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Abstract—This paper investigates the linear precoder design
that maximizes the average mutual information of multiple-input
multiple-output fading channels with statistical channel state
information known at the transmitter. It formulates the design
from the standpoint of finite-alphabet inputs, which leads to a
problem that is very important in practice but extremely dif-
ficult in theory: First, the average mutual information lacks
closed-form expression and involves prohibitive computational
burden. Second, the optimization over the precoder is nonconcave
and thus easily gets stuck in local maxima. To address these
issues, this study first derives lower and upper bounds for the
average mutual information, in which the computational com-
plexity is reduced by several orders of magnitude compared to
calculating the average mutual information directly. It proves
that maximizing the bounds is asymptotically optimal and shows
that, with a constant shift, the lower bound actually offers a very
accurate approximation to the average mutual information for
various fading channels. This paper further proposes utilizing
the lower bound as a low-complexity and accurate alternative
for developing a two-step algorithm to find a near global optimal
precoder. Numerical examples demonstrate the convergence and
efficacy of the proposed algorithm. Compared to its conventional
counterparts, the proposed linear precoding method provides
significant performance gain over existing precoding algorithms.
The gain becomes more substantial when the spatial correlation
of MIMO channels increases.

Index Terms—Finite-alphabet inputs, multiple-input multiple-
output, precoder design, statistical channel state information.

I. INTRODUCTION

T HE Information-theoretic approach is a fundamental
means to design linear precoder. It continues to fascinate

researchers, as evidenced in [1]–[5] and references therein,
especially with the development of capacity achieving channel
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coding and transceiver structure [6]. The theoretical limit
on the information rate that a communication channel can
support with an arbitrary low probability of error is referred
to as channel capacity. The capacity is achievable with inde-
pendent Gaussian inputs for parallel additive white Gaussian
noise (AWGN) channels and with correlated Gaussian inputs
for multiple-input multiple-output (MIMO) channels [7].
Although Gaussian inputs are theoretically optimal, they are

rarely realized in practice. Alternatively, in practical commu-
nication systems, inputs are usually taken from finite-alphabet
constellation sets, such as phase shift keying (PSK) modula-
tion, pulse amplitude modulation (PAM), and quadrature am-
plitude modulation (QAM), which depart significantly from the
Gaussian assumption. Therefore, a considerable performance
gap exists between precoding schemes designed based on fi-
nite-alphabet inputs and those based on Gaussian-input assump-
tions. In [8], the optimal power allocation for parallel Gaussian
channels with finite-alphabet inputs is obtained; it demonstrates
the capacity-achieving strategy for Gaussian inputs—the larger
the gain of a channel, the higher its allocated power—can be
quite suboptimal for finite-alphabet inputs. The reason is that
the mutual information with finite-alphabet inputs is bounded;
thus, there is little incentive to allocate more power to sub-
channels already close to saturation. For the case of MIMO
channels, optimization of the precoder using a gradient-descent
method is introduced in [9]–[11]. The potential computational
complexity [12] and the structure of the optimal precoder [12],
[13] for real-valued channels are revealed. An iterative algo-
rithm that globally optimizes the precoder is developed in [14]
for complex-valued channels.
These aforementioned results and precoding algorithms hold,

unfortunately, only when the transmitter accurately knows the
instantaneous channel state information (CSI). Since the dom-
inant form of duplexing in modern wide-area mobile systems
hinges on the frequency separation of the uplink and downlink,
the CSI at the transmitter is obtained through feedback on band-
width-limited control channels. In such cases, the use of instan-
taneous CSI is generally unrealistic, especially for fast fading
channels, with two reasons: First, the overhead associated with
the instantaneous feedback can be excessive. Second, the in-
stantaneous CSI at the transmitter may be outdated when the
round-trip delays obtaining the CSI are non-negligible with re-
spect to the coherence time of channels. Therefore, exploiting
long-term channel statistics appears to be more plausible be-
cause these statistics vary only with the antenna parameters and
the surrounding environment and thus may change very slowly.
Although the precoding algorithms to maximize channel ca-

pacity with statistical CSI have been studied extensively for
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Gaussian inputs [5], [15]–[18], it is still an open problem on
how to develop an efficient and practical algorithm for maxi-
mizing the average mutual information with finite-alphabet in-
puts. The obstacles are twofold: First, the average mutual infor-
mation lacks closed-form expression and involves prohibitive
computational complexity. Second, the optimization problem
over the precoding matrix is nonconcave in general and can be
extremely difficult to solve [12]–[14].
This study takes a step toward exploring the structure of

the optimal linear precoder that maximizes the average mutual
information for finite-alphabet inputs with statistical CSI. The
process begins by decomposing the precoder, with singular
value decomposition (SVD), into three components: the left
singular vectors, the diagonal power allocation matrix, and the
right singular vectors. The left singular vectors of the optimal
linear precoder are proved to be the eigenvectors of the transmit
correlation matrix; the optimization of the power allocation ma-
trix and the right singular vectors relies on iterative algorithms.
Due to the prohibitive complexity of evaluating the average

mutual information, this work derives the closed-form lower and
upper bounds as alternatives,which reduce the computational ef-
fort by several orders of magnitude compared to calculating the
average mutual information directly. It proves that the use of ei-
ther bound for precoder design achieves the optimality asymp-
totically in the low and high signal-to-noise ratio (SNR) regions
and shows that, with a constant shift, the lower bound actually
offers an accurate approximation to the averagemutual informa-
tion for various settings. Since the bounds are concave functions
on the diagonal elements of the squared power allocation ma-
trix, the power allocation matrix is designed within the frame-
work of convex optimization. The optimization of the right sin-
gular vectors is formulated as a problem on the Stiefel mani-
fold,which is solved by a gradientmethodwith projection. Com-
bining the design of the left singular vectors with the optimiza-
tion of the power allocationmatrix and the right singular vectors,
a two-step iterative algorithm constitutes a unified framework,
which achieves a near global optimal precoding solution.
The remainder of this paper is organized as follows: Section II

introduces the system model and the properties of average mu-
tual information. Section III considers the optimal precoding
structure and introduces lower and upper bounds for average
mutual information. Section IV discusses the asymptotic opti-
mality and the concavity results, with respect to some param-
eters of the precoder, of both bounds. The two-step algorithm
is then proposed to optimize the linear precoder, including the
design of the left singular vectors, the power allocation matrix,
and the right singular vectors. Section V presents several numer-
ical examples to demonstrate the benefit for using the proposed
bounds and the performance gain of the new two-step algorithm.
Finally, Section VI offers conclusions.
Notation: Boldface uppercase letters denote matrices, bold-

face lowercase letters denote column vectors, and italics de-
note scalars. The superscripts and stand for trans-
pose and Hermitian operations, respectively; and
denote the th element and th row of matrix ; the operator

denotes a column vector with the diagonal entries of ,
while denotes a diagonal matrix with elements given by
vector ; denotes the trace operation; denotes a
positive definite matrix; and denote an identity matrix and

a zero matrix of appropriate dimensions, respectively. The op-
erator denotes the statistical expectation with respect to its
variable, denotes the complex spaces, is the real part of a
complex number, is the imaginary unit, and log and ln are used
for the base two logarithm and natural logarithm, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

Consider a MIMO system over frequency flat fading with
transmit antennas and receive antennas. Let be
a transmitted signal vector with zero mean and identity covari-
ance matrix (i.e., ). The received signal
is given by

(1)

where is a random matrix whose th entry is
the complex propagation coefficient between the th transmit
antenna and the th receive antenna; is a pre-
coding matrix; is an independent and identically
distributed (i.i.d.) zero-mean circularly symmetric Gaussian
noise with covariance .
For doubly correlated MIMO channels, the channel matrix

can be modeled as [19]

(2)

where is a complex matrix with i.i.d. zero-mean
and unit variance Gaussian entries, and
and are transmit and receive correlation
matrices, respectively.
This work assumes the receiver has the perfect CSI through

pilot-assisted channel estimation, whereas the transmitter has
only statistical CSI through feedback (i.e., the transmitter knows
both transmit and receive correlation matrices). Based on the
statistical CSI, the precoding problem is thus the design of ma-
trix that maximizes the average mutual information.

B. Average Mutual Information for Finite-Alphabet Inputs

When input signals are drawn from the equiprobable discrete
constellations, such as -ary PSK, PAM, or QAM, where is
the number of points in the constellation sets, the averagemutual
information between and , with the channel realization
known at the receiver, is given by

(3)

in which is used to emphasize the dependence of average
mutual information on the precoder ; is the instan-
taneous mutual information between and [11]

(4)

in which denotes the Euclidean norm of a vector, and
is equal to . Both and contain symbols, taken
independently from the -ary signal constellation.
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When a linear unitary transform is applied on the channel
output signal , the MIMO system is equivalent to a model with
channel matrix and noise . Considering the unitarily
invariant of Euclidean norm, the average mutual information
satisfies [see (3) and (4)]

(5)

On the other hand, when is applied on , the average mutual
information of a system with input signal may change to a
different value; that is,

(6)

which can be verified by numerical evaluation. This relation-
ship implies that the linear precoder, even a unitary one, may
improve the average mutual information.
The objective of this work is thus to develop efficient algo-

rithms to find the optimal precoder that maximizes (3). The op-
timization is carried out over all possible complex pre-
coding matrices with transmit power constraint; it can be for-
mulated as an optimization problem:

(7)

The computational efficiency of solving this problem de-
pends on the calculation of and the optimization over ,
which are hindered by several barriers: First, the closed-form
expression of is difficult, if not impossible, to derive,
and the calculation is generally prohibitive because of the
multiple integral involved. Taken MIMO channels
as an example, integrals from to need
to be considered. Second, the optimization of average mutual
information can be extremely difficult because is non-
concave over . A function is concave if its domain is
a convex set and if for all , and with ,
we have [20]

(8)

For the problem considered in this work,
defines a convex set; however, the

inequality corresponding to (8) fails to hold. This fact can be
verified by counterexamples (e.g., , , ,

, and ).

III. OPTIMAL PRECODING STRUCTURE AND AVERAGE
MUTUAL INFORMATION BOUNDS

This section explores the structure of the optimal precoding
matrix and highlights the effect of correlation on the average
mutual information so as to obtain a design criterion related only
to and .
From eigenvalue decomposition, the correlation matrices

and can be expressed as

and (9)

where and are unitary matrices whose columns are
eigenvectors of and , and and represent diagonal
matrices whose diagonal entries are the eigenvalues of and

, respectively. Since a correlation matrix is positive-definite,
the channel matrix is written as

(10)

Based on the property in (5) and the fact that randommatrices
and have the same statistics, the channel

model (1) is equivalent to

(11)

where and are signals when unitary transform is applied
on and , respectively. Note that maximizing
is equivalent to maximizing , which is the focus
of the sequel discussion.
Because is an increasing function of the SNR (i.e.,
) [10], the average mutual information is

also an increasing function of the SNR. Therefore, the optimal
precoder should use the maximum available power; that is,
the inequality constraint in problem (7) can be replaced by an
equality constraint:

(12)

Consider SVD of the precoding matrix ,
where and are unitary matrices, and contains non-
negative diagonal entries in decreasing order, we can establish
the following proposition.
Proposition 1: The left singular vectors of the optimal linear

precoder that maximizes the average mutual information coin-
cide with the eigenvectors of the transmit correlation matrix .

Proof: See Appendix A.
This result provides the design for the left singular vectors,

which simplify the channel model (11) to

(13)

where is the remaining part of the precoder.
For the simplified model, the following proposition provides

both lower and upper bounds:
Proposition 2: The average mutual information of doubly

correlated MIMO channels with finite-alphabet inputs can be
lower bounded by

(14)

where denotes the th diagonal element of ; it can be upper
bounded by

(15)

Proof: See Appendix B.
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IV. PRECODER DESIGN FOR MAXIMIZING THE AVERAGE
MUTUAL INFORMATION

This section considers the precoder design with criteria of
maximizing either the lower bound (14) or the upper bound (15).
It begins by proving the asymptotic optimality of using both
bounds and then develops a unified algorithm to solve the pre-
coding problem efficiently.

A. Asymptotic Optimality

1) Asymptotic Optimality at Low SNR Region: According
to (14), the problem of maximizing is equivalent to the
following minimization problem:

(16)

When (i.e., at low SNR region), the objective func-
tion in (16) can be expressed, based on Taylor expansion, as

(17)

where denotes the least significant terms on the order of
. The solution of maximizing for first-order optimality

is thus equivalent to the problem

(18)

For a equiprobable zero-mean constellation set, the objective
function can be reformulated as

(19)

where is a constant with .
The problem of (18) is thus equivalent to

(20)

which is solved when the diagonal coefficients of are zero
except for elements corresponding to the maximum eigenvalues
of . Combining the optimal precoding structure in Proposi-
tion 1, the following proposition holds:

Proposition 3: The optimal linear precoder to maximize the
lower bound of the average mutual information at low SNR re-
gion is equal to times a diagonal power allocation matrix
with all power allocated on the maximum eigenvalues of
(i.e., the beamforming strategy).
At the same time, precoder maximizes the average mutual

information directly at lower SNR region can be solved for first-
order optimality by [10]

(21)

in which the objective function can be rewritten as

(22)

This function is maximized when is equal to and the co-
efficients of are zeros except for the elements corresponding
to the maximum eigenvalues of . This solution is the same
as that of maximizing the lower bound at low SNR region; see
Proposition 3. That is, maximizing the lower bound is asymp-
totically optimal compared with maximizing the average mutual
information directly.
Following the similar steps, the asymptotic optimality of

maximizing the upper bound at low SNR region can be proved,
and it is omitted here for brevity.
2) Asymptotic Optimality at High SNR Region: The proof of

asymptotic optimality of maximizing the lower bound at high
SNR region is offered here. Similar steps can also be followed
to maximize the upper bound. The objective function in (16) is
first rewritten as

(23)

Note that is a soft version of maximization
[20], and it is dominated—with the help of exponential oper-
ator—by the most significant term. The idea here is to replace
the soft maximization by its hard version:
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TABLE I
ASYMPTOTIC RESULTS OF OPTIMAL LINEAR PRECODING

When (i.e., at high SNR region), it yields

Therefore, the optimization problem in (16) corresponds, at high
SNR region, to

(24)

The minimization of the quadratic form in (24) can be identified
as the minimum distance among all possible realizations of the
input vector

(25)

which leads to the following results:
Proposition 4: The optimal linear precoder to maximize the

lower bound of the average mutual information at high SNR
region is equivalent to maximizing the minimum distance be-
tween the constellation vectors.
At the same time, precoder design that maximizes the av-

erage mutual information directly at high SNR region suggests
to maximize the average minimum distance among all possible
realizations of the input vector

(26)

The above criterion is based on the result of instantaneous mu-
tual information with full CSI at the transmitter [10] and the sim-
plified channel model in (13). Since is a complex random
matrix with zero-mean and unit variance Gaussian entries, the
expectation over in (26) can be derived as

(27)

Thus, the criterion of maximizing the average mutual informa-
tion directly leads to the same precoder as that of maximizing

the lower bound; that is, it is asymptotically optimal to maxi-
mize the lower bound at high SNR region. Table I summarizes
the asymptotic results for the cases considered in this section.

B. Concavity Results

Due to the low computational complexity and asymptotic op-
timality of the lower and upper bounds, it is desirable to employ
them for maximizing the average mutual information. The de-
velopment of an efficient algorithm to solve the problem de-
pends on concavity property, which leads to global optimality,
with respect to design parameters.
The first option is to identify the concavity of . However,

neither the lower bound nor the upper bound is a concave func-
tion over . This fact can be verified by a specific counterex-
ample (e.g., ).
The second option is to identify the concavity of .

Similar form has been stated to be concave for real-valued chan-
nels with instantaneous CSI at the transmitter in [13] and has
been rigorously proved for complex-valued channels in [14].
The following proposition shows this result also holds for both
the lower and upper bounds with statistical CSI.
Proposition 5: Both the lower and upper bounds of the av-

erage mutual information, derived in (14) and (15), are concave
functions of .

Proof: See Appendix C.
Although the concavity results in Proposition 5 hold, it is dif-

ficult to transform the power constraint to an
equivalent convex constraint over . The concavity over
the squared singular values of is then identified as another
option:
Proposition 6: Both the lower and upper bounds of the av-

erage mutual information are concave functions of the power al-
location vector . The gradient of the lower bound
with respect to is given by

(28)
with

(29)

and

(30)
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TABLE II
A SUMMARY OF CONCAVITY AND NONCONCAVITY RESULTS FOR VARIOUS CASES. A INDICATES THAT THE

CORRESPONDING CONCAVITY RESULT HOLDS; AN INDICATES THAT IT DOES NOT

At the same time, the gradient of upper bound with respect to
is given by

(31)

with

(32)

Proof: See Appendix C.
Table II summarizes the concavity and nonconcavity results

for the lower and upper bounds. For comparison, it also provides
the corresponding results for instantaneous mutual information
with full CSI at the transmitter.

C. Precoder Design

This section provides a unified precoder design framework
and takes the precoder design problem of maximizing the lower
bound as an example. The approach proposed here can also be
used to maximize the upper bound.
1) Optimal Power Allocation: The concavity result in Propo-

sition 6 ensures that a global optimal power allocation vector
can be found given a right singular vectors . The first step
is thus to optimize the power allocation vector given feasible
right singular vectors:

(33)

where denotes the column vector with all entries one.
To solve this problem efficiently, the sequel exploits the

structure of the problem and develops an iterative algorithm to
achieve the global optimum.
First, problem (33) is re-expressed, making the inequality

constraints implicit in the objective function using the barrier
method [20]:

(34)

where is the logarithmic barrier function, approximating
an indicator of whether constraints are violated:

(35)

The parameter sets the accuracy of the approximation. As
it grows, the quality of the approximation improves.
The next step is to address the equality constraint. At the fea-

sible point , can be approximated near by its linear
expansion:

(36)

where is the gradient of at ,

(37)

with provided in (28) and is the th element
of vector . This approximation leads to the following direction
finding problem in order to solve (34):

(38)

where the first constraint in (38) ensures that the equality con-
straint of the original problem is satisfied, and the second con-
straint restricts the direction in the Euclidean unit ball.
This minimization problem can be solved analytically.

We define , the descent direction, as the scaled solution
of problem (38), which is characterized by the following
Karush–Kuhn–Tucker (KKT) systems:

(39)

where is the Lagrange multiplier associated with the equality
constraint. Considering the special structure of this linear
system and applying block matrix inversion, is solved by

(40)

where is a matrix, by which the gradient of
at , or , is projected onto the space that constrains the
search direction to

(41)

Combining this search direction with the backtracking line
search conditions [20], Algorithm 1, which is presented below,
finds the optimal power allocation vector. It ensures conver-
gence to the global optimal power allocation vector because of
the concavity.
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Algorithm 1: Maximizing the Lower Bound of Average Mutual
Information Over the Power Allocation Vector:

1. Initialization. Given a feasible vector , ,
, and tolerance .

2. Search direction. Compute the gradient of at , ,
as (37) and the descent direction as (40). Evaluate

. If it is sufficiently small, then go to Step 5.
3. Search step. Choose step size by backtracking line
search.

4. Update. Set . Go to Step 2.
5. Iteration and stop. Stop if , else , and go to
step 2.

2) Optimization Over Right Singular Vectors: Given a power
allocation vector , the maximization of the lower bound on the
linear precoder becomes the following:

(42)

where emphasizes the dependent of on .
With unitary matrix constraint, (42) can be reformulated as

an unconstrained problem in a constrained search space:

(43)

where is defined as with its domain restricted
to the complex Stiefel manifold:

(44)

and

(45)

To solve this unitary-matrix-constrained problem, the nega-
tive gradient of on tangent space is suggested as the descent
direction [22]:

(46)

where is the gradient of the lower bound. This
gradient is given by

(47)
with defined in (30) and given by

(48)

However, movement on the tangent space in the direction of
descentmay fail tomaintain the variable on the Stiefel manifold;
therefore, the unitary property must be restored at each iteration
step by projecting an infeasible point onto . The projec-
tion of an arbitrary matrix is defined as the point on
the Stiefel manifold closest to in the Euclidean norm:

(49)

Proposition 7 (Projection): Given a full-rank matrix
with SVD defined as , the projection is

unique, as expressed by [23, Sec. 7.4.8].
By combining the search direction (46) and the projection

with the backtracking line search, an optimization algorithm is
developed to maximize the lower bound over the right singular
vectors .

Algorithm 2: Maximizing the Lower Bound of Average Mutual
Information Over Right Singular Vectors:

1. Initialization. Given a feasible .
2. Search direction. Compute the Descent Direction
of at , , as (46). Evaluate

. If it is sufficiently small, then stop;
else, go to Step 3.

3. Search step. Choose step size as follows:
a) If , then
set , and repeat Step 3a).

b) If , then
set , and repeat Step 3b).

4. Update. Set . Go to Step 2.

3) Two-Step Approach to Optimize Precoder: A complete
two-step approach can now be developed by combining the de-
sign for left singular vectors in Proposition 1, the design for the
power allocation vector in Algorithm 1, and the design for the
right singular vectors in Algorithm 2.

Algorithm 3: Two-Step Algorithm to Maximize the Lower
Bound Over a Linear Precoder:

1. Initialization. Given feasible initial points and ,
and set .

2. Left singular vectors. Let equal the eigenvectors of
transmit correlation matrix, .

3. Update power allocation vector. Solve the following
problem by Algorithm 1:

4. Update right singular vectors. Solve the following
problem by Algorithm 2:

5. Iteration. Set . Go to Step 3 until convergence.
6. Output. The optimal precoder is thus given by

.

Optimizing variables alternatively, the two-step algorithm
converges to the globally optimum solution if the bound is
strictly concave on the right singular vectors or the precoder
is designed at low SNR region, where the objective function
is independent of . When the conditions fail to hold, the
iterative algorithm converges to a local maximum, which may
be affected by the initialization of the algorithm. However, nu-
merical examples in the next section demonstrate that various
initializations have limited effect on the solution; that is, the
two-step algorithm achieves near global optimal performance.
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V. SIMULATION RESULTS

Examples are provided in this section to illustrate the rela-
tionship and the computational complexity comparison between
average mutual information and the derived bounds. They also
show the convergence of the proposed algorithm and the effi-
cacy of the designed linear precoder. To exemplify the results,
the examples consider the exponential correlation model

and

with and , as well as the multiple ele-
ment transmit-receive antennas (METRA) model [24]. The ex-
ponential correlation model is suitable for the case of an equally
spaced linear array, and the METRA model is verified by mea-
sured data in both microcell and picocell environments.

A. Example 1: Relationship Between Average Mutual
Information and Bounds

This example is utilized to illustrate that the lower bound (14)
plus a constant is a very accurate approximation to the average
mutual information.
The illustration begins with the consideration of limits of the

average mutual information. When the SNR approaches 0 and
(i.e., approaches and 0, respectively), the limits are

given by

At the same time, the limits of the lower bound in (14) are
written as

which imply a constant gap exists between the average mutual
information and the lower bound at low and high SNR regions.
Since adding a constant value to the bound remains the op-
timized precoder unchanged, this work demonstrates that the
lower bound with a constant shift actually serves as a very good
approximation to the average mutual information. Fig. 1 con-
siders the case with QPSK inputs for exponentially correlated

MIMO channels when .
The simulated curve is obtained by the Monte Carlo method,
which calculates the average mutual information using many
realizations of and (see Section V-B for more details). It
also shows the derived lower and upper bounds and lower bound
with a constant shift for the case of without precoding. With a
constant shift, the lower bound and the simulated average mu-
tual information match exactly at low and high SNR regions,
and they close to each other at medium SNR region.
Fig. 2 compares further the simulated average mutual infor-

mation and the lower bound with a constant shift for various
numbers of transmit and receive antennas and various input
types and correlation parameters. In these cases, the lower
bound with a constant shift offers a very good approximation to
the average mutual information; the computational complexity
for both metric, however, is radically different as shown in the
following example.

Fig. 1. Average mutual information with QPSK inputs and exponentially cor-
related MIMO channels without
precoding.

Fig. 2. Average Mutual information with various numbers of transmit and re-
ceive antennas and different input types and correlation parameters for the case
of without precoding.

B. Example 2: Comparison in Terms of
Computational Complexity

This example is employed to demonstrate that the computa-
tional complexity of the lower bound is several orders of mag-
nitudes lower than that of the average mutual information.
It is known that the average mutual information lacks

closed-form expression and involves multiple integrals. It can
be estimated by the Monte Carlo method, which, however, may
not be accurate, especially when the number of sample points
of noise and channel [see (3) and (4)] are not large enough.
Of course, the accuracy can be improved by increasing the
number of sample points, which also, unfortunately, increase
the computational effort. To make a fair comparison, we choose
the number of sample points that cannot further significantly
improve the accuracy of the estimated average mutual infor-
mation. We construct three sequences: the sample number
sequence , the average mutual information
sequence with , and the compu-
tation time sequence with , where
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TABLE III
THE CPU TIME (SECONDS) FOR CALCULATING LOWER BOUND AND AVERAGE MUTUAL INFORMATION BASED ON

MONTE CARLO METHOD. THE SYMBOL INDICATES THE CALCULATION TIME IS MORE THAN ONE HOUR

is the estimated average mutual information with seconds
using sample points for noise and channel realizations,
respectively. The minimal that makes the improvement of
accuracy less than a threshold is denoted as :

Then, the computation time is reported.
In our simulations, we set and . The codes

for calculating the bounds and the average mutual information
based on Monte Carlo method are written by C++ and are ex-
ecuted on an Intel Core i7–2600 3.40 GHz processor. The typ-
ical CPU time with different number of antennas for BPSK and
QPSK inputs is shown in Table III, which shows that the com-
putational effort for calculating lower bound is several orders
of magnitude less than that of calculating the average mutual
information. For example, the CPU time of evaluating for
2 2 MIMO channels with BPSK and 2 2 MIMO channels
with QPSK is about and times that of
evaluating , respectively.
Considering the low computational complexity and the accu-

rate approximation, maximizing the lower bound is a reason-
able alternative and is expected to offer a very good precoder
that maximizes the average mutual information.

C. Example 3: Convergence of the Two-Step Algorithm

This subsection considers the convergence of the two-step
method from various feasible initial points and takes the 2 2
exponentially correlated MIMO chan-
nels as an example.
A feasible initial point for power allocation vector is

component-wise non-negative and satisfies sum power con-
straint, whereas a feasible initial point for the right singular
vectors satisfies unitary constraint. A general 2 2 unitary
matrix group can be expressed as [25]

(50)

where is a diagonal matrix, and is a unitary matrix with
and . For the simplified channel

model (13), the average mutual information remains unchanged
under a rotation of . Therefore, the structure of is used to
generate feasible right singular vectors .
The evolution of the proposed two-step algorithm is first con-

sidered based on two different initial points: Case A: ,

Fig. 3. Typical evolution of average mutual information as the linear precoder
is iteratively optimized with the two-step algorithm and gradient descent
method. The input signal is drawn from QPSK; 2 2 MIMO channels are
exponentially correlated with and ; SNR is 2.5 dB.

, and ; Case B: , ,
and . As the lower bound is optimized iteratively by
Algorithm 3, the average mutual information is able to increase.
Fig. 3 illustrates the corresponding average mutual information
of each iteration with both initial points when the input signal
is drawn from QPSK, and the SNR is 2.5 dB. For compar-
ison, it also shows the average mutual information without pre-
coding, the maximum capacity with Gaussian inputs for sta-
tistical CSI [26], [27], and the precoder optimizing the lower
bound directly by gradient descent method. From different ini-
tial points, the proposed algorithm converges to almost the same
objective value, which increases the average mutual informa-
tion over the case of without precoding with about 38.7% im-
provement; thus, it brings the performance of MIMO systems
with QPSK inputs close to themaximum capacity with Gaussian
inputs. The progress of the proposed algorithm has a staircase
shape, with each stair associated with either the iteration within
Algorithm 1 for the parameter or the shift between the opti-
mizations of the power allocation vector and the right singular
vectors. The gradient method, however, is influenced by its ini-
tial points and converges to different average mutual informa-
tion levels with different initial points.
The cumulative distribution of average mutual information

for the optimized linear precoder from various initial points
are further depicted in Fig. 4, which is obtained by generating
10,000 uniform random initial points (applying a normalization
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Fig. 4. Cumulative distribution of average mutual information for various ini-
tial points. The input signal is drawn from QPSK; 2 2 MIMO channels are
exponentially correlated with and ; SNR is .

for the power allocation vector to guarantee the sum power con-
straint is satisfied). The cumulative distribution curve illustrates
the merit of the proposed algorithm. Although the precoding
problem addressed in this work is nonconvex, the two-step al-
gorithm achieves, from an arbitrary initial points, a near global
optimal solution, while the gradient descent method depends
highly on the selection of the initial points and may provide a
solution that performs even worse than the case of no precoding
if the initial point is not chosen carefully.

D. Example 4: Efficacy of the Linear Precoder

This example compares the performance of the proposed
precoding algorithm with that of other existing algorithms such
as beamforming [26], maximum capacity design [26], [27],
and maximum diversity [28], [29]. The channel parameters are
chosen the same as those in Example 2, and inputs is QPSK
modulation. No precoding for both QPSK and Gaussian inputs
are also included for comparison purpose.
The average mutual information versus SNR curves of the

aforementioned precoding algorithms are depicted in Fig. 5. Ob-
viously, when the channel coding rate is 1/2, the proposed two-
step algorithm has about 2.6-, 2.9-, and 11.3-dB gain against the
maximum diversity method, no precoding, and the maximum
capacity method, respectively. Moreover, when the SNR is less
than 2.5 dB, the new algorithm with QPSK input performs al-
most the same as the maximum capacity method with Gaussian
input, which is the ultimate upper bound for all possible linear
precoders.
We would like to make two remarks on the maximum ca-

pacity precoding method. First, although it obtains performance
gain when the channel input signal is Gaussian distribution,
it leads to significant performance loss if it is directly applied
to finite-alphabet signalling. Second, the non-smoothness of
the QPSK maximum capacity curve in Fig. 5 (and Fig. 8 to
be shown later) is due to the signal mismatch of the precoder
designing method. Specifically, when the SNR is less than a
threshold (in this case, 7.5 dB), the maximum capacity based
precoder allocates all the available power to the strongest
subchannels and allocates nothing to the weaker subchannels.
This is known as beamforming strategy, which leads to the

Fig. 5. Average mutual information versus SNR for various strategies. The
input signal is drawn from QPSK; 2 2 MIMO channels are exponentially cor-
related with and .

average mutual information less than 2 bps/Hz. When the SNR
is larger than 7.5 dB, the maximum capacity method starts to
allocate power to the weaker subchannel and therefore makes
the average mutual information larger than 2 b/s/Hz. Since it
always allocates more power to the stronger subchannel and
less to the weaker subchannel, this method can be far away
from the optimal precoder designed for finite-alphabet inputs.
The reason is that the average mutual information with finite-al-
phabet inputs is bounded and therefore it has no incentive to
allocate more power to subchannels that already close to satu-
ration. Moreover, the right singular vectors for Gaussian inputs
are arbitrary unitary matrices because the statistics of inputs
is unchanged when Gaussian signal is rotated; in contrast, the
case of finite-alphabet inputs does not follow the same rule, as
shown in (6).
We are now in a position to compare the coded bit error

rate (BER) performance of the aforementioned precoding algo-
rithms. The transceiver structure [6] in Fig. 6 is then realized
to further illustrate the benefit of the proposed linear precoding
algorithm. Note that the interleaver is not shown in the block
diagram because of the usage of the low-density parity-check,
or LDPC, codes [30]. At the transmitter, the signal sequences
are encoded by the LDPC encoder and mapped by the conven-
tional equiprobable discrete constellations, respectively. They
are then precoded by and transmitted through antennas.
At the receiver, the maximum a posteriori (MAP) detector takes
channel observations and a priori knowledge from the de-
coder and computes new information for each coded bit. Thus,
the extrinsic information between the MAP detector and the de-
coder is exchanged iteratively until the desired performance is
achieved.
The LDPC encoder and decoder modules are derived from

[31] with coding rate 1/2. The iteration between the MAP de-
tector and the LDPC decoder is 5. The coding block length of
LDPC is 7,200, which includes 600 channel realizations. Mul-
tiple blocks are simulated to obtain the coded BER, shown in
Fig. 7, of the corresponding precoder schemes in Fig. 5. Ap-
parently, the proposed linear precoding algorithm outperforms
all the existing methods, and the BER performance gain over
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Fig. 6. Block diagram of a MIMO system with channel coding and precoding
at the transmitter and iterative detection and decoding at the receiver.

Fig. 7. BER versus SNR for various strategies. The input signal is drawn from
QPSK, the channel coding rate is 1/2, coding block length is 7,200 including
600 channel realizations, and the iteration between the MAP detector and the
LDPC decoder is 5. MIMO channels of 2 2 are exponentially correlated with

and .

other schemes almost matches the value predicted by the av-
erage mutual information in Fig. 5. Based on these results, the
large performance gain in average mutual information implies
the large performance gain in coded BER. That is, the precoder
design based on the average mutual information maximization
is an excellent approach to provide considerable performance
gain in a practical wireless MIMO system.
The 4 4 MIMO channels with METRA correlation model

remains to be considered. Figs. 8 and 9 show the average mu-
tual information based on correlation models for microcell and
picocell environments [24], respectively. The microcell model
corresponds to a case in which the transmitter is highly corre-
lated, and the picocell model corresponds to a partially decorre-
lated case (e.g., a small office environment).

Fig. 8. Average mutual information versus SNR for various strategies. The
input signal is drawn from QPSK; 4 4 MIMO channels are generated based
on a METRA correlation model for a microcell environment.

Fig. 9. Average mutual information versus SNR for various strategies. The
input signal is drawn from QPSK; 4 4 MIMO channels are generated based
on a METRA correlation model for a picocell environment.

Fig. 8 indicates that applying the Gaussian-input based max-
imum capacity scheme to finite-alphabet inputs results in a sig-
nificant performance loss for the microcell correlation model
when the SNR is larger than 17.5 dB. The proposed algorithm
yields a considerable gain in a wide range of SNR; for example,
its performance is about 4.3, 4.5, and 14 dB better than the max-
imum diversity method, no precoding, and the maximum ca-
pacity method, respectively, when the channel coding rate is 1/2.
At the same time, its performance is the same as that of the max-
imum capacity method with Gaussian inputs when the SNR is
less than 5 dB; that is, it achieves the upper bound for all pos-
sible linear precoder designs.
Fig. 9 compares various methods as applied to a picocell

correlation environment. Although the proposed algorithm still
achieves the upper bound when SNR is less than 5 dB (i.e.,
providing the same performance as the maximum capacity
method with Gaussian inputs), the gain between precoding and
no precoding for the picocell case is less than the gain for the
microcell model; that is, the maximum gain provided by linear
precoder depends on channel environments. Intuitively, when
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the channel is statistically independent (i.e., the correlation of
transmitter and receiver is identity matrix), the optimal pre-
coder is an arbitrary unitary matrix, which, however, remains
the average mutual information unchanged.

VI. CONCLUSION

In this paper, we have studied the linear precoding method
for MIMO wireless fading channels with finite-alphabet inputs,
while the transmitter does not know the instantaneous CSI but
knows the statistical CSI such as the spatial correlation of the
MIMO fading channels. A lower bound and an upper bound
have been derived for the average mutual information with fi-
nite-alphabet inputs. It is discovered that the lower bound plus
a constant is a very accurate approximation to the average mu-
tual information, and the computational complexity of the lower
bound is several orders of magnitudes less than that of the av-
erage mutual information, which makes the design of optimal
linear precoder possible for a practical wireless MIMO system
with finite-alphabet inputs. Furthermore, a new two-step itera-
tive algorithm has been proposed to find an optimal linear pre-
coder via capitalizing the derived lower bound.
Numerical examples have demonstrated the convergence and

performance gains of the proposed algorithm. Compared to ex-
isting linear precoding methods, the proposed linear precoding
algorithm offers a significant performance gain in terms of the
average mutual information and the coded BER, and the gains
become more substantial as the spatial correlation of MIMO
channels increases.

APPENDIX A
PROOF OF PROPOSITION 1

Before proceeding to the proof, we need to first establish the
following lemma.

Lemma 1: The instantaneous mutual information
depends on the precoding matrix through

.
Proof: Similar results are reported in [12]–[14] that assume

the transmitter knows perfect CSI. The proof provided here can
be seen as an alternative, to the existing proofs, which is based
on the reformulation of (4):

(51)

Given and the SNR, is a function of the
random variable :

(52)

for ; changes based on the dis-
tribution of , which depends on through : the
first term of the right-hand side in (52) depends on through

; the second term, , is a Gaussian
random variable determined by its zero mean and variance

(which also depends on through
); the last term is independent of . Therefore,
also depends on through .

We are now is a position to prove the proposition.
Proof of Proposition 1: Instantaneous mutual information

depends on through , which
is a function of the random matrix . The average mutual
information taking expectation over is thus equal to

(53)

where is used to emphasize the dependence of
on its variable ; that is, the average mutual informa-
tion is a function of the complex random matrix (i.e.,

) and thus changes based on the
distribution of .
For the quadratic form , its probability density function is

known as [32]

(54)

with

and

where is the complex multivariate gamma function,
is Euler’s gamma function, and is the hypergeometric
function of two Hermitian matrices.
Based on (54), the distribution of is determined by pa-

rameters and . Given , the pre-
coder in the form can be used to minimize the
transmit power ; see [33, App. 3.B]. The proof is now
complete.

APPENDIX B
PROOF OF PROPOSITION 2

We first prove the lower bound introduced in (14):
Proof of Lower Bound: Note that is a concave func-

tion in for . Using Jensen’s inequality [20], the average
mutual information taking expectation on (51) over can be
lower bounded:

(55)

where .
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Since is an i.i.d Gaussian noise vector, the expectation over
in (55) can be derived as

(56)

where and are the th element of and , respec-
tively. Applying the integrals of exponential function [34, eq.
(2.33.1)] and extending it to the complex-valued case, (56) is
rewritten as

(57)

Considering the property and recalling the

definition , it yields

(58)

where . Now denoting the distri-
bution of by , the right-hand side of (55) suggests to
compute

(59)

To facilitate the integration, is reorga-

nized as a quadratic form in the entries of :

(60)

where denotes the th diagonal element of . Letting
, the integral over in (59) is written as the product

of several elementary integrals:

(61)

According to the exponential quadratic integral formula [35,
eq. (C1)]

(62)

with both and from Hermitian matrices, the expression in
(61) is further reduced to

(63)

Recalling the definition of , the determinant in (63) is
given by

(64)

The combination of (59), (63), and (64) yields the lower bound.

We then prove the upper bound in (15):
Proof of Upper Bound: Because is a

convex function, Jensen’s inequality can be applied to the
expression of average mutual information to derive an upper
bound:

(65)

The expectation over is first considered:

(66)
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Then the expectation over is given by

(67)

which completes the proof.

APPENDIX C
PROOF OF CONCAVITY RESULTS

Proof of Proposition 5: The concavity of the lower bound
function can be proved by reformulating (14) as

(68)

Since is concave whenever are
concave [20], the concavity of (68) depends on that of

, which can be proved

based on the fact that is positive and

concave over . Similar steps can be followed to prove
upper bound function (15).

Proof of Proposition 6: Following a method similar to that
used to derive Proposition 5, the concavity here can be proved
by re-expressing the lower bound of averagemutual information
as

(69)

and confirming that is positive and

concave over .
Since the power allocation vector is given by

(70)

the gradient with respect to can be written as

(71)

Applying the techniques for matrix differentiation [36], the gra-
dient of (69) with respect to is derived in (28). Using the same
method, the gradient of (15) is readily given by (31).
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