a;

2009b ). In practice, estimated portfolio weights are often

unstable, and real-time portfolios often underperform

considerably relative to their in-sample optimal counter-

parts. There is ex ante reason for optimism in the current

context, however, given the strong in-sample results and

DeMiguel et al. ’s (2009b) evidence that out-of-sample

performance degradation is less severe when the number

of test assets is small. 

Our out-of-sample tests focus on quantifying the eco-

nomic impact of including a volatility-managed portfolio

in the investment opportunity set. We compare the Sharpe

ratio and certainty equivalent return (CER) for two real-

time strategies: (i) a strategy that allocates between a

given volatility-managed portfolio, its corresponding orig-

inal portfolio, and a risk-free security and (ii) a strategy

constrained to invest only in the original portfolio and the

risk-free asset. The baseline results correspond to a mean-

variance investor with a risk aversion coefficient of five

and also feature a leverage constraint of five on portfolio

positions. Our design choices to include a risk-free security

and a leverage constraint are favorable to real-time in-

vestors, as these features reduce estimation risk associated

with extreme positions (e.g., Kirby and Ostdiek, 2012 ). 

In contrast to the impressive in-sample results for the

nine equity factors studied by Moreira and Muir (2017) ,

volatility management often harms real-time performance.

The out-of-sample strategy combining the volatility-

managed market portfolio and the unmanaged market

portfolio, for example, earns an annualized Sharpe ratio

of 0.42 compared with 0.46 for the strategy that limits its

risky investment set to the unmanaged market portfolio.
This combination strategy also leads to a reduction in CER.

There are some positive findings on the out-of-sample

value of volatility management, as scaled versions of

the momentum ( MOM ), profitability ( ROE ), and betting-

against-beta ( BAB ) factors contribute to large utility gains

for mean-variance investors. Nevertheless, there is little

statistical or economic evidence for the remaining six

factors that incorporating volatility management improves

real-time portfolio outcomes. 

The extended sample of 103 trading strategies provides

our most comprehensive and convincing evidence on the

poor out-of-sample performance of combination strategies.

In our base case design, the real-time combination of

volatility-managed and original portfolios earns a lower

CER relative to the original portfolio in 72 of 103 cases. We

consider a wide range of robustness checks by iterating

through alternative design features, including minimum

window lengths of historical data used to form portfolio

weights, expanding versus rolling training samples, in-

vestor risk aversion parameters, and leverage constraints

on portfolio positions. We also study the impact of aug-

menting the investment opportunity set with the three

Fama and French (1993) factors. None of these reasonable

modifications tilts the results in favor of the combination

strategies. 

Finally, we explore the economic underpinnings of our

results. We do so by comparing the out-of-sample per-

formance of the combination strategies that incorporate

volatility-managed portfolios with the out-of-sample per-

formance of traditional anomaly strategies. We find that

translating alpha into real-time performance is challenging

in general, but out-of-sample performance degradation is

noticeably more severe in the volatility-managed portfolios

setting. We also provide statistical evidence that the more

tenuous link between in-sample alpha and out-of-sample

performance in the volatility-managed portfolios setting

is attributable to a propensity for structural breaks in the

spanning regressions for the volatility-managed portfolios.

Simply put, the spanning regression parameters that real-

time investors estimate from past data often fail to provide

a reliable indication of the future performance of volatility-

managed portfolios relative to their unscaled versions. 

We contribute to the literature on volatility man-

agement by offering a complementary viewpoint to the

one presented in Moreira and Muir (2017) . Their study

provides important insights on the dynamics of the condi-

tional risk-return relation, and their in-sample analysis is

valuable to researchers attempting to map the data to an

asset pricing model in the rational expectations framework

(i.e., Inoue and Kilian, 2004 ). 4 Such an approach inherently
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assumes that investors know more than the econometri- 

cian does about the true data generating process. From 

a practical investment perspective, their results speak 

to the potential economic benefits of volatility-managed 

portfolios. Our findings suggest that the in-sample alphas 

and utility gains do not readily translate into enhanced 

portfolio outcomes for investors who must learn about 

volatility-managed portfolios from prior data. 

The remainder of the paper is organized as follows. 

Section 2 describes the data and introduces volatility- 

managed portfolios. Section 3 compares volatility-managed 

and original strategies. Section 4 contains our empirical 

tests on real-time strategies that combine volatility- 

managed portfolios with their unscaled versions, and 

Section 5 concludes. The Appendix presents additional 

detail on data construction, and the Internet Appendix 

reports supplementary results. 

2. Data 

Section 2.1 introduces the data on trading strategies 

used in our empirical tests, and Section 2.2 discusses the 

construction of volatility-managed portfolios. 

2.1. Data description 

We first consider the nine equity factors examined by 

Moreira and Muir (2017) . We collect daily and monthly 

data on factor excess returns for the market ( MKT ), size 

( SMB ), and value ( HML ) factors from the Fama and French 

(1993) three-factor model, a momentum factor ( MOM ), 

the profitability ( RMW ) and investment ( CMA ) factors from 

the Fama and French (1993) five-factor model, the prof- 

itability ( ROE ) and investment ( IA ) factors from the Hou 

et al. (2015) q -factor model, and Frazzini and Pedersen ’s 

(2014) betting-against-beta factor ( BAB ). 5 , 6 

We augment the first group of test portfolios with a 

second group covering a broader set of trading strategies 

based on established asset pricing anomalies. We start 

with the lists of anomaly variables reported in Hou et al. 

(2015) and McLean and Pontiff (2016) . We then restrict 

our analysis to strategies that are based on a single, 

continuous sorting variable and can be constructed using 

the Center for Research in Security Prices (CRSP) Monthly 

and Daily Stock Files, the Compustat Fundamentals Annual 

and Quarterly Files, and the Institutional Brokers Estimate 

System (IBES) database. This process identifies 94 anomaly 

variables, which we summarize in Table A1 . For each 
pricing model must produce much more volatility in market return vari- 

ance compared with traditional macrofinance models to match the sam- 

ple moments from the data. Our decomposition complements the span- 

ning regression alpha proposed by Moreira and Muir (2017) by providing 

additional guidance on model features that could reproduce this alpha. 
5 Data on MKT, SMB, HML, MOM, RMW , and CMA are from Ken- 

neth French’s website at http://mba.tuck.dartmouth.edu/pages/faculty/ 

ken.french/ . Data on BAB are from Andrea Frazzini’s website at http: 

//people.stern.nyu.edu/afrazzin/ . We thank Kenneth French and Andrea 

Frazzini for making these data available. We thank Lu Zhang for sharing 

the data on ROE and IA . 
6 Moreira and Muir (2017) also examine a currency carry strategy. We 

omit this portfolio from our set of test assets given our focus on equity 

strategies. 
anomaly, we construct a value-weighted hedge portfolio 

that takes a long (short) position in the decile of stocks 

predicted to outperform (underperform) based on prior 

literature. We use the CRSP daily (monthly) file to con- 

struct the daily (monthly) return series for each anomaly. 

The Appendix provides additional detail on our sample 

selection and portfolio formation procedures. 

The combined sample consists of 103 equity trading 

strategies (i.e., 9 factors and 94 anomaly portfolios). Many 

of the strategies are based on related characteristics, and 

we group them into the following eight categories based 

on the classification scheme in Hou et al. (2015) : accruals, 

intangibles, investment, market, momentum, profitability, 

trading, and value. 

2.2. Construction of volatility-managed portfolios 

For a given asset pricing factor or anomaly portfolio, let 

f t be the buy-and-hold excess portfolio return in month 

t . We follow Moreira and Muir (2017) and construct the 

corresponding volatility-managed portfolio return as 

f σ,t = 

c ∗

ˆ σ 2 
t−1 

f t , (3) 

where c ∗ is a constant and ˆ σ 2 
t−1 

is the realized variance 

of daily returns during the month preceding the portfolio 

formation date. The managed portfolio is a scaled version 

of the original strategy, with investment positions propor- 

tional to the inverse of lagged variance. Let j = 1 , . . . , J t 
index days in month t , and let f 

j 
t be the excess return for

a given portfolio on day j of month t . We compute realized

variance in month t as 

ˆ σ 2 
t = 

22 

J t 

J t ∑ 

j=1 

(
f j t 

)2 
. (4) 

Given the full time series of f t and ˆ σ 2 
t−1 

, we select the scal- 

ing parameter, c ∗, such that f t and f σ ,t have the same un- 

conditional volatility. The scaling parameter is not known 

to an investor in real time, but we note that some perfor- 

mance measures (e.g., Sharpe ratios and appraisal ratios) 

are invariant to the choice of c ∗. 7 In our applications, f t al- 

ways represents the excess return for a zero-cost portfolio. 

As such, the dynamic investment position in the underly- 

ing portfolio, c ∗/ ̂  σ 2 
t−1 , is a measure of the leverage required 

to invest in the volatility-managed portfolio in month t . 

3. Direct comparisons 

Several prior studies argue that volatility-managed 

versions of popular trading strategies exhibit impressive 
7 Several studies differ from Eqs. (3) and (4) in their construction of 

volatility-managed trading strategies. These differences include scaling by 

realized standard deviation rather than by realized variance (e.g., Barroso 

and Santa-Clara, 2015; Barroso and Maio, 2018 ), using a parametric model 

to estimate volatility (e.g., Daniel and Moskowitz, 2016; Moreira and Muir, 

2017 ), using longer intervals to estimate lagged realized volatility (e.g., 

Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016 ), scaling by 

market volatility rather than by factor-specific volatility (e.g., Eisdorfer 

and Misirli, 2020 ), and selecting c ∗ to achieve a target level of strategy 

risk rather than to match the standard deviation of the original factor. 

Daniel and Moskowitz (2016) also incorporate information on the condi- 

tional factor mean in specifying their dynamic momentum strategy. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
http://people.stern.nyu.edu/afrazzin/
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Table 1 

Volatility-managed and original factors. 

The table compares the performance of volatility-managed and original versions of nine equity factors. The factors are the market ( MKT ), size ( SMB ), 

and value ( HML ) factors from the Fama and French (1993) three-factor model, a momentum factor ( MOM ), the profitability ( RMW ) and investment ( CMA ) 

factors from the Fama and French (2015) five-factor model, the profitability ( ROE ) and investment ( IA ) factors from the Hou et al. (2015) q -factor model, 

and Frazzini and Pedersen ’s (2014) betting-against-beta factor ( BAB ). For a given factor, the volatility-managed factor return in month t is f σ,t = (c ∗/ ̂ σ 2 
t−1 ) f t , 

where f t is the monthly return for the original factor, ˆ σ 2 
t−1 is the realized variance of daily factor returns in month t − 1 , and c ∗ is a constant chosen so that 

f t and f σ ,t have the same unconditional standard deviation over the full sample period. We present the mean return, standard deviation, and annualized 

Sharpe ratio for each original (volatility-managed) factor in Panel A (Panel B). The means and standard deviations are reported in percentage per year. Panel 

C shows the difference between the Sharpe ratio of the volatility-managed factor and that of the original factor, and the figures in brackets are p -values 

from Jobson and Korkie (1981) tests. Panel D reports the correlation between each original factor and the corresponding volatility-managed factor and the 

1st, 50th, and 99th percentiles of the time-series distribution of the scaled factor’s implied weight in the original factor. The sample period starts in August 

1926 for MKT, SMB , and HML ; January 1927 for MOM ; August 1963 for RMW and CMA ; February 1967 for ROE and IA ; and February 1931 for BAB . The 

sample periods end in December 2016. 

Factor 

MKT SMB HML MOM RMW CMA ROE IA BAB 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A: Performance measures for original factors 

Mean 7 .80 2 .57 4 .84 7 .94 2 .92 3 .72 6 .52 4 .99 8 .23 

Standard deviation 18 .61 11 .12 12 .14 16 .39 7 .71 6 .97 8 .83 6 .48 10 .71 

Sharpe ratio 0 .42 0 .23 0 .40 0 .48 0 .38 0 .53 0 .74 0 .77 0 .77 

Panel B: Performance measures for volatility-managed factors 

Mean 9 .55 0 .86 4 .64 16 .17 3 .94 2 .79 9 .39 4 .69 10 .81 

Standard deviation 18 .61 11 .12 12 .14 16 .39 7 .71 6 .97 8 .83 6 .48 10 .71 

Sharpe ratio 0 .51 0 .08 0 .38 0 .99 0 .51 0 .40 1 .06 0 .72 1 .01 

Panel C: Performance comparisons 

Sharpe ratio difference 0 .09 −0 .15 −0 .02 0 .50 0 .13 −0 .13 0 .32 −0 .05 0 .24 

[0 .30] [0 .09] [0 .86] [0 .00] [0 .29] [0 .23] [0 .01] [0 .68] [0 .01] 

Panel D: Properties of volatility-managed factors 

Correlation with original factor 0 .63 0 .63 0 .57 0 .48 0 .59 0 .68 0 .68 0 .70 0 .62 

P 01 (c ∗/ ̂ σ 2 
t−1 ) 0 .04 0 .03 0 .04 0 .04 0 .04 0 .06 0 .06 0 .06 0 .04 

P 50 (c ∗/ ̂ σ 2 
t−1 ) 0 .96 0 .81 1 .02 1 .01 1 .11 0 .97 1 .08 0 .96 1 .00 

P 99 (c ∗/ ̂ σ 2 
t−1 ) 6 .47 5 .07 5 .89 8 .64 5 .02 4 .56 4 .73 4 .45 5 .09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

covariance between excess returns for the two portfolios. To test the 
performance. The empirical tests in these studies typically

highlight that the volatility-managed version of a given

portfolio directly outperforms its corresponding unman-

aged portfolio. For example, Barroso and Santa-Clara

(2015) and Daniel and Moskowitz (2016) compare Sharpe

ratios and cumulative returns for scaled and unscaled

versions of the momentum factor. Barroso and Maio

(2018) and Eisdorfer and Misirli (2020) present similar

evidence for the betting-against-beta and financial distress

strategies, respectively. We adopt this focus on direct

performance comparisons in this section and contribute

to the literature by assessing a much broader set of

volatility-managed portfolios. 

We begin our analysis by presenting detailed results on

direct performance comparisons for the nine equity factors

in Table 1 . Panel A (Panel B) reports mean excess returns,

standard deviations, and Sharpe ratios for the original

(volatility-managed) factors, and Panel C shows the Sharpe

ratio differences between the volatility-managed and

original factors. To determine whether each difference is

statistically significant, we follow the approach proposed

by Jobson and Korkie (1981) . 8 Both the volatility-managed
8 Let ˆ μi and ˆ σi be the mean and standard deviation of excess re- 

turns for portfolio i over a period of length T . Similarly, ˆ μ j and ˆ σ j 

are the mean and standard deviation for portfolio j , and ˆ σi, j is the 
and original versions of each factor earn positive av-

erage returns, but neither version yields systematically

superior performance across the factors. In five cases the

volatility-managed factor earns a higher average return

and Sharpe ratio than the original strategy does, whereas

the original factor outperforms in the remaining four

cases. Three of the nine differences are significantly pos-

itive, as the volatility-managed versions of MOM, ROE ,

and BAB achieve Sharpe ratio gains by outperforming the

original factors by 8.23%, 2.86%, and 2.58% per year, re-

spectively (recall that the volatility-managed and original

versions of each strategy have the same standard deviation

by construction). The findings are consistent with prior

literature on the benefits of volatility management for the

momentum ( Barroso and Santa-Clara, 2015; Daniel and

Moskowitz, 2016 ) and betting-against-beta ( Barroso and

Maio, 2018 ) strategies. Based on these prior studies, the

significant result for volatility-managed ROE is perhaps

also unsurprising, given the original factor’s relatively high
null hypothesis of equal Sharpe ratios for portfolios i and j , we com- 

pute the following Jobson and Korkie (1981) test statistic, which is 

asymptotically distributed as a standard normal: ˆ z JK = 

ˆ σ j ̂ μi − ˆ σi ̂ μ j √ 

ˆ θ
, where 

ˆ θ = 

1 
T 

(
2 ̂ σ 2 

i 
ˆ σ 2 

j 
− 2 ̂ σi ̂  σ j ̂  σi, j + 

1 
2 ̂

 μ2 
i 

ˆ σ 2 
j 

+ 

1 
2 ̂

 μ2 
j ̂
 σ 2 
i 

− ˆ μi ̂ μ j 

ˆ σi ̂ σ j 
ˆ σ 2 

i, j 

)
. The test incor- 

porates the correction noted by Memmel (2003) . 
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Table 2 

Summary of volatility-managed and original portfolios: broad sample. 

The table summarizes results for direct comparisons of volatility-managed 

and original versions of 103 trading strategies. For a given factor or 

anomaly portfolio, the volatility-managed strategy return in month t is 

f σ,t = (c ∗/ ̂ σ 2 
t−1 ) f t , where f t is the monthly return for the original portfo- 

lio, ˆ σ 2 
t−1 is the realized variance of daily portfolio returns in month t − 1 , 

and c ∗ is a constant chosen so that f t and f σ ,t have the same unconditional 

standard deviation over the full sample period. In each case, we compute 

the difference between the Sharpe ratio of the volatility-managed portfo- 

lio and that of the original portfolio. Panel A reports results for the full set 

of 103 trading strategies. Panel B presents separate results for the 9 fac- 

tors and the 94 anomaly portfolios. Panel C breaks the results down by 

trading strategy type. For each set of comparisons, the table presents the 

number of Sharpe ratio differences that are positive, positive and signifi- 

cant at the 5% level, negative, and negative and significant at the 5% level. 

We assess statistical significance of the Sharpe ratio differences using the 

Jobson and Korkie (1981) approach. 

Sharpe ratio difference 

Sample Total �SR > 0 [Signif.] �SR < 0 [Signif.] 

(1) (2) (3) (4) 

Panel A: Combined sample 

All trading strategies 103 53 [8] 50 [4] 

Panel B: By category 

Factors 9 5 [3] 4 [0] 

Anomaly portfolios 94 48 [5] 46 [4] 

Panel C: By trading strategy type 

Accruals 10 4 [0] 6 [0] 

Intangibles 10 3 [0] 7 [0] 

Investment 11 3 [0] 8 [1] 

Market 1 1 [0] 0 [0] 

Momentum 9 9 [5] 0 [0] 

Profitability 22 15 [1] 7 [1] 

Trading 21 11 [1] 10 [1] 

Value 19 7 [1] 12 [1] 
correlation with MOM and BAB . 9 Aside from MOM, ROE , 

and BAB , the remaining six factors exhibit differences in 

Sharpe ratios that are insignificant at the 5% level and aver- 

age return differentials between −1.71% and 1.74% per year. 

Panel D of Table 1 shows that the correlation coef- 

ficients for excess returns for the scaled and unscaled 

strategies range from 0.48 to 0.70. Panel D also high- 

lights that investing in volatility-scaled portfolios requires 

aggressively altering exposures to the underlying factors 

over time. Although the median investment position for 

each of the dynamic portfolios is around one, the 99th 

percentile of required leverage exceeds 400% in each case 

and reaches as high as 864% for the momentum strategy. 

To offer a more comprehensive view on the perfor- 

mance of volatility-managed portfolios, we examine the 

expanded set of 103 equity trading strategies. Table 2 pro- 

vides a summary of the Sharpe ratio differences between 

the volatility-managed and original strategies. Many of 

the portfolios are formed on related characteristics, so 

we classify them into strategy types relating to accruals, 

intangibles, investment, market, momentum, profitability, 

trading, and value. Across all 103 strategies, Panel A of 

Table 2 reports the number of Sharpe ratio differences 
9 The correlation coefficient between ROE and MOM ( BAB ) is 0.50 (0.26). 
that are positive or negative and the number of these 

differences that are statistically significant at the 5% 

level. 10 Panel B separates the results for the 9 factors and 

94 anomaly portfolios, and Panel C displays the corre- 

sponding figures for each strategy type. As in Table 1 , 

positive (negative) differences indicate outperformance 

(underperformance) for the volatility-scaled versions. 

The results in Table 2 suggest that volatility-managed 

portfolios do not systematically outperform their original 

counterparts. In Panel A, volatility management leads to 

improved and worsened performance at roughly the same 

frequency. The performance differences across the 103 

trading strategies include 53 positive and 50 negative val- 

ues, and few of the differences are statistically significant. 

Panel C reveals that the majority of the significantly 

positive Sharpe ratio differences are attributable to the 

nine momentum strategies. Volatility management im- 

proves performance for every momentum strategy, and 

five of the nine performance differences are statistically 

significant at the 5% level. The findings are consistent with 

the impressive performance of volatility-managed momen- 

tum portfolios demonstrated by Barroso and Santa-Clara 

(2015) and Daniel and Moskowitz (2016) . Barroso and 

Santa-Clara (2015) notably find that managing the risk of 

momentum is robust to using alternative windows (i.e., 

one, three, or six months) to estimate realized volatility. 

We complement this result by showing that the perfor- 

mance of volatility-managed momentum is also robust to 

several alternative definitions of the momentum strategy 

itself. 

Outside of the momentum group, the volatility- 

managed versions of just three strategies exhibit statisti- 

cally significant outperformance: ROE, BAB , and Loughran 

and Wellman ’s (2012) enterprise multiple. We also find 

that volatility scaling results in significantly lower Sharpe 

ratios for four portfolios. This group includes growth in 

book equity ( Lockwood and Prombutr, 2010 ), change in 

sales less change in inventory ( Abarbanell and Bushee, 

1998 ), 1/share price ( Miller and Scholes, 1982 ), and 

long-term reversal ( De Bondt and Thaler, 1985 ). 

To interpret the broad-based results in Table 2 , we 

compare the total number of positive Sharpe ratio differ- 

ences in the data with the number that would be expected 

under reasonable assumptions about the data generating 

process. The performance of a given volatility-managed 

portfolio is driven by two factors: (i) the relation between 

lagged volatility and future volatility and (ii) the relation 

between lagged volatility and future expected return. 

Volatility management is likely to be successful if volatility 

is persistent and the risk-return relation is flat. In this 

scenario, a portfolio’s conditional Sharpe ratio is negatively 

associated with its lagged volatility, and investors can 

capitalize on these dynamics in the conditional risk-return 

trade-off by taking more aggressive investment positions 

following low-volatility periods. If lagged volatility is 

negatively related to average return for a given strategy, 

volatility management becomes even more attractive. A 
10 We present detailed results on performance comparisons for the in- 

dividual factors and anomaly portfolios in the Internet Appendix. 
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positive risk-return trade-off, in contrast, makes volatility

management less effective. 

We examine the performance of volatility-managed

portfolios relative to the null hypothesis that each of the

103 original portfolios exhibits persistence in conditional

volatility but zero correlation between lagged volatility

and future expected return. This null reflects both the

overwhelming evidence of volatility clustering in asset

returns (e.g., Engle, 2004 ) and the lack of conclusive

evidence on the relation between conditional variance

and average return for the strategies of interest. 11 The

test of this hypothesis allows us to use the performance

of volatility-managed portfolios to assess the risk-return

trade-off in our broad sample. 

To evaluate the performance of volatility-managed

portfolios relative to the expectation under this null

hypothesis, we develop a bootstrap analysis that is de-

scribed in detail in the Internet Appendix. This procedure

generates bootstrap samples that (i) preserve for each

strategy the empirical relation between the inverse of

lagged variance and the variance of the realized strategy

return and (ii) have, on average, no predictive relation

between lagged variance and return. We generate 10 0,0 0 0

bootstrap samples under the null hypothesis, run 103

direct performance comparisons in each bootstrap sample,

and count the number of positive performance differences.

We then compare the number of positive differences

in the data to the bootstrap distribution under the null

hypothesis to assess statistical significance. 

Fig. 1 shows the bootstrap distribution of the number

of positive Sharpe ratio differences. As expected, volatility

management is an attractive strategy under the null hy-

pothesis of persistent volatility but no risk-return relation.

Across the bootstrap samples, the average number of pos-

itive Sharpe ratio differences is 66 out of 103. In contrast,

the 53 observed positive Sharpe ratio differences in the

data are considerably fewer than what would be expected

under this null. The two-tailed bootstrap p -value of 0.01

indicates that the null hypothesis of persistent volatility

but no risk-return relation is rejected. As noted above, a

positive risk-return relation for a given strategy works to

degrade the performance of a given volatility-managed

portfolio such that the data indicate that the risk-return

relations tend to be positive across the broad set of 103

strategies. 

We also consider a second null hypothesis that the

expected Sharpe ratios for the volatility-managed and orig-

inal versions of each strategy are equal. The corresponding

test provides insight on the practical question of whether

or not investors should generally favor volatility-managed

portfolios over original portfolios. The frequencies of pos-
11 Several studies examine the relation between the expected return 

and conditional variance of the market portfolio. In early work, for ex- 

ample, Campbell (1987) finds a negative relation, whereas French et al. 

(1987) find an insignificant or positive relation. Subsequent papers also 

produce mixed evidence on the sign of the risk-return trade-off for the 

market, with the results being sensitive to the sample period, the method 

for estimating conditional volatility, and the time-series approach to relat- 

ing conditional variance and return. There is considerably less published 

evidence on the nature of the risk-return trade-off for other factors and 

anomaly portfolios. 

 

 

 

 

 

 

itive and negative performance differences in Table 2 are

in line with this second null hypothesis. We compute

the two-tailed p -value for the number of positive Sharpe

ratio differences relative to the binomial distribution

under the null that the volatility-managed and original

versions of each of the 103 portfolios are equally likely to

outperform the other. The p -value of 0.84 indicates that

a null hypothesis of equal performance is not rejected.

These findings are in accord with the general conclusion

that volatility-managed strategies do not systematically

outperform the corresponding original strategies. 

4. Combination strategies 

Whereas the results in Section 3 provide evidence that

volatility-managed portfolios do not systematically outper-

form original portfolios, Moreira and Muir ’s (2017) span-

ning regression tests suggest that volatility-scaled port-

folios are potentially more valuable when used in com-

bination with their original counterparts rather than as

stand-alone investments. In Sections 4.1 and 4.2 , we note

the differences between direct performance comparisons

and spanning tests and highlight the portfolio implications

of Moreira and Muir ’s (2017) spanning regression approach

to evaluating volatility-managed portfolios. These sections

also show that the trading strategies implied by spanning

regressions are not available to real-time investors. Given

this limitation, we turn to a comprehensive analysis of the

out-of-sample performance of combination strategies that

incorporate volatility management in Section 4.3 . 

4.1. Spanning regressions 

Moreira and Muir ’s (2017) evidence on the success of

volatility-managed portfolios follows from the spanning

regression approach. They evaluate volatility-managed

factors by estimating time-series regressions of the form 

f σ,t = α + β f t + ε t . (5)

Their tests focus on α, which they estimate to be positive,

economically large, and statistically significant for a wide

range of popular asset pricing factors. 12 Moreira and Muir

(2017) further emphasize that positive alphas are synony-

mous with increased Sharpe ratios relative to the original

factors and pronounced utility gains for mean-variance

investors. In this section, we consider the portfolio proper-

ties associated with the spanning regressions and develop

intuition for why the in-sample results do not readily

extend to real-time investment settings. 

We note that a positive alpha in regression (5) is a

lower bar for declaring success of a given managed strat-

egy relative to a positive Sharpe ratio difference in a direct

comparison (e.g., Section 3 ). We demonstrate this point

formally in the Internet Appendix. In particular, consider

the case in which both the managed and unmanaged

versions of a given strategy earn positive average returns

(i.e., f̄ σ,t > 0 and f̄ t > 0 ). Because f σ ,t and f t have identical
12 Moreira and Muir also demonstrate that volatility-managed strate- 

gies earn positive alphas when unscaled versions of the Fama and French 

(1993) three factors are included in Eq. (5) as additional controls. 
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Fig. 1. Bootstrap distribution. The figure shows the bootstrap distribution of the number of positive Sharpe ratio differences across the 103 strategies 

under the null hypothesis of persistence in volatility with no risk-return relation. The bootstrap procedure is described in the Internet Appendix, and the 

histogram shows the distribution for 10 0,0 0 0 bootstrap samples. The vertical dotted line indicates that 53 of 103 comparisons produce positive performance 

differences in the data. 
full sample volatility by construction, the scaled portfolio 

achieves a higher Sharpe ratio as long as f̄ σ,t > f̄ t . The 

requirement for a positive spanning test alpha, however, 

is f̄ σ,t > ˆ ρ f̄ t , where ˆ ρ is the unconditional correlation 

between the scaled and unscaled factors. 13 As shown in 

Table 1 , these correlations range from 0.48 to 0.70 for the 

equity strategies examined by Moreira and Muir (2017) . 14 

Volatility scaling could, therefore, lead to a 30% or larger 

drop in Sharpe ratio and at the same time produce a 

positive spanning regression intercept. 

A positive alpha in Eq. (5) does indicate that the 

optimal ex post combination of scaled and unscaled fac- 

tors (with positive weight on the scaled factor) expands 

the mean-variance frontier relative to the original factor 

(e.g., Gibbons et al., 1989 ). This point follows from the 

well-known link between spanning tests and portfolio 

optimization under mean-variance utility. Consider a 

mean-variance investor who allocates between excess re- 

turns f σ ,t and f t . Given the sample moments for f σ ,t and f t , 

the investor’s ex post optimal vector of fixed allocations to 

the volatility-managed and original factors, a = [ x ∗σ x ∗] � , 
13 We also show in the Internet Appendix that ˆ ρ = 

ˆ β, where ˆ β is the 

estimate of the slope coefficient from the univariate spanning regression 

in Eq. (5) . 
14 The correlations for the broader sample of 103 strategies are between 

0.48 and 0.80 (see Internet Appendix). 
is the solution to the following problem: 

max 
a 

U(a ) = a � ˆ μ − γ

2 

a � ˆ 
a, (6) 

where ˆ μ = [ ̄f σ,t f̄ t ] 
� is the 2 × 1 vector of mean excess 

returns, ˆ 
 is the 2 × 2 variance–covariance matrix, and 

γ is the investor’s risk aversion parameter. In this setup, 

the investor implicitly has access to a risk-free security. 

The vector of optimal portfolio weights is given by 

a = 

[
x ∗σ
x ∗

]
= 

1 

γ
ˆ 
−1 ˆ μ, (7) 

and the vector of optimal relative weights in the two risky 

assets is [
w 

∗
σ

w 

∗

]
= 

ˆ 
−1 ˆ μ

| 1 

� 
2 

ˆ 
−1 ˆ μ| , (8) 

where 1 2 is a 2 × 1 vector of ones. The weights in the 

two risky assets depend on the investor’s risk aversion but 

the relative allocations across the two assets do not. Given 

that the scaled and unscaled factors have the same full 

sample standard deviation, the covariance matrix is 

ˆ 
 = ˆ σ 2 
f 

[
1 ˆ ρ
ˆ ρ 1 

]
, (9) 

where ˆ σ 2 
f 

is the unconditional variance of factor returns. 

The ex post optimal allocation to the volatility-managed 
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portfolio is then proportional to the spanning regression

alpha, 

x ∗σ = 

ˆ α

γ ˆ σ 2 
f 
(1 − ˆ ρ2 ) 

. (10)

The optimal strategy assigns positive weight to the

volatility-managed portfolio if and only if this portfolio

earns a positive spanning regression alpha. 

We combine the optimal investment policy in Eq.

(7) with the definition of the volatility-managed portfolio

in Eq. (3) to generate the dynamic investment rule 

y ∗t = x ∗σ

(
c ∗

ˆ σ 2 
t−1 

)
+ x ∗. (11)

The investor’s ex post optimal policy allocates a static

weight x ∗σ to the volatility-managed factor and a static

weight x ∗ to the original factor. This policy is equivalent to

dynamically adjusting the position (i.e., y ∗t ) in the original

factor according to Eq. (11) . We denote the Sharpe ratio

earned by this combination strategy as SR (y ∗t ) . 
Moreira and Muir (2017) link their spanning test results

to appraisal ratios and utility gains for investors. These

types of metrics can be interpreted in the context of

mean-variance portfolio choice. The appraisal ratio for a

given scaled strategy is 

AR = 

ˆ α

ˆ σε 
, (12)

where ˆ α is the intercept and ˆ σε is the standard error

of the regression in Eq. (5) . The squared appraisal ratio

reflects the extent to which volatility management can be

used to increase the slope of the mean-variance frontier

(e.g., Gibbons et al., 1989 ): 

AR 

2 = SR (y ∗t ) 
2 − SR (z ∗) 2 , (13)

where SR ( z ∗) is the Sharpe ratio earned by a mean-

variance investor who does not have access to the

volatility-managed portfolio. 15 Similarly, we quantify the

in-sample utility gains from volatility management by

comparing the CER for the investor who optimizes accord-

ing to Eq. (6) with that of the investor who is constrained

to invest in the original factor. We solve for the in-sample

CER difference analytically as 

�CER = 

SR (y ∗t ) 
2 − SR (z ∗) 2 

2 γ
. (14)

Based on Eq. (13) , Moreira and Muir (2017) note that

positive alphas in Eq. (5) indicate that volatility manage-

ment increases Sharpe ratios relative to the original factors.

They also use a relation similar to Eq. (14) as the basis for

their conclusion that volatility timing leads to large utility

gains for mean-variance investors. 16 These improvements
15 The investor without access to the volatility-managed factor optimally 

invests z ∗ = 

1 
γ

f̄ t 
ˆ σ 2 

f 

in the unscaled factor and earns a squared Sharpe ratio 

equal to that of the unscaled factor. 
16 To quantify the economic impact of incorporating a given volatility- 

managed portfolio into the investment opportunity set, Moreira and Muir 

(2017) focus on the “percentage utility gain” rather than on the CER dif- 

ference. Their measure is �U(%) = 

SR (y ∗t ) 
2 −SR (z ∗ ) 2 

SR (z ∗ ) 2 . 
in portfolio performance are based on ex post results, how-

ever, which potentially overstate the value of volatility

management in practice. An investor could only achieve

the utility gains by combining the scaled and unscaled

versions of a particular factor using weights that are un-

known prior to observing the full sample of factor returns.

As such, these types of strategies are not implementable

in real time. We empirically demonstrate the link between

Moreira and Muir ’s (2017) in-sample regression results and

optimal portfolio choice in the following section. 

4.2. In-sample tests 

Table 3 reproduces Moreira and Muir ’s (2017) spanning

tests for the nine volatility-managed equity factors. Panel

A reports estimates from unconditional regressions of

monthly volatility-managed portfolio returns on original

portfolio returns following Eq. (5) . The volatility-managed

alpha is annualized by multiplying the monthly esti-

mate by 12, and the appraisal ratio for the regression is

annualized by multiplying the monthly figure by 
√ 

12 . 

The results in Panel A.1 of Table 3 provide strong

empirical support for the in-sample benefits of volatility-

managed portfolios. We confirm Moreira and Muir ’s

(2017) finding that the volatility-managed factors often

generate positive alphas relative to the original factors.

In particular, the volatility-managed MKT, MOM, RMW,

ROE , and BAB portfolios have positive and statistically

significant alphas at the 1% level, and the managed IA and

HML alphas are significant at the 10% level. Several of the

performance estimates are large in economic magnitude,

with the volatility-managed momentum alpha of 12.39%

per year standing out as particularly striking. 17 

The large appraisal ratios in Table 3 indicate that

volatility management expands the ex post mean-variance

frontier relative to the original factors, a conclusion that

follows from Eqs. (12) and (13) . Building on this point,

Moreira and Muir (2017) accentuate the large associated

lifetime utility gains for investors timing volatility. The

portfolio strategies required to achieve these benefits,

however, are not implementable for real-time investors.

Taking the market factor as an example, the volatility-

managed alpha of 4.63% per year and associated appraisal

ratio of 0.32 suggest large potential gains for investors.

Panel A.2 of Table 3 highlights that, to attain these port-

folio results, an investor must know the scaling parameter

for the volatility-managed market factor and, more impor-

tant, the optimal risky portfolio mixes a 72% weight in the

volatility-scaled market factor with a 28% weight in the

original market factor. As shown in Panel A.3, this strategy

generates a Sharpe ratio of 0.53 compared with 0.42 for

the market portfolio. An investor with γ = 5 has a CER of

2.79% for the ex post optimal combination strategy versus

only 1.76% for the original factor. 
17 The positive unconditional alphas in Table 3 can also be understood 

in the context of the volatility-timing effects discussed in Lewellen and 

Nagel (2006) and Boguth et al. (2011) . In particular, the conditional alpha 

for a given volatility-managed portfolio is, by construction, equal to zero. 

The corresponding unconditional alpha, however, is likely to be positive 

if the managed portfolio’s conditional factor exposure, c ∗/ ̂ σ 2 
t−1 , covaries 

negatively with the conditional volatility of the unscaled factor. 
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Table 3 

Spanning regressions. 

Panel A.1 reports results from univariate spanning regressions of volatility-managed factor returns on the corresponding original factor returns. The span- 

ning regressions are given by f σ,t = α + β f t + ε t , where f σ ,t ( f t ) is the monthly return for the volatility-managed (original) factor. The estimates of α are 

reported in percentage per year, and the numbers in parentheses are t -statistics based on White (1980) standard errors. For each regression, R 2 is the 

adjusted R 2 value, and the appraisal ratio is computed as the ratio of alpha to root mean square error. Panel A.2 presents the scaling parameter ( c ∗) for 

the volatility-managed factor, the ex post optimal total weight in risky assets ( x ∗σ + x ∗), and the ex post optimal relative weights in the volatility-managed 

( w 

∗
σ ) and original factors ( w 

∗). The vector of portfolio weights is [ x ∗σ x ∗] � = (1 /γ ) ̂  
−1 ˆ μ, where γ is the risk aversion parameter, ˆ 
 is the 2 × 2 

variance–covariance matrix of f σ ,t and f t , and ˆ μ is the 2 × 1 vector of mean excess returns for f σ ,t and f t . The vector of relative weights is computed as 

[ w 

∗
σ w 

∗] � = [ x ∗σ x ∗] � / | x ∗σ + x ∗| . For each factor, Panel A.3 shows annualized Sharpe ratios and certainty equivalent returns (CERs). The “original factor”

results correspond to the ex post optimal combination of original factor and risk-free asset, and the “combination strategy” results correspond to the ex 

post optimal combination of original factor, volatility-managed factor, and risk-free asset. The results in Panels A.2 and A.3 are for γ = 5 . Panel B adds the 

Fama and French (1993) three factors as controls in the spanning regressions. 

Factor 

MKT SMB HML MOM RMW CMA ROE IA BAB 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A: Univariate regressions 

Panel A.1: Regression results 

Alpha, α (%) 4 .63 −0 .76 1 .87 12 .39 2 .23 0 .26 4 .97 1 .18 5 .74 

(3 .08) (−0 .87) (1 .88) (7 .31) (2 .57) (0 .39) (5 .10) (1 .83) (5 .97) 

Beta, β 0 .63 0 .63 0 .57 0 .48 0 .59 0 .68 0 .68 0 .70 0 .62 

(11 .32) (7 .75) (7 .65) (7 .13) (7 .10) (13 .82) (11 .12) (13 .59) (12 .97) 

R 2 0 .40 0 .40 0 .33 0 .23 0 .34 0 .46 0 .46 0 .50 0 .38 

Appraisal ratio, AR 0 .32 −0 .09 0 .19 0 .86 0 .36 0 .05 0 .77 0 .26 0 .68 

Panel A.2: Ex post optimization parameters 

Scaling parameter, c ∗ 10 .33 2 .63 2 .95 4 .60 1 .48 1 .53 2 .06 1 .64 3 .20 

Risky allocation, x ∗σ + x ∗ 0 .61 0 .34 0 .82 1 .22 1 .45 1 .60 2 .44 0 .70 2 .05 

Relative factor weights 

Vol-managed factor, w 

∗
σ 0 .72 −0 .60 0 .46 0 .98 0 .79 0 .12 0 .97 0 .41 0 .78 

Original factor, w 

∗ 0 .28 1 .60 0 .54 0 .02 0 .21 0 .88 0 .03 0 .59 0 .22 

Panel A.3: Portfolio performance measures 

Sharpe ratio 

Original factor 0 .42 0 .23 0 .40 0 .48 0 .38 0 .53 0 .74 0 .77 0 .77 

Combination strategy 0 .53 0 .25 0 .44 0 .99 0 .52 0 .54 1 .06 0 .81 1 .03 

Difference 0 .11 0 .02 0 .04 0 .50 0 .14 0 .00 0 .32 0 .04 0 .26 

CER (%) 

Original factor 1 .76 0 .53 1 .59 2 .35 1 .44 2 .85 5 .46 5 .92 5 .90 

Combination strategy 2 .79 0 .61 1 .94 9 .74 2 .71 2 .88 11 .32 6 .57 10 .52 

Difference 1 .03 0 .08 0 .35 7 .39 1 .27 0 .03 5 .86 0 .65 4 .63 

Panel B: Additional controls for Fama and French (1993) three factors 

Alpha, α (%) 5 .24 −0 .56 2 .52 10 .28 3 .02 −0 .19 5 .51 0 .66 5 .45 

(3 .49) (−0 .65) (2 .52) (6 .56) (3 .49) (−0 .28) (5 .52) (1 .01) (5 .72) 

R 2 0 .41 0 .40 0 .35 0 .26 0 .43 0 .47 0 .49 0 .51 0 .39 

Appraisal ratio, AR 0 .37 −0 .07 0 .26 0 .73 0 .72 −0 .04 0 .88 0 .15 0 .65 
Panel A.2 of Table 3 indicates that, with the excep- 

tion of SMB , the ex post optimal combinations feature 

a positive allocation to the volatility-managed factor. 

The positive weights follow from the positive spanning 

test alphas for these factors in Panel A.1 in accord with 

Eq. (10) . 18 Across the nine combination strategies, there 

is substantial discrepancy in the optimal weight assigned 
18 Panel A.2 of Table 3 also shows that the original version of each fac- 

tor receives a positive allocation in the ex post optimal combination strat- 

egy. These results suggest that “reverse” spanning tests that regress orig- 

inal factors on their volatility-managed versions should generate a simi- 

lar level of support for the unscaled factors as we observe for the scaled 

factors in Table 3 . We confirm this intuition in the Internet Appendix. 

Reverse regressions produce positive intercepts for the original factors in 

all nine cases, and four of the estimates are significant at the 5% level. 

The results highlight that spanning tests are unsuitable for identifying 

whether the original or volatility-managed version of a given strategy is 

superior. 
to the volatility-scaled factor. The relative weight for the 

volatility-managed factor ranges from −60% for SMB to 

98% for MOM , suggesting that there is no obvious fixed 

trading rule across factors. Finally, the total ex post allo- 

cation to the risky asset combination portfolio also differs 

markedly across the factors. This allocation ranges from 

34% for SMB to 244% for ROE . 

Panel A.3 of Table 3 confirms that almost all combi- 

nation strategies exhibit strong in-sample performance 

gains relative to the original factors. The most impressive 

Sharpe ratio improvements correspond to the MOM (0.99 

for ex post optimal combination portfolio versus 0.48 for 

original), ROE (1.06 versus 0.74), and BAB (1.03 versus 0.77) 

factors. The CER results also indicate large utility gains for 

several of the combination portfolios. The ex post MOM 

combination strategy, in particular, boasts a CER of 9.74% 

per year compared with just 2.35% for the original MOM 

factor. Overall, the results are consistent with Moreira and 

Muir ’s (2017) finding that incorporating volatility-managed 
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Table 4 

Summary of spanning regressions: broad sample. 

The table summarizes results from spanning regressions for 103 trading strategies. The spanning regressions are given 

by f σ,t = α + β f t + ε t , where f σ ,t ( f t ) is the monthly return for the volatility-managed (original) anomaly portfolio. The 

results in columns (3) and (4) correspond to univariate spanning regressions, and those in columns (5) and (6) are for 

regressions that add the Fama and French (1993) three factors as controls. Panel A reports results for the full set of 

103 trading strategies. Panel B presents separate results for the 9 factors and the 94 anomaly portfolios. Panel C breaks 

the results down by trading strategy type. For each set of regressions, the table reports the number of alphas that 

are positive, positive and significant at the 5% level, negative, and negative and significant at the 5% level. We assess 

statistical significance of the alpha estimates using White (1980) standard errors. 

Additional controls for 

Univariate regressions Fama and French (1993) factors 

Sample Total α > 0 [Signif.] α < 0 [Signif.] α > 0 [Signif.] α < 0 [Signif.] 

(1) (2) (3) (4) (5) (6) 

Panel A: Combined sample 

All trading strategies 103 77 [23] 26 [3] 70 [21] 33 [3] 

Panel B: By category 

Factors 9 8 [5] 1 [0] 7 [6] 2 [0] 

Anomaly portfolios 94 69 [18] 25 [3] 63 [15] 31 [3] 

Panel C: By trading strategy type 

Accruals 10 8 [3] 2 [0] 6 [0] 4 [0] 

Intangibles 10 6 [1] 4 [0] 5 [0] 5 [0] 

Investment 11 7 [1] 4 [1] 5 [1] 6 [1] 

Market 1 1 [1] 0 [0] 1 [1] 0 [0] 

Momentum 9 9 [9] 0 [0] 9 [9] 0 [0] 

Profitability 22 19 [2] 3 [0] 19 [4] 3 [0] 

Trading 21 14 [4] 7 [1] 14 [4] 7 [2] 

Value 19 13 [2] 6 [1] 11 [2] 8 [0] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

factors into the in-sample portfolio choice problem leads

to substantial gains for investors. 

Panel B of Table 3 shows that the general conclu-

sions are robust to including the three Fama and French

(1993) factors in the spanning tests as additional con-

trols. The spanning regression alphas are positive and

statistically significant at the 1% level for the MKT, HML,

MOM, RMW, ROE , and BAB factors. The tests indicate that

volatility-managed factors remain important for investors

who form ex post optimal portfolios with an investment

opportunity set augmented to include the MKT, SMB , and

HML factors. 

We also present new evidence on the in-sample ben-

efits of volatility management by applying the tests in

Table 3 to the combined sample of 103 trading strategies.

The results are summarized in Table 4 , with detailed

results available in the Internet Appendix. We find that 77

of the 103 scaled portfolios earn positive alphas in univari-

ate spanning tests and, accordingly, are assigned positive

weights in the ex post optimal combination portfolios.

Twenty-three of the positive estimates are statistically

significant at the 5% level. The regression specification

that adds the Fama and French (1993) controls produces

70 positive alphas, 21 of which are statistically significant.

The broad-based results from Table 4 provide additional

support for Moreira and Muir ’s (2017) general conclusions

on the in-sample value of volatility management. 

4.3. Out-of-sample tests 

The trading strategies suggested by the in-sample

spanning tests are not implementable in real time. We
therefore examine their out-of-sample counterparts to

assess the value of volatility management for real-time,

mean-variance investors. When investors are required to

form trading strategies based on information available at

the time, observed performance may differ from the ex

post result for at least two reasons. First, if the conditional

risk-return trade-off for a given factor is unstable over

time, past data are less likely to be informative about the

future potential for volatility management. Along these

lines, Whitelaw (1994) , Harvey (2001) , Brandt and Kang

(2004) , Ludvigson and Ng (2007) , and Lettau and Ludvig-

son (2010) provide evidence of instability in the risk-return

relation for the market factor. Second, estimation risk is

a key concern in the real-time portfolio choice problem

implied by Eq. (5) , as weights are often unstable and the

corresponding optimal portfolios tend to perform poorly

out of sample (e.g., Black and Litterman, 1992; Green and

Hollifield, 1992; Jagannathan and Ma, 2003; DeMiguel

et al., 2009a; 2009b ). 

Given these concerns, we examine whether in-

vestors would have benefited from volatility man-

agement based on information available in real time.

Section 4.3.1 details the design of our out-of-sample tests,

and Section 4.3.2 presents the corresponding results.

Section 4.3.3 discusses the underlying economic drivers of

the differences between our in-sample and out-of-sample

evidence. 

4.3.1. Out-of-sample strategy design 

We adopt a standard real-time portfolio choice de-

sign. We start with a sample of T monthly excess return

observations for a given factor or anomaly portfolio.
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Table 5 

Real-time combination strategies. 

The table reports results for portfolio strategies that combine original factors and volatility-managed factors. We specify an initial training period length of 

K = 120 months and use an expanding-window design for the out-of-sample tests. The out-of-sample period runs from month K + 1 to month T , where T 

is the total number of sample months for a given factor. In Panel A, the “combination strategy (real time)” results correspond to the real-time combination 

of original factor, volatility-managed factor, and risk-free asset, and the “combination strategy (ex post optimal)” results correspond to the ex post optimal 

combination of these assets over the out-of-sample period. The “original factor (real time)” results correspond to the real-time combination of original 

factor and risk-free asset. The strategies in Panel B include the Fama and French (1993) factors in the investment opportunity set. For each strategy, the 

table shows the annualized Sharpe ratio and certainty equivalent return (CER) in percentage per year over the out-of-sample period. The figures in brackets 

are p -values for the Sharpe ratio and CER differences. The p -values are computed following the approaches in Jobson and Korkie (1981) and DeMiguel et al. 

(2009b) , respectively. We use a risk aversion parameter of γ = 5 and impose a leverage constraint that the sum of absolute weights on the risky factors is 

less than or equal to five. 

Factor 

MKT SMB HML MOM RMW CMA ROE IA BAB 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A: Real-time combination strategies 

Sharpe ratio 

[S1] Combination strategy (real time) 0 .42 0 .14 0 .38 0 .92 0 .44 0 .52 1 .13 0 .70 1 .09 

[S2] Original factor (real time) 0 .46 0 .19 0 .43 0 .49 0 .31 0 .56 0 .78 0 .68 0 .79 

Difference, [S1]–[S2] −0 .04 −0 .06 −0 .06 0 .44 0 .13 −0 .03 0 .36 0 .02 0 .30 

[0 .64] [0 .37] [0 .41] [0 .00] [0 .53] [0 .20] [0 .00] [0 .74] [0 .00] 

[S3] Combination strategy (ex post optimal) 0 .53 0 .26 0 .50 0 .99 0 .58 0 .64 1 .21 0 .73 1 .11 

Difference, [S1]–[S3] −0 .11 −0 .12 −0 .12 −0 .07 −0 .14 −0 .11 −0 .07 −0 .03 −0 .02 

[0 .01] [0 .14] [0 .08] [0 .07] [0 .37] [0 .00] [0 .20] [0 .41] [0 .78] 

CER (%) 

[S1] Combination strategy (real time) 1 .56 0 .00 1 .41 8 .47 1 .96 2 .74 12 .25 4 .19 10 .88 

[S2] Original factor (real time) 1 .75 0 .38 1 .61 2 .29 0 .91 3 .09 5 .44 3 .68 6 .23 

Difference, [S1]–[S2] −0 .19 −0 .37 −0 .20 6 .18 1 .04 −0 .35 6 .81 0 .51 4 .65 

[0 .83] [0 .27] [0 .73] [0 .00] [0 .57] [0 .21] [0 .00] [0 .60] [0 .00] 

[S3] Combination strategy (ex post optimal) 2 .79 0 .67 2 .47 9 .87 3 .42 4 .04 14 .55 5 .36 12 .34 

Difference, [S1]–[S3] −1 .23 −0 .66 −1 .06 −1 .40 −1 .46 −1 .30 −2 .30 −1 .17 −1 .46 

[0 .01] [0 .13] [0 .10] [0 .07] [0 .39] [0 .03] [0 .15] [0 .25] [0 .30] 

Panel B: Real-time combination strategies including Fama and French (1993) three factors 

Sharpe ratio 

[S1] Combination strategy (real time) 0 .51 0 .50 0 .53 1 .14 0 .83 0 .77 1 .30 0 .94 1 .19 

[S2] Original factor + FF3 (real time) 0 .61 0 .61 0 .61 0 .94 0 .85 0 .80 1 .23 0 .97 0 .98 

Difference, [S1] and [S2] −0 .11 −0 .11 −0 .08 0 .20 −0 .02 −0 .03 0 .07 −0 .03 0 .20 

[0 .22] [0 .03] [0 .31] [0 .00] [0 .85] [0 .12] [0 .23] [0 .10] [0 .00] 

[S3] Combination strategy (ex post optimal) 0 .72 0 .71 0 .71 1 .28 1 .11 0 .98 1 .63 1 .09 1 .38 

Difference, [S1]–[S3] −0 .22 −0 .21 −0 .18 −0 .14 −0 .28 −0 .21 −0 .33 −0 .15 −0 .20 

[0 .00] [0 .01] [0 .03] [0 .01] [0 .00] [0 .01] [0 .00] [0 .01] [0 .00] 

CER (%) 

[S1] Combination strategy (real time) 2 .51 2 .13 2 .72 12 .88 6 .43 5 .54 16 .25 8 .73 13 .70 

[S2] Original factor + FF3 (real time) 2 .52 2 .52 2 .52 8 .75 6 .63 6 .07 14 .88 9 .33 9 .66 

Difference, [S1] and [S2] −0 .02 −0 .40 0 .20 4 .13 −0 .19 −0 .53 1 .38 −0 .60 4 .04 

[0 .99] [0 .21] [0 .77] [0 .00] [0 .92] [0 .13] [0 .25] [0 .11] [0 .00] 

[S3] Combination strategy (ex post optimal) 5 .21 5 .05 5 .09 16 .39 12 .33 9 .60 26 .53 11 .79 19 .11 

Difference, [S1]–[S3] −2 .71 −2 .93 −2 .37 −3 .51 −5 .89 −4 .06 −10 .28 −3 .06 −5 .42 

[0 .00] [0 .02] [0 .04] [0 .02] [0 .00] [0 .01] [0 .00] [0 .01] [0 .00] 
We use the first K months as the initial training period 

and evaluate portfolio performance over the subsequent 

out-of-sample period of T − K months. For our base case 

results, we specify an initial training sample of K = 120 

months and employ an expanding-window approach to 

estimate the relevant portfolio parameters. Our choice 

of initial training sample length allows for a relatively 

long out-of-sample evaluation period for each strategy, 

which alleviates the well-known concern with low power 

in out-of-sample tests (e.g., Inoue and Kilian, 2004 ). The 

expanding-window specification also mitigates estimation 

risk throughout the evaluation period, as investors are 

able to make full use of past data in estimating return 

moments. 
We acknowledge that readers can reasonably disagree 

on the preferred design choices. For example, although 

a longer initial training period would reduce test power, 

such a design would result in more precise parameter es- 

timates early in the out-of-sample period. Rolling-window 

estimation could also be preferable to expanding-window 

estimation if the likelihood and magnitude of structural 

breaks in the data generating process are large (e.g., 

Pesaran and Timmermann, 2002; Rossi, 2013 ). Ex ante, 

it is challenging to identify which design choices are 

most appropriate. As such, we conduct an extensive set of 

robustness checks to confirm that our conclusions are not 

sensitive to the specified training sample length or type. 

As suggested by Eq. (11) , a real-time investor needs es- 

timates of the scaling parameter for the volatility-managed 
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19 To test the null hypothesis of equal CERs for strategies i and j , 

we compute the following test statistic, which is asymptotically dis- 

tributed as a standard normal: ˆ z DGU = 

( ̂ μi − γ
2 ̂  σ

2 
i ) −( ̂ μ j − γ

2 ̂  σ
2 
j ) √ 

ˆ θ
, where ˆ θ = 

1 
T−K 

⎛ 

⎜ ⎜ ⎝ 

[
1 −1 −γ / 2 γ / 2 

]
⎡ 

⎢ ⎢ ⎣ 

ˆ σ 2 
i 

ˆ σi, j 0 0 

ˆ σi, j ˆ σ 2 
j 

0 0 

0 0 2 ̂ σ 4 
i 

2 ̂ σ 2 
i, j 

0 0 2 ̂ σ 2 
i, j 

2 ̂ σ 4 
j 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎣ 

1 

−1 

−γ / 2 

γ / 2 

⎤ 

⎥ ⎦ 

⎞ 

⎟ ⎟ ⎠ 

. 

20 The real-time analysis for the market factor is similar in spirit to 

Johannes et al. ’s (2014) comparison of the out-of-sample performance 

of a “stochastic variance-constant mean” model with that of a “con- 

stant variance-constant mean” model. They adopt a Bayesian learning ap- 

proach to optimal allocation that accounts for parameter uncertainty and 

find that the model specification with stochastic volatility leads to bet- 

ter Sharpe ratios and CERs. Consistent with our evidence on the market 

factor in Table 5 , however, the performance differences tend to be statis- 

tically insignificant. 
factor and the weights to assign to the volatility-managed

and original factors in the optimal combination strategy. At

the beginning of each month t in the out-of-sample period,

we first compute the real-time scaling parameter, c t , as the

constant that allows the original and volatility-managed

factors to have the same variance over the training pe-

riod preceding month t . We then estimate the vector of

mean excess returns ( ̂  μt ) and the covariance matrix ( ̂  
t )

from the training period and construct portfolio weights

according to [
x σ,t 

x t 

]
= 

1 

γ
ˆ 
−1 

t ˆ μt . (15)

The investment position in the original factor is given by

the real-time version of Eq. (11) : 

y t = x σ,t 

(
c t 

ˆ σ 2 
t−1 

)
+ x t . (16)

We construct the portfolio excess return for month t as

y t f t , and the outcome of this approach is a time series of

T − K monthly excess returns. 

Before proceeding, we note that the magnitude of

the investment position in a given real-time strategy

(i.e., | y t |) is a measure of leverage. The out-of-sample

approach to estimating these positions leads to strategies

that require extreme leverage for at least two reasons.

First, volatility-managed portfolios, by nature, call for

the use of substantial leverage to gain aggressive factor

exposures following periods of low volatility. Second,

sample-based mean-variance optimization often leads to

extreme values for estimates of portfolio weights [i.e., Eq.

(15) ], particularly when the training period is short (e.g.,

DeMiguel et al., 20 09a; 20 09b ). For our base case, we

impose a leverage constraint of | y t | ≤ 5. This design choice

reflects our desire to maintain the spirit of volatility-

managed strategies while simultaneously guarding against

our results being driven by extreme outliers. We also

confirm that our conclusions are robust to imposing

leverage constraints as low as one, as well as allowing for

unconstrained investment positions. 

In evaluating the performance of the real-time com-

bination portfolios, we focus on whether or not these

strategies lead to improved investment outcomes relative

to the original factors. This focus is intentionally practical,

as the out-of-sample tests are not directly informative

about the underlying risk-return trade-off for the strate-

gies of interest. Let ˆ μi and ˆ σi be the mean and standard

deviation of excess returns for the strategy that invests

in the volatility-managed portfolio, original portfolio, and

risk-free asset (i.e., the real-time combination strategy)

over the out-of-sample period of length T − K. Similarly,

ˆ μ j and ˆ σ j are the mean and standard deviation of excess

returns for the real-time strategy that invests in the orig-

inal portfolio and risk-free asset, and ˆ σi, j is the covariance

between excess returns for the two strategies. We compute

the Sharpe ratio difference as 

�SR = 

ˆ μi 

ˆ σi 

− ˆ μ j 

ˆ σ j 

(17)

and assess whether the difference is statistically significant

using the test proposed by Jobson and Korkie (1981) . We
also calculate out-of-sample CER gains from having access

to the volatility-scaled factor as 

�CER = 

(
ˆ μi −

γ

2 

ˆ σ 2 
i 

)
−

(
ˆ μ j −

γ

2 

ˆ σ 2 
j 

)
. (18)

We evaluate statistical significance of the CER difference

using the method outlined by DeMiguel et al. (2009b) . 19 

4.3.2. Out-of-sample results 

Panel A of Table 5 shows results from out-of-sample

tests for the nine factors. We compare the performance

of the real-time combination strategy and that of the

real-time strategy that excludes the volatility-managed

portfolio. As a benchmark, we also present the perfor-

mance of the ex post optimal combination portfolio. The

Sharpe ratios and CERs of the strategies in Table 5 are

calculated over the out-of-sample evaluation period from

month K + 1 to month T . 

For the base case design in Panel A, the combination

portfolios outperform the original factors in five of the

nine cases. The differences in Sharpe ratios and CERs are

positive for the MOM, RMW, ROE, IA , and BAB factors and

negative for the MKT, SMB, HML , and CMA factors. The

improvements for the MOM, ROE , and BAB factors are

statistically significant at the 1% level. Across the remain-

ing six strategies, the Sharpe ratio and CER differences

are insignificant, with the CER differences ranging from

−0.37% ( SMB ) to 1.04% ( RMW ) per year. 

The market factor is an interesting case, as Moreira and

Muir (2017 , p. 1618) point out that “this strategy would

have been easily available to the average investor in real

time.” Achieving the gains from volatility management in

an out-of-sample setting turns out to be difficult, however,

as the combination strategy underperforms relative to the

original market portfolio based on Sharpe ratio (0.42 ver-

sus 0.46) and CER (1.56% versus 1.75% per year). 20 In the

Internet Appendix, we demonstrate why the out-of-sample

combination strategy for the market portfolio performs

poorly. In particular, we show that the strong in-sample

performance for volatility-scaled MKT is concentrated in

the period surrounding the Great Depression, which occurs

early in the sample. Out-of-sample investors adopting the

combination strategy tend to favor the volatility-managed

version of the market factor based on its strong early

sample performance. These investors experience unfavor-

able investment results, however, because the scaled MKT
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21 The ex post optimal strategy is based on a fixed scaling parameter for 

the volatility-managed portfolio and fixed portfolio weights such that it 
factor underperforms the original MKT factor after the first 

ten years of the sample. 

Table 5 also compares Sharpe ratios and CERs for the 

real-time combination strategies and the ex post optimal 

combination strategies. These results provide insights into 

how much the real-time portfolio formation approach 

leads to a deterioration in performance relative to the 

in-sample exercise. All nine of the Sharpe ratio and CER 

differences are negative, and four of the differences for 

each of the two measures are statistically significant at the 

10% level. 

Moreira and Muir (2017) provide evidence that 

volatility-managed factors also tend to produce pos- 

itive alphas in spanning regressions that include the 

original factors as well as the MKT, SMB , and HML factors 

from the Fama and French (1993) three-factor model. The 

interpretation of a positive alpha from this test is that an 

investor who holds the ex post optimal combination of the 

benchmark factors increases her Sharpe ratio by adding 

a positive position in the volatility-managed factor. From 

an economic perspective, including the Fama and French 

(1993) factors as controls likely provides a better charac- 

terization of the investment opportunity set for investors 

sophisticated enough to consider volatility-managed 

strategies. As in the univariate spanning tests, however, 

the implied optimal strategies are not implementable in 

real time. Optimizing across a larger set of assets may also 

exacerbate estimation risk. 

We examine the real-time performance of strategies 

that include the Fama and French (1993) three factors 

in Panel B of Table 5 . We report Sharpe ratios and CERs 

for real-time strategies that either exclude or include the 

volatility-managed factor. The results indicate that incor- 

porating volatility-managed strategies into the portfolio 

choice problem is often harmful to investors with the ex- 

tended investment opportunity set. Based on Sharpe ratio 

comparisons the strategies that include volatility-managed 

portfolios underperform for six of the nine factors. The 

MOM and BAB factors produce significantly positive Sharpe 

ratio differences, but the volatility-managed SMB and IA 

factors significantly hurt performance. The nine factors 

produce four positive and five negative CER differences, 

indicating that volatility timing does not systematically 

improve performance for investors with access to the 

Fama and French (1993) three factors. For both the Sharpe 

ratio and CER comparisons, all nine of the real-time 

combination strategies exhibit statistically significant un- 

derperformance at the 5% level relative to the ex post 

optimal combination strategies. 

In summary, Table 5 shows that volatility management 

has potential benefits for real-time investors in some 

factors, but the gains are not systematic and are much less 

impressive than the corresponding in-sample results. These 

initial results indicate that real-time implementation issues 

degrade portfolio performance in the volatility-managed 

portfolios setting. Panel B of Table 5 also highlights that, 

relative to the results in Panel A with the investment 

universe restricted to a single factor, volatility-managed 

portfolios are even less useful to investors with access to 

market, size, and value strategies. 
To assess whether our conclusions for the nine factors 

generalize, we turn to the broader sample of 103 trad- 

ing strategies. Table 6 summarizes the results for out-of- 

sample tests using our base case design with an expanding, 

ten-year training sample, a leverage constraint of | y t | ≤ 5, 

and a risk aversion parameter of γ = 5 . We report in Panel 

A.1 the number of positive and negative differences in 

Sharpe ratios and CERs. As in Table 5 , a positive perfor- 

mance difference indicates that the real-time combination 

strategy earns a higher Sharpe ratio or CER than the alter- 

native strategy does. We also show the number of signifi- 

cant differences at the 5% level. Panel A.2 presents separate 

results for the 9 factors and 94 anomaly portfolios, and 

Panel A.3 breaks the results down by trading strategy type. 

The evidence in Panel A of Table 6 suggests that the 

real-time combination strategies tend to underperform the 

real-time strategies that exclude the volatility-managed 

portfolios. Only 45 of the 103 combination portfolios 

outperform the original portfolios based on Sharpe ratio. 

Just 31 outperform based on CER. Further, the number 

of significantly positive CER differences (seven) exactly 

matches the number of significantly negative ones. All 

but one of the 103 real-time combination strategies ex- 

hibit underperformance relative to the ex post optimal 

strategies based on Sharpe ratio, and all 103 underperform 

based on CER. 21 A large proportion of the performance 

differences relative to the ex post optimal strategies are 

statistically significant (39 out of 103 based on Sharpe 

ratio and 41 out of 103 based on CER). 

Panel B presents results for real-time trading strategies 

based on an investment opportunity set that includes 

the Fama and French (1993) factors. The conclusions are 

similar to those in Panel A. The real-time strategies that in- 

clude volatility-managed portfolios outperform those that 

exclude them in just 32 out of 103 cases based on either 

Sharpe ratio or CER. The number of significantly positive 

results is also small in each case (two for Sharpe ratio and 

three for CER). The majority of the real-time combination 

strategies also exhibit statistically significant underperfor- 

mance relative to their ex post optimal versions. 

Table 7 summarizes results for robustness tests that 

modify the base case out-of-sample design. For each 

design and performance measure, we report the number 

of positive and negative differences for the real-time 

strategies and the number of these differences that are 

statistically significant at the 5% level. We also report the 

p -value from a binomial test of the null hypothesis that 

positive and negative performance differences are equally 

likely. The first row in Panel A of Table 7 repeats the 

results from our base case design in Panel A of Table 6 . 

The remaining rows in this panel display robustness re- 

sults pertaining to the training sample type, risk aversion 

parameter, training sample length, and leverage con- 

straint. None of the alternative specifications meaningfully 

improves performance relative to the base case. 
is possible for a real-time strategy with time-varying portfolio weights to 

outperform the ex post optimal strategy. 
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Table 6 

Summary of real-time combination strategies: broad sample. 

The table summarizes results for real-time strategies that combine original and volatility-managed versions of 103 trading strategies. For each factor or 

anomaly portfolio, we compute the Sharpe ratio and certainty equivalent return (CER) for (i) the real-time strategy that combines the original portfolio, 

the volatility-managed portfolio, and the risk-free asset (“combination strategy (real time)”), (ii) the real-time strategy that combines the original portfolio 

and the risk-free asset (“original factor (real time)”), and (iii) the ex post optimal strategy that combines the original portfolio, the volatility-managed 

portfolio, and the risk-free asset (“combination strategy (ex post optimal)”). Columns (3) and (4) in Panel A summarize the Sharpe ratio differences for 

these strategies, and columns (5) and (6) summarize the CER differences. Panel B summarizes the Sharpe ratio and CER differences for analogous strategies 

that include the Fama and French (1993) factors. A positive Sharpe ratio or CER difference indicates outperformance for the real-time combination strategy. 

The out-of-sample tests are based on a ten-year training period and an expanding-window design. We use a risk aversion parameter of γ = 5 and impose 

a leverage constraint that the sum of absolute weights on the risky assets is less than or equal to five. Panels A.1 and B.1 report results for the full set 

of 103 trading strategies. Panels A.2 and B.2 present separate results for the 9 factors and the 94 anomaly portfolios. Panels A.3 and B.3 break the results 

down by trading strategy type. For each set of comparisons, the table reports the number of differences that are positive (+), positive and significant at the 

5% level (in brackets), negative ( −), and negative and significant at the 5% level (in brackets). We assess statistical significance of the Sharpe ratio and CER 

differences using the approaches in Jobson and Korkie (1981) and DeMiguel et al. (2009b) , respectively. 

Panel A: Real-time combination strategies 

Sharpe ratio difference: CER difference: 

Combination strategy (real time) versus Combination strategy (real time) versus 

Original factor Combination strategy Original factor Combination strategy 

(real time) (ex post optimal) (real time) (ex post optimal) 

�SR �SR �CER �CER 

Sample Total + / − + / − + / − + / −
(1) (2) (3) (4) (5) (6) 

Panel A.1: Combined sample 

All trading strategies 103 45 [8] / 58 [2] 1 [0] / 102 [39] 31 [7] / 72 [7] 0 [0] / 103 [41] 

Panel A.2: By category 

Factors 9 5 [3] / 4 [0] 0 [0] / 9 [2] 5 [3] / 4 [0] 0 [0] / 9 [2] 

Anomaly portfolios 94 40 [5] / 54 [2] 1 [0] / 93 [37] 26 [4] / 68 [7] 0 [0] / 94 [39] 

Panel A.3: By trading strategy type 

Accruals 10 3 [0] / 7 [1] 0 [0] / 10 [5] 3 [0] / 7 [2] 0 [0] / 10 [4] 

Intangibles 10 4 [0] / 6 [0] 0 [0] / 10 [0] 1 [0] / 9 [1] 0 [0] / 10 [4] 

Investment 11 5 [0] / 6 [0] 0 [0] / 11 [6] 5 [0] / 6 [0] 0 [0] / 11 [5] 

Market 1 0 [0] / 1 [0] 0 [0] / 1 [1] 0 [0] / 1 [0] 0 [0] / 1 [1] 

Momentum 9 8 [4] / 1 [0] 0 [0] / 9 [5] 8 [5] / 1 [0] 0 [0] / 9 [5] 

Profitability 22 10 [1] / 12 [0] 1 [0] / 21 [7] 6 [1] / 16 [1] 0 [0] / 22 [5] 

Trading 21 10 [1] / 11 [1] 0 [0] / 21 [6] 6 [1] / 15 [1] 0 [0] / 21 [8] 

Value 19 5 [2] / 14 [0] 0 [0] / 19 [9] 2 [0] / 17 [2] 0 [0] / 19 [9] 

Panel B: Real-time combination strategies including Fama and French (1993) three factors 

Sharpe ratio difference: CER difference: 

Combination strategy (real time) versus Combination strategy (real time) versus 

Original factor + FF3 Combination strategy Original factor + FF3 Combination strategy 

(real time) (ex post optimal) (real time) (ex post optimal) 

�SR �SR �CER �CER 

Sample Total + / − + / − + / − + / −
(1) (2) (3) (4) (5) (6) 

Panel B.1: Combined sample 

All trading strategies 103 32 [2] / 71 [13] 0 [0] / 103 [77] 32 [3] / 71 [10] 0 [0] / 103 [92] 

Panel B.2: By category 

Factors 9 3 [2] / 6 [1] 0 [0] / 9 [9] 4 [2] / 5 [0] 0 [0] / 9 [9] 

Anomaly portfolios 94 29 [0] / 65 [12] 0 [0] / 94 [68] 28 [1] / 66 [10] 0 [0] / 94 [83] 

Panel B.3: By trading strategy type 

Accruals 10 3 [0] / 7 [1] 0 [0] / 10 [8] 3 [0] / 7 [1] 0 [0] / 10 [8] 

Intangibles 10 1 [0] / 9 [1] 0 [0] / 10 [5] 1 [0] / 9 [1] 0 [0] / 10 [9] 

Investment 11 3 [0] / 8 [1] 0 [0] / 11 [10] 3 [0] / 8 [1] 0 [0] / 11 [10] 

Market 1 0 [0] / 1 [0] 0 [0] / 1 [1] 0 [0] / 1 [0] 0 [0] / 1 [1] 

Momentum 9 8 [1] / 1 [0] 0 [0] / 9 [9] 7 [2] / 2 [0] 0 [0] / 9 [9] 

Profitability 22 8 [0] / 14 [2] 0 [0] / 22 [14] 9 [0] / 13 [2] 0 [0] / 22 [18] 

Trading 21 6 [1] / 15 [5] 0 [0] / 21 [21] 5 [1] / 16 [3] 0 [0] / 21 [21] 

Value 19 3 [0] / 16 [3] 0 [0] / 19 [9] 4 [0] / 15 [2] 0 [0] / 19 [16] 
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Table 7 

Summary of real-time combination strategies: robustness tests. 

The table summarizes robustness tests for real-time strategies that combine original and volatility-managed versions of 103 trading strategies. For each 

portfolio, we compute the Sharpe ratio and certainty equivalent return (CER) for (i) the real-time strategy that combines the original portfolio, the volatility- 

managed portfolio, and the risk-free asset and (ii) the real-time strategy that combines the original portfolio and the risk-free asset. Column (2) in Panel 

A summarizes the Sharpe ratio differences for these strategies, and column (4) summarizes the CER differences. Panel B summarizes the Sharpe ratio 

and CER differences for analogous strategies that include the Fama and French (1993) factors. For each set of comparisons, the table reports the number of 

differences that are positive ( + ), positive and significant at the 5% level (in brackets), negative ( −), and negative and significant at the 5% level (in brackets). 

A positive Sharpe ratio or CER difference indicates outperformance for the real-time combination strategy that includes the volatility-managed portfolio. 

We assess statistical significance of the Sharpe ratio and CER differences using the approaches in Jobson and Korkie (1981) and DeMiguel et al. (2009b) , 

respectively. For each set of comparisons, we also present the two-tailed p -value from a binomial distribution test of the null hypothesis that each of the 

differences is equally likely to be positive or negative. The first row in each panel summarizes results from the base case design in Table 6 . This design is 

characterized by (i) an expanding-window training sample, (ii) an initial training sample length of K = 120 months, (iii) a risk aversion parameter of γ = 5 , 

and (iv) a leverage constraint of L ≤ 5. The subsequent rows in each panel are based on modified designs as described in the table. 

Sharpe ratio difference: CER difference: 

( N = 103 ) ( N = 103 ) 

�SR Binomial �CER Binomial 

Description + / − p -value + / − p -value 

(1) (2) (3) (4) (5) 

Panel A: Real-time combination strategies 

Base case design 45 [8] / 58 [2] 0.237 31 [7] / 72 [7] 0.000 

Rolling-window training sample 49 [2] / 54 [1] 0.694 17 [1] / 86 [19] 0.000 

Risk aversion, γ = 2 48 [9] / 55 [2] 0.555 35 [8] / 68 [7] 0.001 

Risk aversion, γ = 10 45 [8] / 58 [2] 0.237 31 [7] / 72 [7] 0.000 

Initial training sample length, K = 240 45 [9] / 58 [10] 0.237 36 [8] / 67 [11] 0.003 

Initial training sample length, K = 360 40 [9] / 63 [6] 0.030 31 [8] / 72 [8] 0.000 

Leverage constraint, L ≤ 1.0 49 [10] / 54 [2] 0.694 38 [4] / 65 [5] 0.010 

Leverage constraint, L ≤ 1.5 47 [10] / 56 [3] 0.431 38 [7] / 65 [7] 0.010 

Leverage constraint, L ≤ ∞ 45 [8] / 58 [2] 0.237 31 [7] / 72 [7] 0.000 

Panel B: Real-time combination strategies including Fama and French (1993) three factors 

Base case design 32 [2] / 71 [13] 0.000 32 [3] / 71 [10] 0.000 

Rolling-window training sample 32 [0] / 71 [8] 0.000 20 [0] / 83 [16] 0.000 

Risk aversion, γ = 2 22 [3] / 81 [13] 0.000 24 [3] / 79 [10] 0.000 

Risk aversion, γ = 10 31 [3] / 72 [12] 0.000 32 [3] / 71 [10] 0.000 

Initial training sample length, K = 240 31 [6] / 72 [11] 0.000 35 [9] / 68 [10] 0.001 

Initial training sample length, K = 360 30 [6] / 73 [9] 0.000 28 [7] / 75 [9] 0.000 

Leverage constraint, L ≤ 1.0 22 [2] / 81 [11] 0.000 27 [3] / 76 [12] 0.000 

Leverage constraint, L ≤ 1.5 21 [3] / 82 [13] 0.000 26 [2] / 77 [9] 0.000 

Leverage constraint, L ≤ ∞ 31 [3] / 72 [12] 0.000 32 [3] / 71 [11] 0.000 
The robustness design with rolling-window parameter 

estimation leads to a slightly larger number of positive 

Sharpe ratio differences but a substantially smaller num- 

ber of positive CER differences. Using a lower ( γ = 2 ) or 

higher ( γ = 10 ) risk aversion parameter leads to almost 

identical results to the base case with γ = 5 . 

One potential concern with the ten-year training sam- 

ple in our base case is the relatively small number of 

observations used to estimate portfolio positions early in 

the out-of-sample period. We therefore consider specifica- 

tions with 20-year ( K = 240 ) and 30-year ( K = 360 ) initial 

estimation periods. These designs produce roughly the 

same number of positive Sharpe ratio and CER differences 

that the base case does. If anything, these robustness 

results are less favorable for volatility management, as the 

number of significantly negative performance differences 

is much higher in the K = 240 case. 

The final three rows in Panel A of Table 7 detail the 

impact of alternative leverage constraints. Imposing a 

leverage constraint could either improve performance if 

real-time investors avoid taking extreme positions or hurt 

performance if the constraint prevents investors from 

capitalizing on the information content in lagged volatility. 

We consider tighter leverage constraints of | y t | ≤ 1.0 and 
| y t | ≤ 1.5 as well as an unconstrained specification, but 

the performance of the combination strategies does not 

systematically improve for these cases. 

In summary, our main conclusions from Panel A of 

Table 6 continue to hold across the robustness results in 

Panel A of Table 7 . Incorporating volatility-managed port- 

folios into the real-time portfolio decision tends to harm 

performance. More than half of the Sharpe ratio and CER 

differences are negative under each specification. The CER 

results, in particular, generate strong statistical evidence 

against using volatility-managed portfolios in real-time 

applications. All nine of the binomial p -values for the CER 

differences produce statistical rejections of the null hy- 

pothesis of equal performance at the 5% significance level. 

Finally, Panel B of Table 7 summarizes our robustness 

tests for specifications that include the Fama and French 

(1993) three factors. Each of the robustness specifications 

produces similar evidence against volatility management, 

and all 18 binomial p -values reject the null hypothesis of 

equal performance differences at the 1% level. Overall, our 

findings in this section indicate that attempting to use 

volatility management in real time tends to degrade per- 

formance relative to constraining the investment universe 

to the original factors and anomaly portfolios. 
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Table 8 

Comparison of volatility-managed strategies with traditional anomaly strategies: broad sample. 

Panel A summarizes results on the performance of volatility-managed versions of 103 trading strategies. The spanning regression tests are described in 

Table 4 , and the tests for Sharpe ratio differences and certainty equivalent return (CER) differences are described in Table 6 . Panel B summarizes results from 

analogous tests for 102 anomaly-based trading strategies. The in-sample tests are CAPM regressions and Fama and French (1993) three-factor regressions. 

For each set of regressions, the table reports the number of alphas that are positive ( + ), positive and significant at the 5% level (in brackets), negative 

( −), and negative and significant at the 5% level (in brackets). We assess statistical significance of the alpha estimates using White (1980) standard errors. 

For the out-of-sample tests for a given anomaly portfolio, we compute the Sharpe ratio and CER for (i) the real-time strategy that combines the anomaly 

portfolio, the market portfolio, and the risk-free asset and (ii) the real-time strategy that combines the market portfolio and the risk-free asset. We also 

compute Sharpe ratios and CERs for analogous strategies that include the Fama and French (1993) factors. Column (5) in Panel B summarizes the Sharpe 

ratio differences for these strategies, and column (7) summarizes the CER differences. A positive Sharpe ratio or CER difference indicates outperformance 

for the real-time strategy that includes the anomaly portfolio. The out-of-sample tests are based on a ten-year training period and an expanding-window 

design. We use a risk aversion parameter of γ = 5 and impose a leverage constraint that the sum of absolute weights on the risky assets is less than or 

equal to five. For each set of comparisons, the table reports the number of differences that are positive ( + ), positive and significant at the 5% level (in 

brackets), negative ( −), and negative and significant at the 5% level (in brackets). We assess statistical significance of the Sharpe ratio and CER differences 

using the approaches in Jobson and Korkie (1981) and DeMiguel et al. (2009b) , respectively. For each set of comparisons, we also present the two-tailed 

p -value from a binomial distribution test of the null hypothesis that each of the performance measures is equally likely to be positive or negative. 

Alpha: Sharpe ratio difference: CER difference: 

α Binomial �SR Binomial �CER Binomial 

Description Total + / − p -value + / − p -value + / − p -value 

(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: Spanning regressions 

Spanning regressions 103 77 [23] / 26 [3] 0.000 45 [8] / 58 [2] 0.237 31 [7] / 72 [7] 0.000 

Spanning regressions with FF3 controls 103 70 [21] / 33 [3] 0.000 32 [2] / 71 [13] 0.000 32 [3] / 71 [10] 0.000 

Panel B: Anomaly regressions 

CAPM regressions 102 93 [73] / 9 [3] 0.000 75 [19] / 27 [1] 0.000 68 [18] / 34 [1] 0.001 

FF3 regressions 100 81 [60] / 19 [5] 0.000 66 [18] / 34 [1] 0.002 55 [19] / 45 [1] 0.368 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3. Explanations for poor out-of-sample performance 

The tests in Section 4.3.2 suggest that, in the volatility-

managed portfolios setting, strong in-sample performance

metrics often fail to translate into real-time gains for in-

vestors. Based on this evidence, it is natural to explore the

economic drivers of these results and examine whether

or not our findings generalize to more familiar investment

settings. As a starting point for this analysis, we compare

the performance of the combination strategies based on

volatility-managed portfolios with the performance of

traditional anomaly strategies. 

Panel A of Table 8 reproduces the main results from

Tables 4 and 6 on the in-sample and out-of-sample perfor-

mance of combination strategies. As described above, these

tests focus on the value of including a volatility-managed

version of a given portfolio in the investment opportunity

set. In the broad sample of 103 trading strategies, positive

spanning regression alphas are common, but real-time

investors typically earn lower Sharpe ratios and CERs

under the expanded investment opportunity set. 

Panel B of Table 8 shows results from analogous

tests for traditional anomaly strategies. Studies showing

cross-sectional anomalies routinely emphasize the alphas

earned by these strategies relative to popular asset pricing

models such as the Capital Asset Pricing Model (CAPM)

or Fama and French (1993) three-factor model. We repli-

cate these types of tests in our broad sample and find

that 93 out of 102 portfolios earn positive CAPM alphas,

and 81 out of 100 earn positive three-factor alphas. 22
22 The total number of strategies considered in Panel B is less than 103 

because we exclude the benchmark factors from the analysis for each 

model. 

 

 

 

 

A large proportion of these in-sample alpha estimates

are statistically significant. A positive alpha relative to

a given factor model implies that the ex post optimal

combination of anomaly portfolio and benchmark factors

expands the mean-variance frontier relative to the ex post

optimal combination of the benchmark factors. As with the

volatility-managed portfolios setting, however, real-time

investors must construct their portfolios using prior data.

For each anomaly portfolio and benchmark model, we

conduct an out-of-sample exercise that compares the per-

formance of two strategies: (i) the real-time strategy that

combines the anomaly portfolio, the benchmark factors,

and the risk-free asset and (ii) the real-time strategy that

combines the benchmark factors and the risk-free asset.

The out-of-sample design parameters are identical to those

introduced in Section 4.3.1 . 

Although we do see out-of-sample performance degra-

dation in Panel B of Table 8 , the effects are much less acute

relative to those seen for the volatility-managed portfolios

in Panel A. Adding an anomaly portfolio to the CAPM mar-

ket factor in real time, for example, leads to a Sharpe ratio

improvement in 75 out of 102 cases and a CER improve-

ment in 68 out of 102 cases. Real-time performance rela-

tive to the Fama and French (1993) three-factor benchmark

is less impressive, with positive Sharpe ratio differences for

66 out of 100 strategies and positive CER differences for 55

out of 100 strategies. Nonetheless, these results indicate

that real-time anomaly strategies fare substantially better

compared with real-time volatility-managed strategies. 

The results in Table 8 provide a useful backdrop

to examine why the statistical support for out-of-

sample combination strategies is particularly weak in

the volatility-managed portfolios setting. We consider
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Table 9 

Summary of multiple structural break tests for spanning regressions and anomaly regressions: broad sample. 

Panel A summarizes results from structural break tests in spanning regressions of volatility-managed anomaly portfolio returns on original anomaly port- 

folio returns. We consider univariate spanning regressions and spanning regressions with additional controls for the Fama and French (1993) three factors. 

The tests follow Bai and Perron (1998, 2003) and allow for an unknown number of structural breaks. Column (2) reports the total number of volatility- 

managed strategies considered. For each set of regressions, columns (3)–(7) present the frequency distribution for the number of identified breaks ( N b ), and 

column (8) reports the mean number of breaks ( ̄N b ). Panel B summarizes results from structural break tests in regressions of traditional anomaly portfolio 

returns on factor returns. We consider CAPM and Fama and French (1993) three-factor regressions. 

Frequency distribution for breaks 

Description Total N b = 0 N b = 1 N b = 2 N b = 3 N b ≥ 4 N̄ b 
(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: Spanning regressions 

Spanning regressions 103 0 10 52 34 7 2.37 

Spanning regressions with FF3 controls 103 1 8 53 35 6 2.37 

Panel B: Anomaly regressions 

CAPM regressions 102 15 38 39 9 1 1.44 

FF3 regressions 100 10 25 36 21 8 1.92 

23 The Internet Appendix provides additional information on the design 

of these tests and presents detailed results from structural break tests for 
three potential explanations: (i) estimation risk in the 

out-of-sample portfolio choice exercise, (ii) low power in 

the out-of-sample tests, and (iii) structural instability in 

the conditional risk-return trade-off for the various factors 

and anomaly portfolios. 

A known concern with out-of-sample portfolio opti- 

mization is estimation risk. DeMiguel et al. (2009b) , for 

example, note that optimal portfolios constructed from 

sample moments often exhibit extreme weights that 

fluctuate dramatically over time. Intuitively, it can be 

difficult to reliably estimate asset return moments with 

short training periods, and these moments are the key 

determinants of portfolio weights [e.g., Eq. (15) ]. Although 

estimation error is always a challenge with real-time 

portfolio choice applications, we are skeptical that it 

fully accounts for our results for a variety of reasons. 

First, our empirical design incorporates several features 

intended to mitigate estimation risk, including a leverage 

constraint on portfolio positions, a risk-free asset in the 

investment opportunity set ( Kirby and Ostdiek, 2012 ), 

and expanding-window parameter estimation. Second, 

DeMiguel et al. (2009b) emphasize that estimation risk is 

less problematic in applications, like ours, in which the 

number of test assets is small. Third, our main results 

are based on comparisons of real-time strategies that 

include volatility-managed portfolios in the investment 

opportunity set with those that exclude volatility-managed 

portfolios from the investment opportunity set. Thus, both 

the combination strategy and the benchmark suffer from 

estimation risk, and it is not obvious why one of the two 

would be more adversely impacted. Fourth, if estimation 

risk is the primary explanation of the poor performance 

of the combination strategies, then we should see more 

favorable results under specifications with longer training 

samples. Table 7 reveals, however, that lengthening the 

initial training sample has little impact on our conclusions. 

Finally, Panel B of Table 8 provides direct evidence that 

in-sample alphas do translate into improved real-time 

performance measures much more frequently outside of 

the volatility-managed portfolios setting. 

Another common concern with out-of-sample tests is 

that they lack power relative to in-sample tests because 
the evaluation period is shorter (e.g., Inoue and Kilian, 

2004 ). Our focus on assessing the value of volatility 

management for real-time investors necessitates the use 

of out-of-sample tests. Low power also does not seem to 

be a satisfactory explanation for our results. If volatility 

management is systematically beneficial to investors, then 

we should see a majority of performance differences that 

are positive in Tables 6 and 7 . Low power might be an 

explanation for why an individual result is statistically 

insignificant, but it does not account for why most of the 

performance differences have the wrong sign. 

A more plausible economic explanation for the poor 

out-of-sample performance for the combination strate- 

gies is structural instability in the spanning regression 

parameters from Eq. (5) and the implied optimal weights. 

We investigate this issue formally using Bai and Perron 

(1998, 2003) structural break tests. Table 9 summarizes 

results from these tests for the spanning regressions and 

the traditional anomaly regressions. 23 In Panel A, we 

find strong statistical evidence of structural breaks in the 

spanning tests for the 103 volatility-managed portfolios. 

For the univariate spanning regressions, none of the tests 

suggests zero breaks, and 41 out of 103 tests identify 

three or more breaks. The average number of breaks is 

2.37 for both the univariate spanning regressions and 

the spanning regressions that control for the Fama and 

French (1993) factors. In contrast, structural breaks are less 

common in the standard time-series anomaly regressions 

in Panel B. In the CAPM regressions, for example, 53 out 

of 102 strategies have one break or less, and the average 

number of breaks is 1.44. From an economic perspective, 

structural breaks are direct evidence of instability in 

the underlying regression parameters and the associated 

optimal portfolio weights [e.g., Eq. (10) ]. In the volatility- 

managed portfolios setting, the prevalence of breaks often 

works to the detriment of real-time investors who rely on 

past data in portfolio construction. 
the nine equity factors. 
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5. Conclusion 

Recent literature suggests that investors can enhance

Sharpe ratios and lifetime utility by adopting simple trad-

ing rules that scale positions in popular equity portfolios

by lagged variance. The trading strategies implied by these

studies typically take one of two forms: direct investments

in volatility-managed portfolios or combination portfolios

that invest in both the volatility-managed version and the

original version of an underlying strategy. We show that

neither of these methods suggests a pervasive link be-

tween volatility management and improved performance

for real-time investors. 

Direct investments in volatility-scaled strategies are

straightforward to implement in real time, and studies fol-

lowing this approach offer compelling empirical evidence

that these dynamic portfolios are superior to their static

versions. The evidence is isolated to a handful of strategies

(e.g., the market, momentum, and betting-against-beta

factors), however, making it difficult to draw broad con-

clusions. We fill this gap by conducting a comprehensive

empirical investigation of volatility-managed portfolios.

Across a broad sample of 103 equity portfolios, volatility

management degrades and improves performance at about

the same frequency. From a practical perspective, the re-

sults suggest that direct investments in volatility-managed

portfolios are not a panacea of improved performance.

From an economic perspective, the roughly equal split

between positive and negative performance differences is

suggestive of a generally positive risk-return trade-off for

the individual factors and anomaly portfolios. 

Combination strategies that incorporate volatility

management, in contrast, exhibit systematically strong in-

sample performance. On this point, we extend Moreira and

Muir ’s (2017) spanning regression analysis to our broader

set of 103 equity strategies and show that these portfolios

tend to exhibit positive alphas. We also demonstrate, how-

ever, that structural instability in the spanning regression

parameters limits the appeal of this approach to investors

conditioning their portfolios on real-time information.

 

Table A1 

Anomaly variables. 

The table summarizes the firm characteristics used to construct the long-short ano

by anomaly type (i.e., accruals, intangibles, investment, momentum, profitability, t

description and note the original study documenting the corresponding anomaly.

by Hou et al. (2015) and McLean and Pontiff (2016) and the relevant source (i.e., “H

variable, the table also reports the start of the sample period for portfolio returns

Anomaly Description Orig

(1) (2) (3) 

Panel A: Acc

IvC Inventory changes Tho

IvG Inventory growth Bel

NOA Net operating assets Hir

OA Operating accruals Sloa

POA Percent operating accruals Haf

PTA Percent total accruals Haf

TA Total accruals Rich

�NCO Changes in net noncurrent operating assets Soli

�NWC Changes in net noncash working capital Soli

NoaG Growth in net operating assets minus accruals Fair
The Sharpe ratios and CERs for the out-of-sample com-

bination portfolios are dramatically less impressive than

those earned by their in-sample versions. Moreover, the

real-time combination strategies routinely underperform

simpler strategies constrained to invest in the original,

unscaled portfolios. 

Appendix A 

This appendix provides details on the construction of

the anomaly portfolios used in our empirical tests. 

As described in Section 2.1 , we examine 94 anomaly

variables from Hou et al. (2015) and McLean and Pontiff

(2016) . Our list of firm characteristics includes vari-

ables from these studies that are continuous and can

be constructed from CRSP, Compustat, and IBES data.

We exclude predictors that are based on industry-level

variables. Table A1 presents a brief description of the firm

characteristics and notes the original study documenting

each corresponding anomaly. We construct the anomaly

variables following the descriptions provided by Hou et al.

(2015) and McLean and Pontiff (2016) , and column (4) of

Table A1 gives the relevant sources (i.e., “HXZ” or “MP”). 

The sample includes NYSE, Amex, and Nasdaq ordinary

common stocks with return data available on the CRSP

monthly and daily stock files for the period from July

1926 to December 2016. When a firm is delisted from an

exchange during a given month, we replace any missing

returns with the delisting returns provided by CRSP. For

a given anomaly variable, we sort firms periodically into

ten groups and construct value-weighted portfolios. Our

tests focus on the corresponding hedge portfolio that

takes a long (short) position in the decile of stocks that

is expected to outperform (underperform) based on prior

literature. 

The portfolios exclude financial stocks (SIC codes

60 0 0–6999) and firms with market capitalization below

the first NYSE decile or share price less than $5 at the

portfolio formation date. To ensure that accounting data

are known prior to the returns they are used to forecast,
maly decile portfolios in the paper. The panels of the table are organized 

rading, and value). For each characteristic, we provide a symbol and brief 

 We construct the anomaly variables following the descriptions provided 

XZ” or “MP”) for a given anomaly is listed in the table. For each anomaly 

 and the number of monthly return observations. 

inal study Source Start Number 

(4) (5) (6) 

ruals 

mas and Zhang (2002) HXZ 1963:08 641 

o and Lin (2012) HXZ 1963:08 641 

shleifer et al. (2004) HXZ 1963:08 641 

n (1996) HXZ 1963:08 641 

zalla et al. (2011) HXZ 1963:08 641 

zalla et al. (2011) HXZ 1963:08 641 

ardson et al. (2005) HXZ 1963:08 641 

man (2008) MP 1963:08 641 

man (2008) MP 1963:08 641 

field et al. (2003) MP 1963:08 641 

( continued on next page ) 
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Table A1 ( continued ) 

Anomaly Description Original study Source Start Number 

(1) (2) (3) (4) (5) (6) 

Panel B: Intangibles 

AccQ Accrual quality Francis et al. (2005) HXZ 1966:08 605 

AD/M Advertisement expense-to-market Chan et al. (2001) HXZ 1974:08 509 

BC Brand capital investment rate Belo et al. (2014b) HXZ 1980:08 437 

H/N Hiring rate Belo et al. (2014a) HXZ 1963:08 641 

OC/A Organizational capital-to-assets Eisfeldt and Papanikolaou (2013) HXZ 1963:08 641 

OL Operating leverage Novy-Marx (2011) HXZ 1963:08 641 

RC/A R & D capital-to-assets Li (2011) HXZ 1980:08 437 

RD/M R & D-to-market Chan et al. (2001) HXZ 1976:08 485 

RD/S R & D-to-sales Chan et al. (2001) HXZ 1976:08 485 

Age Firm age Barry and Brown (1984) MP 1963:08 641 

Panel C: Investment 

�PI/A Changes in PP&E plus changes in inventory Lyandres et al. (2008) HXZ 1963:08 641 

ACI Abnormal corporate investment Titman et al. (2004) HXZ 1966:08 605 

CEI Composite issuance Daniel and Titman (2006) HXZ 1931:08 1025 

I/A Investment-to-assets Cooper et al. (2008) HXZ 1963:08 641 

IG Investment growth Xing (2008) HXZ 1963:08 641 

NSI Net stock issues Pontiff and Woodgate (2008) HXZ 1963:08 641 

NXF Net external financing Bradshaw et al. (2006) HXZ 1974:08 509 

BeG Growth in book equity Lockwood and Prombutr (2010) MP 1963:08 641 

I-ADJ Industry-adjusted growth in investment Abarbanell and Bushee (1998) MP 1965:08 617 

Panel D: Momentum 

Abr-1 Abnormal stock returns around earnings announcements Chan et al. (1996) HXZ 1974:08 509 

R11-1 Price momentum (11-month prior returns) Fama and French (1996) HXZ 1927:08 1073 

R6-1 Price momentum (6-month prior returns) Jegadeesh and Titman (1993) HXZ 1926:09 1084 

RE-1 Revisions in analysts’ earnings forecasts Chan et al. (1996) HXZ 1976:08 485 

SUE-1 Earnings surprise Foster et al. (1984) HXZ 1976:08 485 

R6-Lag Lagged momentum Novy-Marx (2012) MP 1927:08 1073 

Season Seasonality Heston and Sadka (2008) MP 1946:08 845 

W52 52-week high George and Hwang (2004) MP 1927:08 1073 

Panel E: Profitability 

ATO Asset turnover Soliman (2008) HXZ 1963:08 641 

CTO Capital turnover Haugen and Baker (1996) HXZ 1963:08 641 

F F -score Piotroski (2000) HXZ 1974:08 509 

FP Failure probability Campbell et al. (2008) HXZ 1976:08 485 

GP/A Gross profitability-to-assets Novy-Marx (2013) HXZ 1963:08 641 

O O -score Dichev (1998) HXZ 1963:08 641 

PM Profit margin Soliman (2008) HXZ 1963:08 641 

RNA Return on net operating assets Soliman (2008) HXZ 1963:08 641 

ROA Return on assets Balakrishnan et al. (2010) HXZ 1974:08 509 

ROE-HB Return on equity Haugen and Baker (1996) HXZ 1974:08 509 

RS Revenue surprise Jegadeesh and Livnat (2006) HXZ 1976:08 485 

TES Tax expense surprise Thomas and Zhang (2011) HXZ 1976:08 485 

TI/BI Taxable income-to-book income Green et al. (2017) HXZ 1963:08 641 

�ATO Change in asset turnover Soliman (2008) MP 1963:08 641 

�PM Change in profit margin Soliman (2008) MP 1963:08 641 

E-con Earnings consistency Alwathainani (2009) MP 1971:08 545 

S/IV Change in sales minus change in inventory Abarbanell and Bushee (1998) MP 1963:08 641 

S/P Sales-to-price Barbee, Jr. et al. (1996) MP 1963:08 641 

S/SG & A Change in sales minus change in SG & A Abarbanell and Bushee (1998) MP 1963:08 641 

Z Z -score Dichev (1998) MP 1963:08 641 

Panel F: Trading 

β-D Dimson’s beta (daily data) Dimson (1979) HXZ 1926:09 1084 

β-FP Frazzini and Pedersen’s beta Frazzini and Pedersen (2014) HXZ 1931:08 1025 

1/P 1/share price Miller and Scholes (1982) HXZ 1926:08 1085 

Disp Dispersion of analysts’ earnings forecasts Diether et al. (2002) HXZ 1976:08 485 

Dvol Dollar trading volume Brennan et al. (1998) HXZ 1926:08 1085 

Illiq Illiquidity as absolute return-to-volume Amihud (2002) HXZ 1926:08 1085 

Ivol Idiosyncratic volatility Ang et al. (2006) HXZ 1926:09 1084 

MDR Maximum daily return Bali et al. (2011) HXZ 1926:09 1084 

( continued on next page ) 
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Table A1 ( continued ) 

Anomaly Description Original study Source Start Number 

(1) (2) (3) (4) (5) (6) 

ME Market equity Banz (1981) HXZ 1926:08 1085 

S-Rev Short-term reversal Jegadeesh (1990) HXZ 1926:08 1085 

Svol Systematic volatility Ang et al. (2006) HXZ 1986:08 365 

Turn Share turnover Datar et al. (1998) HXZ 1926:08 1085 

Tvol Total volatility Ang et al. (2006) HXZ 1926:09 1084 

β-M Fama and MacBeth’s beta (monthly data) Fama and MacBeth (1973) MP 1931:08 1025 

σ (Dvol) Dollar volume volatility Chordia et al. (2001) MP 1929:08 1049 

B-A Bid-ask spread Amihud and Mendelson (1986) MP 1963:08 641 

Short Short interest Dechow et al. (2001) MP 1973:08 521 

Skew Coskewness Harvey and Siddique (2000) MP 1931:08 1025 

Vol-T Volume trend Haugen and Baker (1996) MP 1931:08 1025 

Panel G: Value 

A/ME Market leverage Bhandari (1988) HXZ 1963:08 641 

B/M Book-to-market equity Rosenberg et al. (1985) HXZ 1963:08 641 

CF/P Cash flow-to-price Lakonishok et al. (1994) HXZ 1963:08 641 

D/P Dividend yield Litzenberger and Ramaswamy (1979) HXZ 1927:08 1073 

Dur Equity duration Dechow et al. (2004) HXZ 1963:08 641 

E/P Earnings-to-price Basu (1983) HXZ 1963:08 641 

EF/P Analysts’ earnings forecasts-to-price Elgers et al. (2001) HXZ 1976:08 485 

LTG Long-term growth forecasts of analysts La Porta (1996) HXZ 1982:08 413 

NO/P Net payout yield Boudoukh et al. (2007) HXZ 1974:08 509 

O/P Payout yield Boudoukh et al. (2007) HXZ 1974:08 509 

Rev Long-term reversal De Bondt and Thaler (1985) HXZ 1931:08 1025 

SG Sales growth Lakonishok et al. (1994) HXZ 1967:08 593 

An-V Analyst value Frankel and Lee (1998) MP 1976:08 485 

σ (CF) Cash flow variance Haugen and Baker (1996) MP 1978:08 461 

B/P-E Enterprise component of book-to-price Penman et al. (2007) MP 1984:08 389 

B/P-Lev Leverage component of book-to-price Penman et al. (2007) MP 1984:08 389 

Enter Enterprise multiple Loughran and Wellman (2012) MP 1963:08 641 

Pension Pension funding status Franzoni and Marin (2006) MP 1981:08 425 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we lag annual Compustat data by six months and assume

quarterly Compustat data are known after the report date

of quarterly earnings. For the strategies based on annual

Compustat data, the decile portfolios are rebalanced annu-

ally at the beginning of July. The other trading strategies

are rebalanced monthly. 

There are some exceptions to the variable selection and

portfolio formation rules described above. The composite

issuance variable, CEI , in Panel C of Table A1 is constructed

from CRSP data, but we rebalance the corresponding

anomaly portfolios annually. The short interest variable,

Short , in Panel F is constructed from the Compustat

Supplemental Short Interest File. The pension funding

status variable, Pension , in Panel G is constructed from the

Compustat Pension Annual File. 

The sample period for a given anomaly portfolio is

determined by data availability for the corresponding

sorting variable. 
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