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Abstract—We study the design optimization of linear precoders
for maximizing the mutual information between finite alphabet
input and the corresponding output over complex-valued vector
channels. This mutual information is a nonlinear and non-concave
function of the precoder parameters, posing a major obstacle to
precoder design optimization. Our work presents three main con-
tributions: First, we prove that the mutual information is a con-
cave function of a matrix which itself is a quadratic function of
the precoder matrix. Second, we propose a parameterized itera-
tive algorithm for finding optimal linear precoders to achieve the
global maximum of the mutual information. The proposed itera-
tive algorithm is numerically robust, computationally efficient, and
globally convergent. Third, we demonstrate that maximizing the
mutual information between a discrete constellation input and the
corresponding output of a vector channel not only provides the
highest practically achievable rate but also serves as an excellent
criterion for minimizing the coded bit error rate. Our numerical
examples show that the proposed algorithm achieves mutual in-
formation very close to the channel capacity for channel coding
rate under 0.75, and also exhibits a large gain over existing linear
precoding and/or power allocation algorithms. Moreover, our ex-
amples show that certain existing methods are susceptible to being
trapped at locally optimal precoders.

Index Terms—Finite alphabet input, linear precoding, mutual
information, optimization, vector Gaussian noise channel.

I. INTRODUCTION

L INEAR transmit precoding has been a popular research
topic in multiple-input multiple-output (MIMO) system

optimization, as evidenced by [1]–[17] and references therein.
Existing methods typically belong to three categories: (a) di-
versity-driven designs; (b) rate-driven designs; and (c) designs
based on minimum mean squared error (MMSE) or maximum
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signal-to-noise ratio (SNR). The first category applies pairwise
error probability analysis to maximize diversity order as in [18]
but may not achieve the highest coding gain [19]. The second
category often utilizes (ergodic or outage) capacity as design
criteria for precoder optimization. However, most such designs
rely on the impractical Gaussian input assumption, which often
leads to substantial performance degradation when applied with
actual input of finite alphabet data [20], [21]. The third category
uses MMSE or SNR as the figure of merit to design a linear pre-
coder. Linear MMSE estimation strategy is globally optimal if
the channel inputs and noise are both (independent) Gaussian
[10]. However, when the inputs belong to finite alphabets, such
strategy is also not optimal.

In fact, several recent works have begun to study MIMO pre-
coding design for maximizing mutual information under dis-
crete-constellation inputs [20]–[24]. In [20], a seminal result
was presented for power allocation based on mercury/water-
filling (M/WF) that maximizes the input-output mutual infor-
mation over parallel channels with finite alphabet inputs. The
significance of M/WF is that, for given equal probable con-
stellations, stronger channels may receive less allocated power;
whereas for channels of equal strength, denser constellations
may receive larger power allocation. These results indicate that
power allocation depends not only on channel gain but also on
the constellation for finite alphabet inputs. Therefore, M/WF is
very different from the classic waterfilling (CWF) policy [25]
for Gaussian inputs. However, M/WF inherits a feature of the
CWF by constraining the M/WF precoding matrix as diag-
onal if the channel matrix is also diagonal [20]. Unfortu-
nately, this diagonal constraint on makes the M/WF power
allocation sub-optimal even for parallel channels with discrete
constellation inputs. The works in [21] and [22] proposed itera-
tive algorithms based on necessary but not sufficient conditions.
Hence, such algorithms do not guarantee global optimality. For
real-valued vector channel models in which all signals and ma-
trices [see (1)] have real-valued entries, [23] showed that: a) the
mutual information between channel input and output, ,
is a function of with denoting matrix transpose;
b) the left singular vectors of optimal can be the right singular
vectors of ; c) the mutual information is a concave function
of the squared singular values of if its right singular vectors
are fixed. However, [23] pointed out that optimizing the right
singular vectors of the precoder “seems to be an extremely diffi-
cult problem”. Independently, [24] stated that is a con-
cave function of for real-valued signals and chan-
nels, with an incomplete proof. An iterative algorithm was fur-
ther presented in [24] to solve the real-valued precoder . The
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simulation results in [24] indicate that the algorithm in [24] con-
verges to the same maximum mutual information as that of [22],
but at more than twice the convergence rate. However, we will
show that the test results in [24] is not globally optimal, either.

It should be pointed out that confining channel and precoder
parameters as well as the associated signals to real-field as in
[23] and [24] usually leads to suboptimal designs. Consequently,
these methods may achieve mutual information results that fall
far short of the achievable global maximum. In this paper, we re-
open the exploration of linear precoding optimization for com-
plex vector channels. Our work investigates general precoding in
the complex field for maximizing input-output (I/O) mutual in-
formation. Our major contribution in this work consists of the
proof of the aforementioned concavity property and our presen-
tation of an iterative algorithm that converges globally to max-
imum I/O mutual information for complex vector Gaussian chan-
nels. As will become clearer, the concavity proof and the iterative
algorithm for linear precoding in complex channels are radically
different from their real-field counterpart.

Notation: Uppercase (lowercase) boldface letters denote
matrices (column vectors), represents the column
vector obtained by stacking the columns of matrix ,
stands for a diagonal matrix formed by the diagonal entries
of , represents the trace of a matrix, stands
for ensemble average, denotes the Kronecker
(Hadamard) product, and the superscripts , and
represent transpose, conjugate, and conjugate transpose oper-
ations, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a discrete-time complex vector channel, in which
the baseband input-output relationship is described by

(1)

where is the received channel output signal;
is the channel matrix; is the linear pre-

coder; is the circularly symmetric white Gaussian
noise vector with covariance matrix ; and is
the baseband channel input signal of zero mean and covariance

, with being the identity matrix.
Instead of the traditional assumption of Gaussian signal , we

let the signal be equiprobably drawn from well-known dis-
crete constellations such as -ary phase-shift keying (PSK),
pulse-amplitude modulation (PAM), or quadrature amplitude
modulation (QAM) of cardinality . Let the channel and
the precoder be known at the receiver. The corresponding
channel output has probability density functions of

(2)

(3)

where denotes Euclidean norm. Each input realization
consists of i.i.d. symbols from the -ary constellation.

The MMSE estimate of is the conditional mean

(4)

Define the MMSE matrix and the companion MMSE matrix,
respectively, as

(5)

(6)

Note that in the real field, these two matrices are identical. How-
ever, in the complex field, they differ. Also, the channel mutual
information between the discrete input and the channel output

is given by

(7)

where .
We are now in a position to state the following proposition

while omitting the proof for brevity.
Proposition 1: Let and be unitary matrices with appro-

priate dimensions. Then the following relationships hold:

(8)

(9)

Apparently, (8) implies that a linear unitary transformation
at the channel output does not alter mutual information. This is
not surprising since unitary transformation of the channel output
vector preserves the original output information. However, (9)
implies that the mutual information can change if the discrete
input vector undergoes a rotational transformation (by a unitary
matrix). It is this relationship that motivates the quest for op-
timal linear precoding in MIMO wireless communications.

Unlike the cases involving Gaussian input, finding precoder
to maximize is much more complicated. Indeed, the

complex expression of is the major reason that most
works on capacity-maximizing precoders assumed Gaussian
input . The goal of this paper is to present both theory and
algorithms for globally optimal linear precoder , to maximize
mutual information of complex-field vector Gaussian
channels with finite alphabet inputs .

Before ending this section, we introduce a few notations and
operators for the complex first- and second-order derivatives of
real-valued and complex-valued functions and matrices.

We adopt the formal partial complex derivative of a real-
valued scalar function [26]

(10)

(11)

where is a complex-valued variable. For a complex-valued
matrix , the partial derivatives of a real-valued scalar function

are matrices

(12)

where denotes the th element of .
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For a complex-valued scale function denoted by ,
we adopt a simple notation of

where and follow the definition given by (10). This no-
tation simply follows the definitions given in [26].

Let be a complex matrix function of and .
Then the Jacobian matrices of with respect to and are
respectively given by [26]

and (13)

Let and be two complex-valued matrices, and let be
a real-valued scalar function of and . Then, the complex
Hessian of with respect to and is defined by [26]

(14)

III. THEORETICAL RESULTS

A. Concavity of the Mutual Information

In this section, we present main results with respect to the mu-
tual information for the complex-field vector channel described
by (1). Two theorems form the foundation for developing new
algorithms to globally maximize with linear precoders.
We utilize seven lemmas for proving the two theorems. The
proofs of all the theorems and lemmas of this section are rel-
egated to Appendix A.

Theorem 1: For the complex-field vector channel model of
(1), the mutual information depends on the precoder

only through . The partial derivative of
with respect to is

(15)

The composite Hessian of with respect to is

(16)

and is negative (semi)-definite. Therefore, is a concave
function of .

Note that and are, respectively, MMSE and
companion MMSE matrices conditioned on a specific observa-
tion of output

(17)

(18)

Thus, and .
Theorem 2: For the complex vector Gaussian channel model

(1), if and with diagonal and ,
the mutual information is a concave function of , and
the partial derivative and the Hessian of the mutual information
with respect to are given by

(19)

(20)

where and

(21)

(22)

(23)

These two theorems are based on the following seven
lemmas.

Lemma 1: The probability density function satisfies the
following first-order derivative equations:

(24)

(25)

(26)

(27)

Lemma 2: The conditional mean satisfies the fol-
lowing equalities:

(28)

(29)

Lemma 3: Let and be the th and th elements of
the transmitted signal vector , respectively. The conditional
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expectations, and , respectively, satisfy the
following:

(30)

(31)

Lemma 4: The first-order derivative of the mutual informa-
tion with respect to is given by

(32)

Lemma 5: The following three conditional mean equalities
are valid.

(33)

(34)

(35)

Lemma 6: The Jacobian matrix of MMSE matrix with re-
spect to satisfies the following equation:

(36)

where is an commutation matrix [27], [28].
Lemma 7: The second-order derivatives of the mutual infor-

mation contains four key complex Hessian matrices,
and they are given by

(37)

(38)

(39)

(40)

B. Remarks

We conclude this section with two remarks. Our first remark
is to point out that it was first stated in [24] that the mutual infor-
mation is a concave function of for cases where the
channel matrix, linear precoder, transmitted signal and received
noise are all in real field. However, the proof of this result pro-
vided in [24] is incomplete, since it claimed
to be positive semi-definite without a proof, where is the
MMSE matrix conditioned on a specific realization of the output

. In this section, we not only extended the concave property to
complex field, but also provided a rigorous proof, which is non-
trivial as evidenced. Theorem 2 is also a nontrivial extension to
the complex field systems from [28, Theorem 5] (or [23, Lemma
2]) which was originally derived for real field systems.

Our second remark is on the globally optimal solution for
linear precoders. Having proven the concavity of the merit func-
tion (mutual information) for maximization, we are keen to de-
velop ways to find globally optimal linear precoders. Unfor-
tunately, existing algorithms, e.g., [29], cannot be straightfor-
wardly used for finding a globally optimal . This is because
even though is a concave function of , the power con-
straint on our precoding parameter matrix
makes it a very difficult optimization problem.

More specifically, we take gradient ascent algorithm as an
example. We may update

(41)

with , in which is a sufficiently
small positive step size. Our iterative solution requires us to up-
date

(42)

where the linear precoder has to satisfy the power constraint:

trace trace

Given the power constraint, directly solving for the incremental
update can be difficult. Moreover, the convergence can also
be painfully slow because the step size has to be very small to
avoid divergence.

We present a novel parametric algorithm for iterative solution
of the optimum precoder in the next section.

IV. PARAMETERIZED ITERATIVE ALGORITHM

In this section, we propose a parameterized iterative algo-
rithm for solving a linear precoder , which globally maxi-
mizes the mutual information given by (7), under the
assumption that the channel state information is known to the
transmitter and the receiver.

A. Parameterization

We first present the following proposition as a direct exten-
sion of [23, Proposition 1], which originally dealt with real-
valued systems.

Proposition 2: The left singular vectors of the globally op-
timal precoder can always be chosen to be the
same as the right singular vectors of channel matrix .
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According to Propositions 1 and 2, the complex vector
Gaussian channel (1) can be simplified to the following equiv-
alent model

(43)

where and are diagonal matrices containing the singular
values of and , respectively, is a unitary matrix, and

in which is the left singular vectors of . We note
that maximizing based on the model (43) is equivalent
to maximizing according to the model of (1).

From [4] and [30], any unitary matrix can be written
as

(44)

where is an unitary diagonal matrix, the angles
and parameterize the complex Givens

matrix , formed by replacing the th, th,
th, and th entries of identity matrix with ,

, , and , respectively.
For the equivalent model (43), we have .

Using gradient ascent, if we choose a step size to obtain
the incremental , we can find
the incremental and via the following first-order
approximation

(45)

with

(46)
After finding increments and , we can update unitary
matrix and linear precoder . Note that the newly updated
precoder will automatically satisfy the power constraint
as long as the singular values remain unchanged, owing to
the parameterization of unitary in (44).

B. Iterative Optimization Algorithm

We are now ready to summarize our algorithm steps.

Step 1: For a given channel , apply singular
value decomposition (SVD) to decompose

and convert the original channel
model (1) into its equivalent model (43), where

is drawn from a pre-chosen finite alphabet set
(constellation).

Step 2: Choose an initial set of non-zero values for ,
and non-negative diagonal matrix with

. Choose a unitary diagonal matrix
, which does not affect the maximization of

mutual information .
Step 3: Compute mutual information and MMSE

matrix . Use backtracking line search [29] to
determine a step size to obtain the incremental

before solving for and with fixed
. Then update unitary matrix .

Step 4: Update (or re-compute) mutual information
and MMSE matrix according to the updated
matrix .

Step 5: Calculate the gradient for as follows:

(47)

with .
Step 6: Update by with being a step

size, which is determined by the backtracking
line search. Set any negative diagonal entry of

to zero, before normalizing the updated
non-negative to satisfy the power constraint:

.
Step 7: If the step size in Step 6 has to be (nearly) zero,

then update by with being
determined by the backtracking line search. Set
any negative diagonal entry of to zero, then
normalize the updated non-negative to satisfy
the power constraint: .

Repeat Step 3 through Step 7 until convergence or until a
pre-set target is reached. Then a globally optimal precoder

is obtained.

C. Remarks

We conclude this section with several remarks:
1) Based on the convergence result for block coordinate as-

cent/decent method [31, p. 273], the global convergence
is guaranteed with properly chosen step size for the above
iterative algorithm when SNR is finite and the initial uni-
tary matrix is indeed complex-valued. This is because
both Hessian matrices given by Theorems 1 and 2 will be
negative definite, the mutual information is a strict concave
function of , and a strict concave function of for a
fixed , with SNR being finite.

2) Although there is only one global maximum of the mu-
tual information , which is equivalent to , it
is possible to have non-unique globally optimal solutions
in terms of , which give the same globally maximum
mutual information. For example, a finite alphabet constel-
lation such as PSK and QAM typically has certain sym-
metry (with respect to axis and/or axis), allowing the
same mutual information with various rotations.

3) Similarly, there exist many “equivalent” globally optimal
linear precoders corresponding to an optimal .
For example, if we choose different unitary diagonal matrix

in (44), we will have different linear precoders .
4) The step sizes and are usually different for fast

convergence purposes.
5) The gradient in Step 5 contains power constraint in-

formation: if the stepsizes are large in previous iterations,
Step 6 might get trapped in suboptimal power allocation
points; Hence, Step 7 is introduced to guarantee the glob-
ally optimal power allocation under power constraints.



3306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 7, JULY 2011

TABLE I
THE SMALLEST INTERVALS FOR THE ANGLES � AND �

CORRESPONDING TO DIFFERENT MODULATIONS

6) If we force in Step 5, then Step 6 may not get stuck
to suboptimal power allocation points, in which case Step
7 is not needed. However, the global convergence will be
much slower in general.

7) In principle, we can also employ Newton’s method to de-
velop an iterative algorithm, because we have obtained
mathematical formulae for both the gradient and the Hes-
sian matrix of mutual information with respect to

(and for a fixed ). However, computing the Hes-
sian matrices numerically can be more demanding in terms
of computations and memories, unlike computing the gra-
dients. Thus, Newton’s method may be less efficient.

8) If we only consider real-valued vector channels with real-
valued linear precoders, signals and noise, which are the
cases previously discussed in [23] and [24], then we need
to set for all and , and the unitary matrix
becomes a routine rotational matrix [30]. In this special
case, our proposed iterative algorithm will still work with
fast and robust convergence. Moreover, we should point
out that in this case, all the four complex-valued Hessian
matrices in Lemma 7 reduce to one single real-valued Hes-
sian matrix, and the composite Hessian matrix in Theorem
1 needs to be re-defined as the regular Hessian matrix given
by Lemma 7.

V. SIMULATION RESULTS

We now provide examples to illustrate the convergence
properties of our proposed iterative optimization algorithm.
Our examples can demonstrate the performance advantages of
employing the proposed optimal linear precoders that maxi-
mize the I/O mutual information for complex vector Gaussian
channels with finite discrete inputs.

A. Example 1

Consider a 2 2 static (non-fading) MIMO baseband system
(1) with the channel matrix

which was also used in [32]. The average SNR of a MIMO
system is given by .

Taking into account the symmetric property of commonly
used constellations, it is proved in Appendix B that the intervals
for the angles and of the unitary matrix can be reduced
to much smaller intervals than those that followed (44). Table I
lists the smallest intervals for and for 2 2 MIMO channels
with different modulations.

We first consider BPSK inputs with . Since both
the channel matrix and channel inputs are real-valued quantities,

TABLE II
REAL-VALUED AND COMPLEX-VALUED SOLUTIONS

Fig. 1. Convergence trajectories for the mutual information.

for comparison purpose, we maximize the mutual information
by employing real-valued linear precoder and complex-valued
linear precoder, respectively. The resulting precoders and corre-
sponding mutual information values are listed in Table II, which
shows that an optimal complex-valued precoder can provide
much higher mutual information than an optimal real-valued
precoder.

We now test our iterative algorithm for QPSK inputs with
. We chose two different initializations: Case A:

, and ; and Case B: ,
and . The convergence trajectories of the resulting

mutual information is shown in Fig. 1.
As we can see, under either initialization, the algorithm

quickly converged to the global maximum of the mutual in-
formation, . Within the intervals

and , the global optimal solution is

and a corresponding globally optimal linear precoder is

For different intervals such as and ,
the global optimal solution is given by
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Fig. 2. Mutual information of the 2� 2 diagonal channel matrix with Gaussian
and QPSK inputs.

and a corresponding globally optimal linear precoder is

Both and lead to the same global maximum mutual
information.

It is noted that due to the periodicity of and , there are
16 “different” solutions for in a 2 2 MIMO system with
QPSK modulated signals. However, once given one of these 16
solutions, the remaining 15 solutions can be directly obtained
from the first found solution using the periodicity property. It is
further noted that for each optimal , there are many cor-
responding globally optimal linear precoders , which have
the following structure:

where is any unitary diagonal matrix with appropriate dimen-
sions. All these optimal precoders lead to the same global max-
imum mutual information.

For convenient comparison with other existing precoding
or power allocation algorithms, we diagonalize the original
channel matrix via singular value decomposition (SVD):

. We apply, at the transmitter, classic

waterfilling [25], mercury waterfilling [20], maximum diversity
precoding [4], and our proposed optimal precoding for QPSK
inputs. The resulting values of I/O mutual information as func-
tions of the average SNR are comparatively shown in Fig. 2.
As benchmarks, we also plot results for Gaussian inputs with
classic waterfilling and without waterfilling.

From Fig. 2, we have the following observations:
1) Compared to the system without waterfilling, the classic

waterfilling has positive gain on mutual information for
low SNR (corresponding to channel coding rate under 0.5)
but shows a negative gain (i.e., loss) at high SNR (corre-
sponding to channel coding rate above 0.5), this is because

Fig. 3. MIMO transceiver with a linear precoder�.

the classic waterfilling algorithm allocates all the power to
the stronger channel for .

2) The mercury-waterfilling achieves up to 3-dB gain in terms
of mutual information over the diagonal channel matrix
without waterfilling throughout SNR test range.

3) Maximum diversity precoding shows substantial gain over
classic waterfilling and mercury waterfilling when the
channel coding rate is above 0.5. However, it is inferior
to classic waterfilling and mercury waterfilling when the
coding rate falls below 0.5.

4) Throughout the tested SNR range, our proposed globally
optimal precoding is always better than maximum diversity
precoding, classic waterfilling, and mercury waterfilling. It
achieves a very large gain when channel coding rate is high.

5) Our proposed globally optimal precoding can achieve
mutual information very close to channel capacity (under
Gaussian inputs with waterfilling) when coding rate is
below 0.75; Moreover, it outperforms Gaussian inputs
without waterfilling when coding rate is below 0.9.

To further illustrate the benefit of globally maximizing the
mutual information , we test an MIMO system (1) with
the transceiver structure depicted in Fig. 3.

As a more comprehensive system, we adopt the LDPC
encoder and decoder simulation package [33], for coding rate

and code length , we obtained the
bit error rate (BER) results shown in Fig. 4 for the precoding
schemes discussed in Fig. 2. Apparently, the globally optimal
precoder we obtained outperforms all the comparison precoding
(or power allocation) schemes. In fact, the performance gains
over other schemes at match the value predicted
by the mutual information results of Fig. 2 when .
This observation suggests that maximizing mutual information
is a very sound approach and that it has direct impact on coded
BER performance. It is noted that the gap between the QPSK
limit and the optimal precoder can be narrowed by using a
longer length code. Moreover, the QPSK limit is only 0.7 dB
off the Gaussian-input capacity limit.

Before concluding this example, we would like to point
out that the linear precoder obtained in [32] is a sub-optimal
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Fig. 4. Coded BER for QPSK modulation with different linear precoding (or
power allocation) schemes.

solution. Its corresponding mutual information stayed below
3.6 b/s/Hz after 3000 iterations, while our proposed algo-
rithm converged to the maximum mutual information being
3.9996 b/s/Hz within 15 iterations, at the same SNR as tested
in [32].

B. Example 2

Next, we consider a 3 3 complex-valued MIMO channel

(48)

A QPSK signal was transmitted at . We randomly
picked two sets of initializations: Case 1: , ,
and for all and ; Case 2: , ,
and for all and . The converging trajectories of the
resulting mutual information are given in Fig. 5.

We observe that the mutual information grows monotonically
and converges within 22 iterations and 12 iterations for Case 1
and Case 2, respectively. The global maximum mutual informa-
tion is 5.7370 b/s/Hz. Upon convergence, our optimized matrix

is given by

and our optimal linear precoder is given by the matrix shown at
the bottom of the page. It is noted that there are other optimal

Fig. 5. Convergence trajectory for the mutual information.

solutions for matrix and linear precoder which lead to the
same global maximum mutual information. Details are omitted
here for brevity.

We also note that the above satisfies the necessary op-
timality condition[21, (7)] and [22, (4)]. Thus, is a solu-
tion to as is a concave function of . Therefore,

is indeed a globally optimal precoder.
Finally, we would like to point out that we have also de-

signed an optimal precoder for the 4 4 MIMO example used
in [24] with the same SNR and digital modulation as used in
[24]. Our global maximum mutual information reaches 3.9998
b/s/Hz, above the achieved rate (3.8 b/s/Hz) shown in Fig. 1 of
[24]. In terms of speed, our algorithm converged to the global
maximum mutual information within 30 iterations while the al-
gorithm in [24] apparently required more than 150 iterations to
converge to a lower data rate.

VI. CONCLUSION

In this work, we investigated the design of optimum pre-
coders aimed at maximizing the I/O mutual information of com-
plex-valued MIMO vector channels, driven by non-Gaussian in-
puts of finite alphabet. We first proved that the I/O mutual infor-
mation of the linear MIMO system under finite alphabet inputs
is a concave function of a composite matrix which itself is a
quadratic weighted matrix of a linear precoder matrix . Rec-
ognizing that the concavity property itself does not automati-
cally provides an efficient optimization algorithm, we further
developed a fast and effective iterative algorithm to optimize the
linear precoder to globally maximize the resulting mutual in-
formation. Our numerical results demonstrate that the proposed
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algorithm is computationally efficient, numerically robust and
globally convergent, while achieving optimum system perfor-
mance in terms of highest achievable throughput. Test results
also point out that some existing methods may be vulnerable to
being trapped at suboptimal precoders, due to either numerical
issues or multi-modality.

APPENDIX A
PROOFS OF LEMMAS 1–7 AND THEOREMS 1 AND 2

Proof of Lemma 1: Employing

, one has . Invoking
, one can easily prove (24).

From [26], we know that
, therefore,

(49)

The proofs of (26) and (27) follows from their relationships to
(24) and (25), respectively.

Proof of Lemma 2: We prove (28) first.

(50)

The proof of (29) is similar to that of (28). We omit the details
for brevity.

Proof of Lemma 3: The proof of (30) is given here.

(51)

Similarly, we can prove (31).
Proof of Lemma 4: Let denote the th element

of . We then have

(52)

where is the th column of an identity matrix with appro-
priate dimension. Based on the complex-valued matrix differ-
entiation rules [26], one can easily obtain the following

(53)

(54)

(55)

Keeping in mind that , one can use the chain rule
to have

(56)

(57)

This completes the proof of Lemma 4.
Proof of Lemma 5: The first equality (33) is validated as

follows:

(58)
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The left-hand side and right-hand side (LHS and RHS) of the
second (34) can be rewritten by

(59)

(60)

The only work now that remains is to show the indices can
be swapped in the two different equations. If we partition the
matrix into blocks with each
block being dimensions, then its th block, denoting
as , is given by

(61)

Similarly, the th block of ,
denoting as , is given by

(62)

If we exchange the two dummy summation indices and ,
we can easily see that these two blocks and are
identical. Therefore, the second equality of Lemma 5 holds.

We can prove the third equality (35) in a similar manner. Let
and be the th block of the LHS and the RHS

of the third equality, respectively. After some mathematical ma-
nipulations, we obtain the following:

(63a)

(63b)

Apparently, and are identical; therefore, the third
equality holds, hence completing the proof of Lemma 5.

Proof of Lemma 6: The proof of this lemma is lengthy.
The th element of the MMSE matrix is given by

. Therefore

(64)

Utilizing Lemmas 1 and 3, and , where
is the th column of an identity matrix with appropriate dimen-
sion, one can obtain

(65)

We split the three integrations separately. The first integrand
in (65) can be re-expressed as

(66)

Thus, the first term in the integration of (65) becomes

(67)

The first step follows from integration by parts whereas the
second step is due to Lemma 2.

Similarly, the second integrand and the second term in (65)
can be reexpressed, respectively, as

(68)
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(69)

The third integrand in (65) is

(70)

Hence, the third integration becomes

(71)

Substituting (67), (69), and (71) into (65), we have

(72)

with and .

From , we have

(73)

Note that
, (73) becomes (36), which finally completes the

proof of Lemma 6.
Proof of Lemma 7: Based on the chain rule provided by The-

orem 1 of [26], we have

(74)

From [26], we know that

(75)

and

(76)

Thus

(77)

which is equivalent to

(78)

Similarly, we can obtain

(79)

and

(80)

Based on the definition of complex Hessian matrix, we can
easily obtain

(81a)

(81b)

Comparing (36), (74), (78), and (80), we can obtain (37) and
(38). Utilizing conjugate properties, we can easily show (39)
and (40). This completes the proof of Lemma 7.

We are now is a position to prove the two theorems.
Proof of Theorem 1: The proof of ’s dependence on
through is similar to that of Lemma 1 of [23], which

considered real-valued vector Gaussian channels. Note that
is a sufficient statistics

of [34]. The first term on the RHS depends on through
. The second term is a zero-mean
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complex Gaussian random vector, and its statistical behavior
is completely characterized by its covariance matrix, which
equals . Since and are independent, depends
on the precoder only through .

According to [32, eqn. (22)], . Invoking
Lemma 4, one also has

(82)

Because (82) is valid for any channel matrix and precoder
matrix, we get , which validates (15).

To check the concavity of with respect to , the
composite Hessian matrix of the mutual information ,
which is given here, must be negative (semi)-definite [26].

(83)

Utilizing Lemma 5, we can show the following:

(84)

Similarly, we can also prove the following:

(85)

Based on (83)–(85), we can rewrite

(86)

Clearly, the composite Hessian matrix is negative
(semi)-definite. Therefore, the mutual information is a
concave function of . This completes the proof.

Proof of Theorem 2: The proof of the partial derivative is
similar to that of Lemma 4. An outline is provided as follows.

From , one can obtain

(87)

Using the differential chain rule and leads to

(88)

Therefore, we have , which val-
idates the partial derivative given by (19).

To derive the Hessian of mutual information with respect to
, we will need to first find the partial derivative of with

respect to , which can be achieved via finding the Jacobian
through the derivative chain rule [26, (14)], as follows:

(89)

From (87), we get

(90a)

(90b)

Also from the proof of Lemma 7

(91a)

(91b)

Substituting (90a)–(91b) to (89), and after some manipula-
tions, one obtains

(92)

and

(93)

According to (88) and (93), we can obtain

(94)

where with , and
.

Thus, the Hessian of mutual information with respect to
is given by

(95)

which is identical to (20).
Utilizing the identity with
and being complex-valued column vectors, one can obtain

the following:

(96a)

(96b)

where .
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Substituting the above two equations to (95), one can easily
conclude that is negative (semi)-definite.
Therefore, the mutual information is a concave func-
tion of , which completes the proof of Theorem 2.

APPENDIX B
PROOF FOR THE SMALLEST INTERVALS LISTED IN TABLE I

It is known [30] that 2 2 unitary matrix can be split into

where is a 2 2 diagonal unitary matrix, , and
. This unitary matrix can also be equivalently de-

composed into with being another 2 2 di-
agonal unitary matrix, and given by

(97)

where the intervals of and are changed to and
.

Since and are statistically equivalent when is circu-
larly symmetric zero-mean complex Gaussian noise, the mutual
information can be reexpressed by

(98)

with

(99)

where are difference
vectors for . As a minor notation abuse, we have dropped
the superscript index for simplicity.

From (97), we can prove the following:

(100)

(101)

with .
Furthermore, for MPSK and M-QAM modulations, if

is a valid difference vector, then , and
are also valid difference vectors. Therefore, the mutual

information computed from (98) and (99) is the same as that
computed from (98) by replacing with . This means
that, if is used, then is not needed in computing the
mutual information. Therefore, the interval of can be
reduced to .

Similarly, we can proof the interval reduction for , as briefly
outlined below.

From (97), we have .
For BPSK, if is a valid difference vector, then

is also a valid difference vector. Therefore, if
is used for computing the mutual information, then
no longer needs to be tested. Hence the interval
of can be reduced to . Moreover, we know that

. This means, if is
used, then is no longer needed for computing the mutual
information. Thus, the interval of for BPSK can be further
reduced to .

It is known that QPSK possesses the rotational prop-
erties of BPSK, and additionally, if is a valid

difference vector, then , and

are also valid difference vectors. Utilizing the

equalities and

, we can find the

smallest interval of for QPSK to be .
Similarly, we can find the smallest interval of for 8PSK

to be by recognizing that , ,

and are valid difference vectors.
Because the (16, 64, 256) QAM constellations share the same
rotational invariance property as QPSK, they have the same

smallest interval for as QPSK. This completes the proof.
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