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Abstract—This paper investigates the linear precoder design
for spectrum sharing in multi-antenna cognitive radio networks
with finite-alphabet inputs. It formulates the precoding problem
by maximizing the constellation-constrained mutual information
between the secondary-user transmitter and secondary-user
receiver while controlling the interference power to primary-
user receivers. This formulation leads to a nonlinear and non-
convex problem, presenting a major barrier to obtain optimal
solutions. This work proposes a global optimization algorithm,
namely Branch-and-bound Aided Mutual Information Optimiza-
tion (BAMIO), that solves the precoding problem with arbitrary
prescribed tolerance. The BAMIO algorithm is designed based on
two key observations: First, the precoding problem for spectrum
sharing can be reformulated to a problem minimizing a function
with bilinear terms over the intersection of multiple co-centered
ellipsoids. Second, these bilinear terms can be relaxed by its
convex and concave envelopes. In this way, a sequence of relaxed
problems is solved over a shrinking feasible region until the
tolerance is achieved. The BAMIO algorithm calculates the
optimal precoder and the theoretical limit of the transmission
rate for spectrum sharing scenarios. By tuning the prescribed
tolerance of the solution, it provides a trade-off between desirable
performance and computational complexity. Numerical examples
show that the BAMIO algorithm offers near global optimal
solution with only several iterations. They also verify that the
large performance gain in mutual information achieved by the
BAMIO algorithm also represents the large gain in the coded
bit-error rate.
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I. INTRODUCTION

COGNITIVE radio is an emerging technology that has
the potential to significantly improve the utilization ef-

ficiency of the scarce radio spectrum [1]–[5]. It allows the
secondary-user transceiver to access the radio spectrum that is
originally allocated to primary users. Since primary users have
a higher priority, their quality-of-service should be guaranteed
while the secondary-user transceiver shares the spectrum [6]–
[8].
The spectrum sharing scheme is allowed provided the

secondary-user transceiver is able to control the interference to
primary users and thus keeps the performance degradation of
each primary user within a tolerable level. Consider a scenario
illustrated in Fig. 1, where one secondary-user transmitter
(ST), one secondary-user receiver (SR), and n primary-user
receivers (PRs) share the same frequency band at the same
time. Suppose the maximum permitted level of interference
from ST to the i-th PR is denoted as γi for i = 1, 2, · · · , n.
The investigation of the theoretical limit on the information
rate between ST and SR under interference constraints has
been an active research topic for recent literature. With Gaus-
sian input, the channel capacity under transmit power and a
set of interference power constraints has been determined, and
the precoder achieving the capacity has been readily obtained
[7]–[9], since the considered problem is convex [10].
Although Gaussian inputs are capacity achieving and thus

theoretically optimal, they are rarely realized in practice. Even
worse, the precoder designed based on Gaussian inputs often
leads to considerable performance degradation when applied
to practical systems with finite-alphabet inputs, such as phase
shift keying (PSK) modulation, pulse amplitude modulation
(PAM), and quadrature amplitude modulation (QAM). There-
fore, alternative precoder design approach that maximizes the
constellation-constrained mutual information (MI) [11] has
drawn great research interests in recent years [12]–[16].
However, finding the precoder that maximizes the MI under

the transmit and interference power constraints is far from
trivial because it implies maximizing a nonconcave function
with multiple local maxima [15]. Limited works have consid-
ered both interference power constraints and finite alphabet
inputs, while several approaches are found in the literature
for the special case of point-to-point multiple-input multiple-
output (MIMO) precoding problem with only transmit power
constraint (i.e., when interference constraints are inactive). For
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Primary-User Receiver 1 (PR 1)

Primary-User Receiver 2 (PR 2)

Primary-User Receiver n (PR n)

Fig. 1. System model of a transmission scenario, in which the secondary-
user transmitter (ST) and the secondary-user receiver (SR) share the same
spectrum with multiple primary-user receivers (PRs).

example, the optimal power allocation maximizing the MI is
obtained for a diagonal channel matrix [12]. The gradient-
ascent method is introduced in [17] for MIMO channels.
The structure of the optimal precoder for real-valued MIMO
channels is revealed in [18], [19]. A global optimal design is
then proposed in [15] for complex-valued MIMO channels.
An accurate approximation for MI, which will be used in this
work, is recently reported in [20]. It reduces the computa-
tional complexity by several orders of magnitude compared
to computing the MI directly, and the performance difference
between maximizing the approximation and maximizing the
MI is negligible.
Existing precoder design algorithms that utilize the optimal

precoder structure for point-to-point MIMO channels decom-
pose the precoder into three components: the left singular
vector matrix, the diagonal power allocation matrix, and
the right singular vector matrix. They first obtain a closed-
form solution to the left singular vector matrix, and then
different algorithms use different methods to solve the other
two components iteratively. This decomposition approach,
however, cannot be extended to the case when interference
constraints exist because the left singular vector matrix derived
for MIMO channels are no longer valid for the precoding
problem of spectrum sharing networks. In order to obtain
a feasible solution to the more general spectrum sharing
problem, a possible precoder satisfying all the constraints may
be designed as follows: 1) Design an optimal (or suboptimal)
precoder by ignoring the interference constraints with existing
algorithms for point-to-point MIMO channels; 2) Rescale the
solution to satisfy all interference constraints. This heuristic
method, however, will lead to significant performance loss
compared to the best possible solution achieved in this work.
This paper distinguishes itself from other existing methods,

not only because of its extension from the point-to-point
MIMO channels to the spectrum sharing scenario, but also
because of the new developed Branch-and-bound Aided Mu-
tual Information Optimization (BAMIO) algorithm that solves
the precoding problem for spectrum sharing with arbitrary
prescribed tolerance. The BAMIO algorithm is able to achieve
the global optimal precoder for arbitrary signal modulations

and number of transceiver antennas. Similar methods are not
reported before, to the best of our knowledge, even for the
MIMO channels with only transmit power constraint.

Two key observations enable BAMIO algorithm to effi-
ciently solve the nonconcave problem considered in this work.
First, the precoding problem for spectrum sharing can be
reformulated to a problem that minimizes a function with
bilinear terms over the intersection of multiple co-centered
ellipsoids. Second, these bilinear terms can be relaxed by its
convex and concave envelopes. In this way, a relaxation of the
precoding problem for spectrum sharing is formulated, and it
turns out to be a global lower bound for the original problem.
Then, the relaxation is used to obtain a solution feasible to the
original problem and thus serves as a global upper bound. The
global lower and upper bounds are tightened iteratively until
the prescribed tolerance is achieved. Two possible methods are
considered to speed up the algorithm from different aspects.
An improved relaxation is first proposed to decrease the gap
between the relaxed problem and the original problem for
each iteration. A variable tightening technique is then used
to reduce the range of the variables. Both methods cut down
the number of iterations and accelerate the convergence. The
relationship between the relaxations mentioned in this work
and that based on semi-definite relaxation (SDR) is exploited,
and the advantages of the proposed algorithm is investigated.

Numerical examples demonstrate the convergence, flexibil-
ity, and the performance of the BAMIO algorithm. They show
that the algorithm generates very high quality solution with
extremely limited computational effort. That is, a near global
optimal solution with only several iterations can be used in
practice when the computational time is concerned. Numerical
examples also verify that the large performance gain in MI
achieved by the BAMIO algorithm over the conventional
methods represents the large gain in the coded bit-error rate
(BER).

The remainder of this paper is organized as follows: Section
II introduces the system model and the MI based precoding
design. Section III considers the reformulation and relaxation
of the precoding problem for spectrum sharing networks. Sec-
tion IV introduces the BAMIO algorithm achieving the global
optimal and the algorithm acceleration and other possible
relaxations. Section V presents several numerical examples
demonstrating the performance of the proposed algorithm.
Finally, Section VI draws conclusions.

Notation: Boldface uppercase (lowercase) letters denote
matrices (column vectors), and italics denote scalars. The
superscripts (·)T and (·)H stand for transpose and Hermitian
operations, respectively. The operator Tr (·) denotes the trace
of a matrix; vec (·) represents the vector obtained by stacking
the columns of a matrix; ‖ · ‖ denotes the Frobenius norm
of either a matrix or a vector; E(·) denotes the statistical
expectation with respect to its variable; I and 0 represent an
identity matrix and a zero matrix of appropriate dimensions,
respectively; A ⊗ B denotes the Kronecker product of two
matrices; R and C denote the real and complex space; � and
� are the real and image parts of a complex value; log(·) are
used for the base two logarithm.
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II. PROBLEM FORMULATION

A. System Model and Mutual Information

Consider the transmission scenario in Fig. 1. The ST with
Nt antennas attempts to communicate to the SR with Nr

antennas while controlling the power leakage to multiple PRs.
The number of PRs is n, and the number of receive antennas
at the i-th PR is Ni for i = 1, 2, · · · , n.
Let x ∈ CNt be a transmitted signal with zero mean and

identity-matrix covariance (i.e., E(xxH) = I). The received
signals at the SR and PRs are, respectively, modeled as

y = HPx+ n

yi = HiPx+ ni, i = 1, 2, · · · , n
where H ∈ CNr×Nt and Hi ∈ CNi×Nt are channel matrices
from ST to SR and from ST to the i-th PR, respectively.
The vectors n ∈ CNr and ni ∈ CNi are independent and
identically distributed zero-mean circularly-symmetric Gaus-
sian noises with covariance σ2I and σ2

i I. The precoding
matrix P ∈ CNt×Nt is introduced into the system to improve
the transmission rate from ST to SR while restraining the
interference to PRs.
The maximal transmit power is γ; that is, Tr(PHP) ≤ γ.

The normalized signal-to-noise ratio (SNR) of the link from
ST to SR is thus defined as [21]

SNR
�
=

γ

Nt
· Tr

(
HHH

)
Nrσ2

.

The input signal x is drawn from equiprobable discrete
constellation with cardinality M . When the channel H is
known at the receiver, the MI that characterizes the theoretical
limit of the constellation-constrained information rate with an
arbitrary low probability of error, is given by [11], [21]

I (P) = K − 1

MNt

MNt∑
m=1

En

{

log

MNt∑
k=1

exp

(
−‖HPemk + n‖2 − ‖n‖2

σ2

)}
(1)

where K , a constant, equals Nt logM , and emk is the dif-
ference between xm and xk. Each xm or xk contains Nt

symbols and is taken independently from the M -ary signal
constellation.
The maximization of (1) is difficult for three reasons.

First, closed-form expression for MI is challenging, if not
impossible, to obtain; see [12] for high SNR approximation
of I (P) when H is diagonal. Second, the expectation over
n in (1) implies calculation of 2Nr integrals from −∞ to
+∞, which can be computationally prohibitive. Third, the
gradient of MI involves minimum mean square error matrix
[22], which is, theoretically, helpful for maximizing (1), but
is even more challenging to calculate. Although Monte Carlo
and numerical integral method can be used to estimate MI
and its gradient, they can be quite slow and produce a limited
accuracy, especially for large input-output dimensions.
To address these difficulties and simplify the precoder de-

sign based on constellation-constrained MI, an approximation

of MI is derived in [20]

IA (P) = K − 1

MNt

MNt∑
m=1

log

MNt∑
k=1

exp

(
−eHmkP

HHHHPemk

2σ2

)
(2)

which offers a very accurate approximation to the MI for an ar-
bitrary SNR. It reduces the computational complexity typically
by several orders of magnitude compared to calculating the
MI directly. For example, the CPU time of evaluating IA (P)
for 2 × 2 and 4 × 4 MIMO channels with QPSK inputs is
about 5.9 × 10−5 and 9.6 × 10−6, respectively, times those
of evaluating I (P). Besides, the precoder designed based on
maximizing IA(P) is proved to be asymptotically optimal,
compared to maximizing MI directly, in both low and high
SNR regions. Intensive simulations show that for an arbitrary
SNR, the performance difference between maximizing MI and
maximizing IA(P) is negligible [20].

B. MI-based Precoding Design

With the assumption of E(xxH) = I, the average transmit
signal power at the ST is Tr(PHP), while the average receive
signal power at the i-th PR is given by Tr

(
PHHH

i HiP
)
.

Using the approximated MI introduced in (2), the precoding
problem, which maximizes MI between ST and SR while
restraining the interference to PRs, is formulated as

max. IA (P) (3a)

s.t. Tr
(
PHP

) ≤ γ (3b)

Tr
(
PHHH

i HiP
) ≤ γi, i = 1, 2, · · · , n (3c)

in which (3b) controls the transmit power, and (3c) keeps the
interference to i-th PR below a tolerable level γi.
It is interesting to note that problem (3) is related to the

point-to-point MIMO precoding problem with finite-alphabet
inputs when interference constraints are inactive, e.g., n = 0
or γi = +∞ for i = 1, 2, · · · , n:

max. IA (P)

s.t. Tr
(
PHP

) ≤ γ. (4)

This problem is nonconcave as (3). See more details on how
to solve this problem in [20].
The extended problem (3) includes the special case of (4)

and thus is even more challenging to solve. The BAMIO
algorithm we are proposing differs significantly from existing
precoding algorithms for finite-alphabet inputs and Gaussian
inputs. It is able to achieve a precoder solution with arbitrary
prescribed tolerance for arbitrary signal modulations and arbi-
trary number of transceiver antennas. Certainly, this algorithm
can also be used to solve problem (4).

III. REFORMULATION AND RELAXATION OF LINEAR
PRECODING PROBLEM

This section provides a new reformulation of the precoding
problem (3) and also a new relaxation by introducing the
convex and concave envelopes.
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A. Reformulation of the Precoding Problem

Since Tr(XHYXW) = vec(X)H · (WT ⊗ Y) · vec(X)
[23], (3a) can be expressed alternatively as

IA (P) = K − 1

MNt

MNt∑
m=1

log
MNt∑
k=1

exp
(

−vec(P)H · (ET
mk ⊗HHH) · vec(P)

)
(5)

where Emk = emke
H
mk/(2σ

2). By letting

p =

[ �{vec(P)}
�{vec(P)}

]
∈ R

2N2
t (6)

and

Amk = −
[ �{ET

mk ⊗HHH} −�{ET
mk ⊗HHH}

�{ET
mk ⊗HHH} �{ET

mk ⊗HHH}
]
(7)

expression (5) is rewritten as

IA (P) = K − 1

MNt

MNt∑
m=1

log
MNt∑
k=1

exp
(
pTAmkp

)
. (8)

Since pTAmkp equals −Tr(‖HPemk‖/2σ2), non-positive
for an arbitraryP,Amk is thus negative semi-definite, denoted
as Amk 	 0. Similarly, define

Bi =

[ �{I⊗HH
i Hi} −�{I⊗HH

i Hi}
�{I⊗HH

i Hi} �{I⊗HH
i Hi}

]
(9)

then Bi is positive semi-definite, denoted as Bi 
 0, and the
receive signal power of the i-th PR is given by pTBip ≥ 0.
Based on the equations and definitions from (5) to (9), we

have the following lemma:
Lemma 1: The problem (3) can be reduced to a more

compact form:

max. K − 1

MNt

MNt∑
m=1

log

MNt∑
k=1

exp
(
pTAmkp

)
(10a)

s.t. pTp ≤ γ (10b)

pTBip ≤ γi, i = 1, 2, · · · , n (10c)

where p, Amk, and Bi are defined in (6), (7), and (9), and
γ and γi are positive constants controlling the transmit power
and interference power, respectively. �
Because Amk 	 0, (10a) is nonconcave [10]. Geomet-

rically, problem (10) defines a problem that maximizes a
nonconcave function over the intersection of (n + 1) co-
centered ellipsoids. Since zero vector always satisfies all the
constraints, the feasibility of this problem is trivial. However,
finding the global maximum can be very difficult, because
(10) can be specialized to non-deterministic polynomial-time
hard (NP-hard) problems if Amk for m, k = 1, · · · ,MNt are
arbitrary negative semi-definite matrix [24].
For convenience of presentation, we further rewrite (10) as

a minimization problem with additional bound constraint

vMI(P) = min.
1

MNt

MNt∑
m=1

log

MNt∑
k=1

exp
(
pTAmkp

)−K (11a)

s.t. pTp ≤ γ (11b)

pTBip ≤ γi, i = 1, 2, · · · , n (11c)

p ∈ P . (11d)

The notation vMI(P) in (11a) denotes the optimal value of
problem (11); the bound P in (11d) denotes a box defined as

P =
{
p ∈ R

2N2
t |lp ≤ p ≤ up

}
in which the vector inequalities are element-wise. The lower
bound lp and upper bound up can, respectively, be initialized
as −√

γ ·1 and √γ ·1, where 1 denotes the column vector with
all entries being one. This initialization keeps the problems
(10) and (11) equivalent because it defines a constraint looser
than (11b) and therefore is inactive.
The better initialization for lp and up, in terms of the size

of the defined box, is given by solving 2N2
t optimization

problems. Denote the j-th element of lp as lp,j , which is set
to be the optimal value of the following convex problem:

lp,j = min. pj
s.t. pTp ≤ γ

pTBip ≤ γi, i = 1, 2, · · · , n (12)

where pj is the j-th element of p. Due to the symmetry of the
constraints, up,j , the j-th element of up, is given by −lp,j .
The sequel proposes an algorithm to iteratively shrink the

initial bounded box P until a prescribed tolerance is achieved.
It starts by introducing the concept of convex and concave
envelopes, which is critical to understand the algorithm.

B. Convex and Concave Envelopes and Bilinear Relaxation

Consider a function g : Ω → R, where Ω is a region.
The convex envelope of g over Ω, denoted as vexΩ(g), is
the pointwise supremum of convex underestimators of g; the
concave envelope of g over Ω, denoted as cavΩ(g), is the
pointwise infimum of concave overestimators of g.
A quadratic function is the weighted sum of multiple

bilinear functions pipj :

pTAmkp =
∑
i

∑
j

amk,ij · pipj (13)

where amk,ij denotes the (i, j)-th element of Amk.
The bilinear function, in general, neither convex nor con-

cave and makes optimization problems difficult to solve [10].
It can be relaxed to a piecewise-linear function based on its
convex and concave envelopes. Consider a bilinear function
g(pi, pj) = pipj over a rectangular region

Ω =
{
(pi, pj) ∈ R

2|lp,i ≤ pi ≤ up,i, lp,j ≤ pj ≤ up,j

}
.

Then the convex and concave envelopes over Ω are, respec-
tively, given by [25]

vexΩ(pipj) = max
{
lp,jpi + lp,ipj − lp,ilp,j ,

up,jpi + up,ipj − up,iup,j

}
cavΩ(pipj) = min

{
up,jpi + lp,ipj − lp,iup,j,

lp,jpi + up,ipj − up,ilp,j

}
.

The relationship between the bilinear function and its
envelopes is illustrated in Fig. 2, where pipj , vexΩ(pipj),
and cavΩ(pipj) are depicted, as an example, over the region
Ω =

{
(pi, pj) ∈ R2| − 1 ≤ pi, pj ≤ 1

}
. Although the bilinear
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Fig. 2. The bilinear function g(pi, pj) = pipj and its convex and concave
envelopes.

function is neither convex nor concave (Fig. 2a), the convex
envelope (Fig. 2b) and the concave envelope (Fig. 2c) are
piecewise linear and therefore are much easier to use from
the viewpoint of optimization.

Using the convex and concave envelopes as the lower and
upper estimators of the bilinear function, we introduce an

auxiliary variable qij to approximate pipj by constraining it
between the envelopes

qij≥ lp,jpi + lp,ipj − lp,ilp,j (14a)

qij≥ up,jpi + up,ipj − up,iup,j (14b)

qij≤ up,jpi + lp,ipj − lp,iup,j (14c)

qij≤ lp,jpi + up,ipj − up,ilp,j. (14d)

Arranging the variables qij for i, j = 1, · · · , 2N2
t into a

matrix Q ∈ R2N2
t ×2N2

t , a relaxation of problem (11) over the
bounded box P can be derived as

vrlx(P) = min.
1

MNt

MNt∑
m=1

log

MNt∑
k=1

exp
[
Tr(AmkQ)

]
−K

s.t. Tr (Q) ≤ γ (15a)

Tr (BiQ) ≤ γi, i = 1, 2, · · · , n (15b)

Q− lp · pT − p · lTp ≥ −lp · lTp (15c)

Q− up · pT − p · uT
p ≥ −up · uT

p (15d)

Q− lp · pT − p · uT
p ≤ −lp · uT

p (15e)

Q = QT , p ∈ P (15f)

in which lp and up are vectors whose i-th element is lp,i
and up,i, respectively; the matrix inequalities of (15c), (15d),
and (15e) are element-wise; (15c) and (15d) correspond,
respectively, to (14a) and (14b), and (15e) corresponds to (14c)
and (14d).
The global optimal value vrlx(P) of problem (15) can be

readily attained (e.g., by interior-point method [10]) because
(15) is a convex problem—all the constraints are linear over
variables Q and p, and the objective function is convex.
Considering the tractability of the relaxed problem, the

relationship between vrlx(P) and vMI(P) is a natural question,
which is answered in the following proposition:
Proposition 1: The optimal value of the relaxation (15) is

a lower bound to the optimal value of (11), i.e.,

vrlx(P) ≤ vMI(P)

and the optimal value of the relaxation (15) converges to that
of (11) as the bounded box P shrinks down to a point, i.e.,

lim
ε→0

(
vrlx(P)− vMI(P)

)
= 0.

where ε is the diameter of a ball B(ε) that includes P , i.e.,
P ⊂ B(ε).

Proof: See Appendix A.
When ε → 0, the structure of the optimal solution of

the relaxed problem (15) is further given in the following
corollary:
Corollary 1: As the bounded box P shrinks down to a

point, the solution of the relaxed problem (15) is rank one.
That is, solving (15) is equivalent to solving (11).

Proof: See Appendix A.
Proposition 1 and Corollary 1 help us develop the BAMIO

algorithm, which is presented in the next section.
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IV. THE BAMIO ALGORITHM: ACHIEVING GLOBAL
OPTIMUM

Since problem (11) is nonconvex, traditional optimization
methods fail to achieve a global optimum. This section
proposes the BAMIO algorithm to obtain a provably global
optimal solution within a prescribed tolerance δ from an
arbitrary initial point. At each iteration, BAMIO generates two
values vlb(P) and vup(P) for a bounded box P . These values
are, respectively, lower and upper bounds of vMI(P):

vlb(P) ≤ vMI(P) ≤ vup(P).

As P shrinks down, both bounds become tight to ensure the
convergence of the algorithm.

A. Lower and Upper Bounds Over a Bounded Box

By using the envelopes, the convex relaxation for the
original nonconvex problem (11) is formulated in (15). It can
be solved efficiently and globally, because of the convexity,
and serves as a lower bound vlb(P) for the original problem
(see Proposition 1).
If the optimal solution of problem (15) Q� is rank one, a

feasible and optimal solution for the problem (11) p� that sat-
isfies Q� = p�(p�)T is attained. In this case, the lower bound
vlb(P) is achievable; the upper bound equals the lower bound,
and the relative error, defined as

∣∣[vup(P)− vlb(P)]/vup(P)
∣∣,

is zero, which is within the prescribed tolerance δ. Note that
the relative error is not necessarily less than one, since the
objective function (11a) is less than zero.
If Q� is not rank one, it is used to find a rank-one

approximation Q̃�, which generates a feasible solution p and
thus serves as an upper bound vup(P). Several methods for
rank-one approximation are reported in the recent literature
(e.g., using the principal eigenvector of Q� or the Gaussian
randomization technique). The rank-one approximation around
Q� can be understood as a local search, which is known
to provide high-quality solution in different applications (see
[26], [27] and references therein).

B. Iterative Tightening of Lower and Upper Bounds

The BAMIO algorithm is based on the branch-and-bound
framework [28]. It starts by computing the lower and upper
bounds over an initialized box P1:

L1 = vlb(P1) and U1 = vup(P1).

If
∣∣(U1 − L1)/U1

∣∣ ≤ δ, the algorithm terminates. Otherwise,
we divide P1 along any of its longest edges into two smaller
boxes, with equal size, P2 and P3 (P2 ∪ P3 = P1), and
compute vlb(Pi) and vup(Pi) for i = 2 and 3. Since P2 and
P3 are smaller boxes, the relaxations over both P2 and P3

can be expected to be tighter than that over P1. That is, we
have

min
{
vlb(P2), v

lb(P3)
}
≥ L1

and

min
{
vup(P2), v

up(P3)
}
≤ U1.

Algorithm 1 The BAMIO Algorithm
1: Initialization
2: Denote the bounded box

P1 =
{
p ∈ R

2N2
t |lp ≤ p ≤ up

}
where lp and up are either given by −√

γ ·1 and√γ ·1,
respectively, or by solving problems in (12).

3: The set of partitions P is initialized as P1.
4: Let L1 = vlb(P1), U1 = vup(P1), and i = 1. Set the

prescribed tolerance δ.
5: while

∣∣(Ui − Li)/Ui

∣∣ ≥ δ do
6: Select P from P that has the least lower bound.
7: Divide P along any of its longest edges into two smaller

boxes, with equal size, Pj and Pk.
8: Remove the selected box P from P, and add two new

boxes Pj and Pk into P.
9: Compute the new lower bound for the i-th iteration:

Li = min
P∈P

vlb(P)

and also the new upper bound:

Ui = min
P∈P

vup(P).

The lower bound vlb(P) can be obtained by solving
either problem (15) or (17); and the upper bound can
be obtained by the rank-one approximation technique
(see Sec. IV-A for details).

10: Let i = i + 1.
11: end while
12: return δ-optimal precoder.

The lower and upper bounds are thus refined:

min
{
vlb(P2), v

lb(P3)
}
= L2

≤ vMI(P1) ≤ U2 = min
{
vup(P2), v

up(P3)
}
. (16)

As a result, we have smaller gap between lower and upper
bounds after the second iteration. If

∣∣(U2 − L2)/U2

∣∣ ≤ δ, the
algorithm terminates. Otherwise, we divide the box with the
minimum lower bound along any of its longest edges into two
smaller boxes with equal size and attain new bounds.
For each iteration, one box is divided into two. After i

iterations, the initialized bounded box P1 is divided into
(i + 1) smaller boxes. The relaxation on these smaller boxes
is closer to the original problem, and a decreased gap between
Li and Ui and smaller relative error

∣∣(Ui − Li)/Ui

∣∣ can be
obtained. Based on this idea, the BAMIO algorithm is given
in Algorithm 1.
Proposition 2: As the initial bounded box P iteratively

shrinks, the BAMIO algorithm offers a precoder that globally
solves the precoding problem (3). Moreover, the sequences
{Li} and {Ui} for i = 1, 2, · · · converge to the negative of
the maximal objective value of (3).

Proof: See Appendix B.
One benefit of the BAMIO algorithm is the possibility of

being able to trade off performance against convergence time
by choosing the prescribed tolerance δ. A smaller δ provides
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more accurate solution but leads to longer computing time.
This fact will be illustrated in the Simulation section.

C. Convergence Acceleration for BAMIO Algorithm

This section discusses methods to accelerate the conver-
gence of the BAMIO algorithm. Two possible methods speed
up the algorithm from two aspects. For each iteration, we first
consider to improve the convex relaxation by decreasing its
gap from the original problem. We then consider to reduce
the size of each bounded box (i.e., the range of variables).
Both methods cut down the number of iterations for a required
tolerance and thus accelerate the convergence.
1) Improving the accuracy of the relaxation: The convex

relaxation in (15) is obtained by raising the variable p into the
matrix space (p,Q), relaxing the constraint Q = ppT , and
adding linear inequalities to constrain the range of Q. The
relaxation serves as a lower bound, which can be tightened
by the positive semi-definite (PSD) constraint, Q 
 ppT :

vimp(P) = min.
1

MNt

MNt∑
m=1

log

MNt∑
k=1

exp
[
Tr(AmkQ)

]
−K

s.t. Tr (Q) ≤ γ (17a)

Tr (BiQ) ≤ γi, i = 1, 2, · · · , n (17b)

Q− lp · pT − p · lTp ≥ −lp · lTp (17c)

Q− up · pT − p · uT
p ≥ −up · uT

p (17d)

Q− lp · pT − p · uT
p ≤ −lp · uT

p (17e)

Q 
 ppT , Q = QT , p ∈ P (17f)

in which vimp(P) denotes the optimal value of problem (17).
The relationship between the solution of problem (15) and

that of problem (17) is important to illustrate the tightness. It
is given as follows:
Corollary 2: The optimal value of the problem (17) is a

lower bound to that of the problem (11) and is tighter than
that of problem (15), i.e.,

vrlx(P) ≤ vimp(P) ≤ vMI(P).

The new relaxation also converges to the original problem as
the bounded box shrinks down to a point, i.e.,

lim
ε→0

(
vimp(P)− vMI(P)

)
= 0

where ε is the diameter of a ball B(ε) that includes P .
Proof: See Appendix B.

Since the PSD constraint is convex, (17) is also a convex
problem, which can be solved efficiently by established algo-
rithms. Using vimp(P) as a lower bound can thus be expected
to reduce the number of iterations for a required tolerance δ.
2) Reducing the size of a bounded box: The BAMIO al-

gorithm starts from solving a convex problem over a bounded
box that is initialized as P1 =

{
p ∈ R2N2

t |lp ≤ p ≤ up

}
.

As the iteration goes, this box is divided along its longest
edges into two subboxes with equal size, and the convex
problems are solved over each subbox. These smaller boxes
define the region of variable p, which can be further restricted
to accelerate the convergence [29].

Take the first iteration for example. After we solve the
convex problem over P1, we obtain the lower bound L1

and then the upper bound U1 (see Sec. IV-A). Denote the
objective function of (17) as f(p), which is less or equal to
U1. By combining the inequality constraint f(p) ≤ U1 with
the existing ones in (17), we can find, for each element of p,
the maximal and the minimal values, which define new bounds
that can be smaller than P1. Thus, the subboxes divided from
the new bounds are also smaller, and the number of iterations
required to converge can be less.

D. Relationship with Semi-Definite Relaxation

It is important to identify the relationship between the SDR
developed for quadratic problems [26], [27] and the relaxation
(17).
SDR lifts the variable p into matrix space Q and looses the

constraint Q = ppT :

vsdr = min.
1

MNt

MNt∑
m=1

log

MNt∑
k=1

exp
[
Tr(AmkQ)

]
−K (18a)

s.t. Tr (Q) ≤ γ (18b)

Tr (BiQ) ≤ γi, i = 1, 2, · · · , n (18c)

Q 
 0, Q = QT . (18d)

After solving the above convex problem, the rank-one approxi-
mation technique is used to find a feasible solution. The SDR
method has been widely used in different applications (for
recent overview, see [27]). On the relationship between the
problem (17) and (18), we have the following corollary:
Corollary 3: Let vimp(P) and vsdr, respectively, be the

optimal value of problem (17) and (18). Then, we have

vsdr ≤ vimp(P) ≤ vMI(P). (19)

Proof: See Appendix B.
The SDR in (18) provides a solution with a fixed relative

error. Its solution cannot be improved iteratively because its
variable Q is irrelevant to p thus also irrelevant to P . The
global optimum cannot be guaranteed by the SDR method
since the fixed relative error provided is generally not zero.

V. SIMULATIONS

This section offers examples to illustrate the trade-off be-
tween performance and complexity of the BAMIO algorithm.
It also shows the efficacy of different relaxations on the
algorithm and the performance comparison with the Gaussian
input based design and the heuristic method.

A. Example 1: Trade-Off Between Performance and Complex-
ity

The proposed BAMIO algorithm converges to the global
optimal solution with arbitrary prescribed tolerance. The evo-
lution of the algorithm is examined in this example. Let’s first
consider the case that the transmit power constraint dominates
all other constraints. That is, interference constraints are
inactive, and thus we focus on the link between ST and SR,
which is depicted by the following matrix as an example

H =

[
2 1
1 1

]
(20)

which was also used in [15].
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Fig. 3. Typical evolution of objective function in (11a) as the linear precoder
is iteratively optimized by the BAMIO algorithm. The signal input is QPSK,
and the SNR is -5 dB. The tolerance δ is 0.005.

The parameter γ is set to be the same as the number of
transmit antennas (in this case, 2), which keeps the transmit
power with precoding the same as that without precoding. The
input signal x is drawn independently from QPSK constella-
tion, and the SNR is -5 dB.
The speedup methods considered in Sec. IV-C is used, and

the tolerance is chosen to be δ = 0.005. That is, the algorithm
terminates until the lower bound Li and the upper bound Ui

satisfy |(Ui − Li)/Ui| ≤ δ. Figure 3 illustrates the typical
evolution of Li and Ui. Note that each iteration of the BAMIO
algorithm generates one feasible precoder, which corresponds
to the obtained upper bound Ui. A global optimal solution
within tolerance is obtained after 129 iterations; then, more
than 10,000 iterations are needed to improve the lower bound
Li and thus prove that the obtained precoder at 129-th iteration
is actually 0.005-optimal.
The trade-off between performance and computational com-

plexity by the tolerance δ is illustrated in Fig. 4, where the
lower and upper bounds, together with the needed number
of iterations versus δ, are plotted. The gap between the upper
and lower bounds is reduced as the tolerance is smaller. At the
same time, the number of iterations increases, and it changes
dramatically when δ is close to 0.
We are interested in characterizing the relationship between

the number of iterations, denoted as T , and the prescribed
tolerance δ in Fig. 4 as a mathematical function, which
then offers an intuitive way to delineate the relationship.
We consider two models to quantify the curve. One model
considers an exponential relationship between T and δ; that
is, T = a1 · ea2δ. Taking the natural logarithm of both sides
results in the equation lnT = ln a1+a2 ·δ. Therefore, a linear
relationship between δ and lnT will indicate the exponential
model is appropriate. However, the result plotted in the upper
figure of Fig. 5, in which the line is obtained by linear
regression, shows the exponential model fails to describe the
relationship between T and δ.
The other model considers a polynomial relationship be-

tween T and δ, T = a1 · δa2 . Taking base-ten logarithm
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Fig. 4. The evolution of the algorithm and the number of iterations for
different prescribed tolerance δ. The signal input is QPSK, and the SNR is
-5 dB.
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Fig. 5. Regression line for the exponential and polynomial models, which
quantify the relationship between the number of iterations and the prescribed
tolerance.

of both sides leads to the equation log10(T ) = log10(a1) +
a2 · log10(δ). Therefore, the model is appropriate if a nearly
linear relationship exists between log10(T ) and log10(δ). We
use linear regression to determine a1 and a2 and generate the
equation T = 2.45 ·δ−1.58. The curve depicted in lower figure
of Fig. 5 shows the polynomial model fits the relationship
very well. This fact is also verified by a very high R2 statistic
known as coefficient of determination [30], which is given
by 99.9%. Intuitively, this result implies that the number
of iterations increases 10a2 = 38 times for every 10-time
improvement in tolerance (e.g., δ changes from 0.1 to 0.01).
Although the required number of iterations increases faster

than the improvement in tolerance, it doesn’t necessarily
mean a global optimal precoder solution within a prescribed
tolerance cannot be obtained by low computational efforts.
Observing the convergence curve in Figs. 3 and 4, we have
the following remarks:
1) The upper bound converges and stops to decrease after

only several iterations, and the lower bound increases gradu-
ally to close the gap between both bounds. For example, the
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Fig. 6. Comparison of relative error with different relaxations. The signal
input is QPSK, and the SNR is -5 dB.

obtained upper bound is -1.272 at the 10,000-th iteration, but
up to 99.5% can be achieved at the first iteration. Also, 99.9%
can be achieved at the 101-th iteration with δ = 0.1.
2) Because the upper bound provides a feasible solution, it

represents the achievable objective value. The lower bound, on
the other hand, serves as a trusting certificate for the solution.
3) Since the upper bound is insensitive to the iteration,

the BAMIO algorithm is able to generate very high quality
solution with extremely limited computational effort. That is, a
low-complexity BAMIO algorithm with only several iterations
can be used in practice when the computational time is
concerned and a near optimal solution is permitted.

B. Example 2: Comparison with Different Relaxations

As shown in Corollary 2 and Corollary 3, different re-
laxations may have different performance, and the convex-
concave envelope relaxation with PSD constraint in (17) dom-
inates both the convex-concave envelope relaxation in (15) and
the SDR in (18). This fact is verified in this example, which
uses the same simulation setting as those in Example 1. The
Gaussian randomization technique (one of possible methods
for the rank-one approximation) is used for generating the
feasible solution, which is needed by all the three relaxations.
As iteration goes, the relative error of these three relaxations
are depicted in Fig. 6.
As noted in Sec. IV-D, SDR provides a solution with fixed

relative error that cannot be improved iteratively because it
introduces new variable Q irrelevant to p and P . However,
the solutions based on the envelope relaxation in (15) and
envelope relaxation with PSD constraint in (17) are improved
iteratively. The latter converges much faster because better
lower bound is provided at each iteration (see Corollary 2).

C. Example 3: Performance Comparison with Different Meth-
ods

The BAMIO algorithm allows us to evaluate the optimal
precoder and the highest MI with interference constraints. To
exemplify the results, we first considers a network with two

PRs, and each PR has two antennas. The channel between
ST and SR is the same as (20), while the channels between
ST and PRs are depicted by the exponential model:

hi,jk = ρ
|j−k|
i , i = 1, 2 (21)

where hi,jk is the (j, k)-th element of Hi, j = 1, · · · , Ni,
k = 1, · · · , Nt, and ρi ∈ [0, 1). The channel matrices H1

and H2 are generated by different parameters: ρ1 = 0.95 and
ρ2 = 0.85. Meanwhile, the transmit power constraint γ is 2,
and different interference power constraints, γi = +∞, 0.2,
and 0.02, are considered. For example, when γi equals +∞,
the interference constraints are no longer exist; when γi equals
0.2 and 0.02, the maximum receive power permitted at PRs is,
respectively, 10 dB and 20 dB less than the transmit power. In
this way, the interference power at the PRs can be controlled
below a tolerable level.
If we ignore the fact that the input symbols are from finite

alphabet and assume deliberately that they are from the ideal
Gaussian input, the precoder satisfying all the constraints
can be readily obtained, since the problem is maximizing a
concave function over a convex set. We name this scheme
as Gaussian based method. We will show that the precoder
designed by the Gaussian based method often leads to consid-
erable performance degradation when it is applied to practical
systems with finite-alphabet inputs.
Intuitively, if the BAMIO algorithm was not developed, a

precoder from the perspective of finite-alphabet inputs and
satisfying all the constraints would be designed as follows:
1) Design an optimal precoder by solving (4) (i.e., without
interference constraints) using methods developed in existing
works, e.g., [15], [20]; 2) Denote the solution as P̃ and rescale
it to satisfy all constraints:

P̃� =
P̃√

max
i=1,··· ,n

Tr(P̃HHH
i HiP̃)/γi

.

The sequel will show that this heuristic method may also result
in significant performance loss compared to the proposed
BAMIO algorithm, which finds the global optimal solution.
The performance of different methods are provided in Fig.

7, which shows the Monte Carlo Simulated MI versus SNR for
various interference constraints. The capacity with Gaussian
inputs, serving as the ultimate upper bound for all possible
linear precoders, are also included for comparison purpose.
When interference constraints are inactive (see Fig. 7a), the

proposed BAMIO algorithm globally solves the problem (4). It
turns out to be an alternative to the heuristic method, which,
in this case, solves (4) without rescaling the solution, since
the interference constraints are essentially removed. Although
the Gaussian based method achieves the capacity when input
signal is from Gaussian distribution, it leads to significant
performance loss if it is directly applied to finite-alphabet
inputs. This fact delineates the essential difference between the
precoder design with ideal Gaussian inputs and with practical
finite-alphabet inputs (see [15], [20] for more details).
When interference constraints are active, the heuristic

method satisfies the constraints by reducing the transmit
power, which also results in a low performance in terms of
MI. Thus, tighter interference constraints lead to larger gap
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(a) Interference constraints are inactive (γi = +∞).
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(b) The maximum receive power permitted at PRs is 10 dB less than
the transmit power (γi = 0.2).
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(c) The maximum receive power permitted at PRs is 20 dB less than
the transmit power (γi = 0.02).

Fig. 7. Monte Carlo simulated MI versus SNR for a network with one ST, one SR, and two PRs. Each node has two antennas. The signal input is QPSK;
the transmit power constraint γ is 2; the interference constraints γi (i = 1, 2) are +∞, 0.2, and 0.02, respectively.

between the heuristic method and the BAMIO algorithm (see
Figs. 7b and 7c). For example, when the channel coding rate is
3/4, the performance of the precoder obtained by the heuristic
method is about 8.3 dB and 11.1 dB inferior to that of the
precoder obtained by the BAMIO algorithm for γi = 0.2 and
0.02, respectively.

The Gaussian based method, on the other hand, induces
non-smoothness shown in Fig. 7. The reason comes from the
signal mismatch between assumptions and reality. Specifically,
when the SNR is less than a threshold (10 dB, 12.5 dB, and
25 dB, respectively, for Figs. 7a, 7b, and 7c), the Gaussian
based method uses the stronger subchannel and discards the
weaker subchannel (similar to the waterfilling method). This
method leads to the MI less than 2 bps/Hz. When the SNR
is larger than the threshold, the Gaussian based method starts
to use the weaker subchannel and therefore makes the MI
larger than 2 bps/Hz. This scheme is far away from optimal
and results in different amount of performance loss depending
on different interference constraints. For example, when the
channel coding rate is 3/4, the performance of the precoder
obtained by the Gaussian based method is about 12.7 dB, 2.9

dB, and 8.1 dB inferior to that of the precoder obtained by the
BAMIO algorithm for γi = +∞, 0.2, and 0.02, respectively.

From Figs. 7a, 7b, and 7c, we also conclude that the
achievable MI can be expected to be limited if constraints
on interference are demanding. For example, when SNR is 5
dB, the achievable MI is 3.74 bps/Hz, 1.53 bps/Hz, and 0.51
bps/Hz for γi = +∞, 0.2, and 0.02, respectively. Therefore,
the system operator may consider to relax the specifications
of interference and transmit power levels in order to attain a
satisfied MI for the link from ST to SR.

The coded BER performance of the aforementioned pre-
coding algorithms is then compared. The transceiver structure
in Fig. 8 (see [31] for more details) is realized to capture
the benefit of the proposed BAMIO algorithm. Note that the
interleaver in [31] is not shown in Fig. 8 because of the usage
of the low-density parity-check, or LDPC, codes [32]. The
signal sequences at the transmitter are encoded by the LDPC
encoder and mapped by the equiprobable discrete constella-
tions. They are then precoded by P and transmitted through
Nt antennas. At the receiver, the maximum a posteriori (MAP)
detector takes channel observations y and a priori knowledge
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Fig. 8. Block diagram of a multi-antenna spectrum sharing network with
channel coding and precoding at the ST and iterative detection and decoding
at the SR. The interference from ST to PRs is controlled within the tolerable
level.

18 20 22 24 26 28 30 32 34
10

−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

 

 

New BAMIO Alg.

Gaussian Based Alg.

Heuristic Alg.

Fig. 9. BER versus SNR for different algorithms. The input signal is drawn
from QPSK, the channel coding rate is 3/4, coding block length is 7,200,
and the iteration between the MAP detector and the LDPC decoder is 5. The
interference constraint γi is 0.02.

from the decoder and computes the new information for each
coded bit. In this way, the extrinsic information between the
MAP detector and the LDPC decoder is exchanged iteratively
until the desired performance is obtained.
The LDPC encoder and decoder are derived from [33] with

coding rate 3/4. The iteration between the MAP detector and
the LDPC decoder is 5. The coding block length of LDPC
is 7,200. The obtained coded BER for the corresponding
algorithms in Fig. 7c is shown in Fig. 9. Apparently, the
proposed BAMIO algorithm outperforms the Gaussian based
algorithm and the heuristic algorithm as predicted by MI in
Fig. 7c. Based on this result, the large performance gain in
MI implies the large performance gain in coded BER. That
is, the BAMIO algorithm based on the MI maximization is an
excellent approach to provide considerable performance gain
for practical spectrum sharing networks.
The performance of the BAMIO algorithm is further inves-

tigated when both ST and SR have four antennas and the
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Fig. 10. Monte Carlo simulated MI versus SNR for a network with one
ST, one SR, and two PRs. Each node has four antennas. The input signal
is drawn from QPSK; the transmit power constraint γ is 4; the interference
constraints γi (i = 1, 2) are 0.04. The 4×4 MIMO channel between ST and
SR is based on METRA correlation model for the microcell environment.

channel is depicted by

H = Ψr ·Ψt

where Ψr and Ψt are, respectively, the receive and transmit
correlation matrices for the microcell setting defined by the
multiple element transmit-receive antennas (METRA) model
[34]. The METRA model is verified by the measured data,
and the microcell setting corresponds to a case in which the
transmitter is highly correlated.
The two PRs have also four antennas, and the channel

between ST and PRs are depicted by the exponential model in
(21) with parameters ρ1 = 0.95 and ρ2 = 0.85. The parameter
γ is 4, which keeps the transmit power with precoding the
same as that without precoding. The interference constraints
γi (i = 1, 2) are 0.04; that is, the maximum receive power
permitted at PRs is 20 dB lower than the transmit power.
Figure 10 compares the performance of the BAMIO al-

gorithm with that of the Gaussian based method and the
heuristic method. It shows that the curve for the Gaussian
based method has a staircase shape. The reason comes from
the inefficient usage of the channel. For the 4 × 4 ST-SR
channel, the Gaussian based method uses only one subchannel
when SNR is less 25 dB, two subchannels when SNR is
more than 25 dB and less than 52.5 dB, and so on. This
strategy is capacity achieving when inputs are Gaussian signal;
however, it results in significant performance loss when used
for a practical system with finite-alphabet inputs. The heuristic
method, reducing the transmit power to meet interference
constraints, is worse than the Gaussian based method at the
low SNR region, and it is better than the Gaussian based
method at the high SNR region. Thanks to the BAMIO
algorithm, we know both the Gaussian based method and the
heuristic method are not good enough because a substantial
gain can be achieved by the BAMIO algorithm for a broad
range of SNR without violating the interference constraints.
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VI. CONCLUSION

This paper has considered the spectrum sharing problem for
multi-antenna cognitive radio networks. It has proposed the
precoding algorithm that achieves the theoretical limit on the
constellation-constrained information rate between secondary-
user transmitter and secondary-user receiver while controlling
the interference to multiple primary-user receivers sharing the
same frequency band at the same time.
This work has extended the existing precoding study with

finite-alphabet inputs, not only because it has considered the
more difficult spectrum sharing problem, but also because
it has proposed the BAMIO algorithm that solves the open
problem of precoding with finite-alphabet inputs. The BAMIO
algorithm is guaranteed to converge to a global optimal
solution even though the problem is nonconcave. The idea
behind the algorithm is to reformulate the precoding design
into a problem that minimizes a function with bilinear terms
over the intersection of multiple co-centered ellipsoids. A
relaxation of the reformulation has been derived by relaxing
the bilinear terms based on its convex and concave envelopes.
In this way, a sequence of relaxed problems has been solved
over shrinking feasible regions. As the iteration goes, the
algorithm has provided a solution that eventually converges to
the global optimum. Two methods that are able to accelerate
the convergence of the algorithm from different aspects have
been discussed. The relationship of three possible relaxations
has been considered.
Numerical examples have demonstrated the trade-off be-

tween the performance and the complexity. They have shown
that the BAMIO algorithm generates very high quality solution
with extremely limited computational effort. Therefore, a low-
complexity algorithm with only several iterations can be
used when the computational time is concerned. Numerical
examples have also shown the significant performance gain
achieved by the proposed BAMIO algorithm for a broad range
of SNR compared with the conventional methods. Besides,
they verify that the large performance gain in MI achieved
by the BAMIO algorithm also represents the large gain in the
coded bit-error rate.
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APPENDIX A
PROOF OF RELATIONSHIP BETWEEN OPTIMAL VALUES OF

PROBLEM (11) AND PROBLEM (15)

Proof of Proposition 1: We first prove that the optimal
value of the relaxation (15) serves as a lower bound of that
of (11). If qij for i, j = 1, · · · , 2N2

t equals pipj (i.e., Q =
p · pT ), the problem (15) is equivalent to (11). The reason is
that the objective function and the first and second constraints

in both problems are the same since Tr(AQ) = Tr(pTAp);
and (15c), (15d), and (15e) become redundant in this case.
If qij is relaxed by the convex and concave envelopes, the

feasible set of qij is enlarged. Therefore, a better solution of
variable Q with a lower objective value can be found, i.e.,
vrlx(P) ≤ vMI(P).
In order to prove both problems converge to each other

as the bounded box shrinks, we first show that the relaxed
variable qij converges to the bilinear term pipj when ε → 0.
Denote the center of the ball B(ε) as p̄. Then based on the
definition of the concave envelope, we have [25], [35]

0 ≤ lim
ε→0

(
cavP(p̄ip̄j)− p̄ip̄j

)
≤ lim

ε→0

(
sup
p∈P

(pipj)− p̄ip̄j

)
(22)

where p̄i and p̄j are the i-th and j-th elements of p̄. Since
P ⊂ B(ε), we also have

lim
ε→0

(
sup
p∈P

(pipj)− p̄ip̄j

)

≤ lim
ε→0

(
sup

p∈B(ε)

(pipj)− p̄ip̄j

)
= 0 (23)

in which the equality follows from the continuity of pipj . The
expressions in (22) and (23) imply that the concave envelope
cavP(pipj) converges to pipj , that is,

lim
ε→0

max
p∈P

(
cavP(pipj)− pipj

)
= 0.

Similarly, the convex envelope vexP(pipj) also converges to
pipj

lim
ε→0

max
p∈P

(
vexP(pipj)− pipj

)
= 0.

Combining the convergence of both envelopes, the relaxed
variable qij constrained between convex and concave en-
velopes, converges to the bilinear term, i.e.,

lim
ε→0

qij = pipj . (24)

Now consider the convergence between vrlx(P) and vMI(P):

lim
ε→0

(
vrlx(P)− vMI(P)

)

= lim
ε→0

⎛
⎝ 1

MNt

MNt∑
m=1

log

∑MNt

k=1 exp (Tr(AmkQ))∑MNt

k=1 exp (pTAmkp)

⎞
⎠

= lim
ε→0

⎛
⎝ 1

MNt

MNt∑
m=1

log

∑MNt

k=1 exp
(∑

i,j amk,ij · qij
)

∑MNt

k=1 exp
(∑

i,j amk,ij · pipj
)
⎞
⎠

=
1

MNt

MNt∑
m=1

log

∑MNt

k=1 exp
(∑

i,j amk,ij · limε→0 (qij)
)

∑MNt

k=1 exp
(∑

i,j amk,ij · pipj
)

= 0

where the derivation follows from the properties of limits. The
proof is now complete.
We now provide the proof for Corollary 1:
Proof of Corollary 1: From (24), the relaxed variable Q,

constrained between convex and concave envelopes, converges
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to ppH as ε → 0. Consequently, the solution of the relaxed
problem is rank one, which ensures all the constraints in (11)
is satisfied and that the objective value of (11) is the same
as that of problem (15). Therefore, the rank-one solution also
solves problem (11). The proof is complete.

APPENDIX B
PROOF OF CONVERGENCE AND RELATIONSHIP AMONG
OPTIMAL VALUES OF PROBLEM (11), (17), AND (18)

We first provide the proof for the convergence of the
proposed BAMIO algorithm:

Proof of Proposition 2: The convergence for branch-and-
bound method is ensured if the difference of lower and upper
bounds reduces to zero as the bounded box P shrinks down
to a point (i.e., ε → 0) [36]. This condition holds because of
Proposition 1 and Corollary 1.
We now prove that the PSD constraint tightens the relax-

ation based on convex and concave envelopes and therefore
provides a better optimal value:

Proof of Corollary 2: Since the feasible region defined
by problem (17) is tighter than that of (15), the optimal
value of the former is larger than the later and thus closer to
vMI(P). The second part of Corollary 2 is a direct extension
to Proposition 1. It holds because vimp(P) is closer to vMI(P)
than vrlx(P).
Finally, we prove the relationship between solutions of

problem (17) and (18):
Proof of Corollary 3: Because of ppT 
 0 and the

linear constraint based on convex and concave envelopes,
the constraints in (17) define a region smaller than that of
(18). Therefore, the first inequality in (19) holds. The second
inequality is from Corollary 2.
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