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Generalizations and New Proof of the Discrete-Time
Positive Real Lemma and Bounded Real Lemma

Chengshan Xiao and David J. Hill

Abstract—There are three different restatements claimed to be equiv-
alent to the definition of discrete-time positive realness (DTPR) in the
literature. These restatements were obtained by assuming that they are
similar to the results of continuous-time positive realness when the
transfer function has poles on the stability boundary. In this paper it is
shown that only one of them is equivalent to the DTPR lemma and others
are disproved by counter-examples. Furthermore, the DTPR lemma is
specialized for minimal systems which have all poles on the unit cycle,
the DTPR lemma is also generalized for nonminimal systems, the discrete-
time bounded real (DTBR) lemma is proven by a simple method, and then
the DTBR lemma is extended to the nonminimal case. Continuous-time
results are also briefly considered in the Appendix.

Index Terms—Bounded real lemma, bounded realness, nonminimal
systems, positive real lemma, positive realness.

I. INTRODUCTION

The classical (continuous-time) positive real lemma and bounded
real lemma are very useful in optimal control, stability analysis, and
network synthesis for continuous-time systems [1]. The discrete-time
positive real (DTPR) lemma and discrete-time bounded real (DTBR)
lemma have also been established in [2]–[5]. The DTPR lemma
and DTBR lemma have found applications in stability analysis [2],
absolute stability study [5], low-sensitivity filter design [3], limit-
cycle free filter synthesis [3], solution to the two-dimensional (2-D)
Lyapunov equation [6], and signal processing [7], [8]. However, there
are three different restatements which were claimed to provide the
necessary and sufficient conditions for a system to be DTPR, and
each one of them is distinct from the others when the system has
poles on the unit circle. In this paper it is pointed out that two of
the three necessary and sufficient conditions are not equivalent to the
DTPR lemma and it is shown that there exist generalized versions
for the DTPR lemma and the DTBR lemma when the realization of
a discrete-time system is nonminimal.

II. PRELIMINARIES

In this Section, we briefly review the definitions of DTPR and
bounded realness and some related results in the literature.

Consider ap�p transfer matrixH(z) of ap-inputp-output system
having entries which are rational functions in the complex variable
z andH(z) has the following form:

H(z) = D + C(zI � A)�1B (1)

whereA; B; C; andD are real constant matrices with appropriate
dimensions. Then the definition of DTPR is given by Hitz and
Anderson [2] as follows.
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Definition 1 [2]: Let H(z) be a square matrix of real rational
functions. ThenH(z) is called DTPR if it has the following prop-
erties.

i) All the elements ofH(z) are analytic injzj > 1.
ii) Ht(z�) + H(z) � 0 for all jzj > 1.

Applying bilinear transformation to the CTPR lemma [1], Hitz and
Anderson proved the following lemma.

Lemma 1 [2]: Let H(z) be a square matrix of real rational func-
tion of z with no poles in jzj > 1 and simple poles only on
jzj = 1 and let (A; B; C; D) be a minimal realization ofH(z).
Then necessary and sufficient conditions forH(z) to be DTPR are
that there exist a real symmetric positive definite matrixP and real
matricesL andW such that

P � AtPA =LtL (2a)

Ct �AtPB =LtW (2b)

Dt +D �BtPB =W tW: (2c)

Regarding Definition 1, three restatements were proposed in the
literature as follows.

Lemma 2 [2]: A square matrixH(z) whose elements are real
rational functions analytic injzj > 1 is DTPR if, and only if, it
satisfies all the following conditions.

i) All poles of each entry ofH(z) on jzj = 1 are simple.
ii) Ht(e�j�)+H(ej�) � 0 for all real� at whichH(ej�) exists.

iii) If z0 = ej� , �0 real, is a pole of an entry ofH(z), and if
K0 is the residue matrix ofH(z) at z = z0, then the matrix
e�j� K0 is nonnegative definite Hermitian.

Lemma 3 [4], [5]: A square matrixH(z) of real rational functions
is a DTPR if and only if the following pertains.

i) H(z) has elements analytic injzj > 1.
ii) The poles of the elements ofH(z) on jzj = 1 are simple

and the associated residue matrices ofH(z) at these poles
are positive semidefinite.

iii) H(ej�) + Ht(e�j�) � 0 for all real � for which H(ej�)
exists.

Lemma 4 [8, pp. 245, 246]:H(z) is positive real if and only if
the following conditions hold.

i) H(ej�) + Ht(e�j�) � 0, � 2 [0; 2�], such thatej� is not
a pole ofH(z).

ii) No poles ofH(z) lie in jzj > 1.
iii) If z0 = ej� is a pole ofH(z) such thatjz0j = 1, then it is

not a repeated pole andlimz!z (z�z0)H(z) =M=(z0�z0)
whereM is real and positive (definite).

It is important to note that Lemmas 2–4 are not agreeable with one
another whenH(z) has poles on the unit circle. We show here by
examples that Lemmas 3 and 4 are not equivalent to Definition 1,
Lemmas 1 and 2. Consider three functions as follows:

H1(z) = 1�
1:5

z + 1
; H2(z) = 1 +

1

z + 1
;

H3(z) = 1�
0:5z + 1

z2 + z + 1:

Obviously, all the above three functions are analytic injzj > 1.
However, after testing the positive realness ofH1(z), H2(z), and
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TABLE I
COMPARISON RESULTS

H3(z) by Definition 1, Lemmas 1–4 we have different results, as
summarized in Table I.

As can be seen from Table I, Definition 1, Lemmas 1 and 2 are
agreeable with each other. However, neither Lemmas 3 nor 4 are
agreeable with Definition 1, Lemmas 1 and 2, where Lemma 1 plays
a central role in various areas of research, as was mentioned before.

Remark 1: It is also worthwhile to emphasize that if matrixH(z)
cannot be expressed as (1) then Definition 1 is not equivalent to
Lemma 1 either. For example,H(z) = 1 � z, which is a rational
function but cannot be expressed as (1), we haveH(�e�j�) +
H(�ej�) = 2(1� � cos �) andH(e�j�) +H(ej�) = 2(1� cos �).
Clearly,H(z) is not DTPR in the sense of Definition 1 andH(z) is
DTPR in the sense of Lemma 1.

Before we finish this Section, we quote the definition of DTBR
as follows [1], [3].

Definition 2: Let H(z) be ap� q (p � q) transfer matrix. Then
H(z) is called DTBR if the following pertains.

i) All poles of each entry ofH(z) lie in jzj < 1.
ii) I � Ht(z�1)H(z) � 0 for all jzj = 1.

III. T HE DISCRETE-TIME POSITIVE REAL LEMMA

In this Section we develop the DTPR lemma for general (including
minimal and nonminimal) realization systems. Lemma 5 is for
minimal systemH(z) which has all poles onjzj = 1 and Lemma
6 is for general systemH(z) without reachability and observability
constraints. We call this lemma as generalized discrete-time positive
real (GDTPR) lemma.

Lemma 5: Let the square transfer matrixH(z) have all poles on
jzj = 1 and let (A; B; C; D) be a minimal realization ofH(z).
ThenH(z) is positive real if and only if there exists real matrixW
and real symmetric matrixP > 0 such that

P � A
t
PA =0 (3a)

C
t � A

t
PB =0 (3b)

D
t +D �B

t
PB =W

t
W: (3c)

Proof: SinceH(z) has all poles onjzj = 1 and(A; B; C; D)
is a minimal realization ofH(z), if all poles of H(z) are simple
then, without loss of generality, there always exists a real nonsingular
matrix T such that

Â = T
�1
AT =

A1

A2

A3

. . .
Am

;

B̂ = T
�1
B =

B1

B2

B3

� � �
Bm

(4a)

Ĉ = CT = [C1 C2 C3 � � � Cm ] (4b)

where

A1 =�1; A2 = 1; Ai =
cos �i sin �i

� sin �i cos �i
;

i =3; � � � ; m (5)

with cos �i 6= �1 for i = 3; � � � ; m; cos �i 6= cos �j for i 6= j.
SinceH(z) is a minimal system, soCkBk 6= 0, CkA

t
kBk 6= 0,

k = 1; � � � ; m, otherwise the relatedAk does not exist. From (4)
H(z) can be expressed as

H(z) =D + C1(z + 1)�1B1 + C2(z � 1)�1B2

+

m

i=3

Ci(zI � Ai)
�1
Bi: (6)

If we assume thatK1, K2, andKi, i = 3; � � � ; m are the residue
matrices ofH(z) at z = �1, z = 1 and z = ej� , i = 3; � � � ; m,
respectively, then we have

K1 =C1B1; K2 = C2B2;

Ki =
1

2
Ci

1 �j
j 1

Bi (7)

and

e
�j�

Ki =
1

2
Ci

cos �i � sin �i

sin �i cos �i
Bi

+
j

2
Ci

� sin �i � cos �i

cos �i � sin �i
Bi

=
1

2
CiA

t
iBi +

j

2
Ci

� sin �i � cos �i

cos �i � sin �i
Bi: (8)

Necessity: Suppose thatH(z) is DTPR. We proceed to (3). Based
on iii) of Lemma 2, we have three cases as follows.

i) For A1 = �1 andC1B1 6= 0 the necessary and sufficient
condition for �K1 = �C1B1 � 0 is C1 = �Bt

1�1 with
�1 > 0 and therefore

A
t
1P1B1 = C

t
1; P1 � A

t
1P1A1 = 0 (9)

with P1 = �1.
ii) For A2 = 1, similarly to i), K2 = C2B2 � 0 if and only if

C2 = Bt
2�2 with �2 > 0 and so

A
t
2P2B2 = C

t
2; P2 � A

t
2P2A2 = 0 (10)

with P2 = �2.
iii) For

Ai =
cos �i sin �i

� sin �i cos �i

with cos �i 6= �1, noting (8), the necessary and sufficient
condition for e�j� Ki being nonnegative definite Hermitian
is

CiA
t
iBi � 0 (11a)

e
�j�

Ki + e
j�

K
H
i � 0: (11b)

The equivalent condition for (11a)CiBi 6= 0 and
CiA

t
iBi 6= 0 is Ct

i = PiA
t
iBi with Pi = P t

i > 0 for
both (11a) and (11b). ThenPi = �iI2 with �i > 0. Thus,
we have

A
t
iPiBi = C

t
i ; Pi �A

t
iPiAi = 0 (12)

with Pi = �iI2, i = 3; � � � ; m.
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According to (5), (6), (9), (10), and (12) we have

H
t(z�1) +H(z)

= D
t +D �B

t
1P1B1 �B

t
2P2B2

+

m

i=3

B
t
i

�i(zAi � I2 + zAt
i � z2I2)

z2 � 2z cos �i + 1
Bi

= D
t +D �B

t
1P1B1 �B

t
2P2B2 �

m

i=3

B
t
iPiBi

= D
t +D � B̂P̂ B̂ (13)

whereP̂ = P1�P2� � � � �Pm. Based on ii) of Lemma 2 and (13),
there always exists a real matrixW such that

D
t +D � B̂P̂ B̂ = W

t
W: (14)

From (9), (10), and (12) we have

Â
t
P̂ Â� P̂ = 0; Â

t
P̂ B̂ � Ĉ

t = 0: (15)

Based on (4), we can obtain (3) from (14) and (15) withP =
T�tP̂ T�1. This completes the necessity proof.

Sufficiency: Based on (3a),P > 0 and H(z) being a minimal
system, we can conclude that all poles ofH(z) are onjzj = 1 and
simple. Then, we can prove the sufficiency part of this lemma by the
following equation:

(z�I � A
t)P (zI � A) + (z�I � A

t)PA+ A
t
P (zI �A)

= jzj2P �A
t
PA: (16)

Premultiplying byBt(z�I �At)�1 and postmultiplying by(zI �
A)�1B on (16), together with (3), we have

D
t +B

t(z�I � A
t)�1Ct +D + C(zI �A)�1B

= (jzj2 � 1)Bt(z�I � A
t)�1P (zI �A)�1B +W

t
W

� 0; for jzj > 1: (17)

Clearly,Ht(z�)+H(z) � 0 in jzj > 1. Therefore,H(z) is positive
real.

Remark 2: As can be seen from the above proof, (9), (10), and
(12) are obtained by usinge�j� Ki � 0. However, they cannot be
obtained by usingKi � 0 which was stated in Lemma 3. Moreover,
they cannot be obtained by the condition iii) of Lemma 4 either.

Remark 3: Based on all of (3), we can directly obtain items ii)
and iii) of Lemma 2. Details are omitted here.

Lemma 6—The GDTPR Lemma:Let (A; B; C; D) be a general
realization (including minimal and nonminimal cases) of a square
transfer function matrixH(z) and letC be the corresponding reach-
ability matrix given by

C = [B AB � � � An�1B ] (18)

wheren is the dimension of square matrixA. ThenH(z) is positive
real if and only if there exist real matricesL and W and a real
symmetric matrixP with CtPC � 0 such that

Ct(At
PA � P + L

t
L)C =0 (19a)

Ct(At
PB + L

t
W � C

t) = 0 (19b)

D
t +D �B

t
PB �W

t
W =0: (19c)

Proof: This lemma can be proven by using Lemma 5 and the
Kalman canonical decomposition [10]: details are omitted here.

Remark 4: In this lemma, if(A; B) is completely reachable then
P � 0 and the reachability matrixC in (19) can be removed. If
(A; B) is not completely reachable, thenP could be indefinite. It
should be emphasized that the unreachable and/or unobservable states
of the realization(A; B; C; D) can be either stable or unstable and
this will not affect the above lemma.

IV. THE DISCRETE-TIME BOUNDED REAL LEMMA

In this Section we first present a simple and elegant method to
prove the necessity part of the DTBR lemma and then generalize this
lemma for discrete-time nonminimal systems.

Lemma 7—The DTBR Lemma [3]:Let the real matrices
(A; B; C; D) be a minimal realization of thep � q (p � q)
transfer matrixH(z). Then H(z) is bounded real if and only if
there exist real matricesL and W and a real symmetric positive
definite matrixP such that

A
t
PA + C

t
C + L

t
L =P (20a)

B
t
PB +D

t
D +W

t
W = I (20b)

A
t
PB + C

t
D + L

t
W =0: (20c)

Proof: The sufficiency part was proven in [11] with a simple
method. We now provide a new proof for the necessity part of this
lemma.

SupposeH(z) is bounded real. Based on the spectral factorization
[9] there always exists a rational functionK(z) = W + L(zI �
A)�1B such that [6]

I �H
t(z�1)H(z) = K

t(z�1)K(z) (21)

is satisfied.
Equation (21) gives after some algebraic manipulations

I �D
t
D �W

t
W

= (Dt
C +W

t
L)(zI � A)�1B +B

t(z�1I � A
t)�1

� (Ct
D+ L

t
W ) +B

t(z�1I � A
t)�1

� (Ct
C + L

t
L)(zI � A)�1B: (22)

Let P = 1

i=0
At (CtC + LtL)Ai, thenP satisfies

P � A
t
PA = C

t
C + L

t
L: (23)

Comparing the constant terms and the coefficients ofzi+1 terms in
(22), respectively, we get the following equations:

I �D
t
D �W

t
W =B

t
PB (24)

B
t
A
t (At

PB + C
t
D + L

t
W ) = 0; i = 0; 1; 2; � � � : (25)

Since(A; B) is completely reachable, (25) gives

A
t
PB + C

t
D + L

t
W = 0: (26)

SinceH(z) is minimal and bounded real, all eigenvalues ofA are
within the open unit circle and(C; A) is observable. Therefore,P
given by (23) is positive definite and, obviously, (24) and (26) are
identical to (20b) and (20c), respectively. This completes the proof
for the necessity part of this lemma.

It is worthwhile to note that our above proof method is a derivation-
based method rather than a verification-based method. This means
that it can be used to derive new necessary conditions, rather than
only verifying existing conditions. For example, we successfully
applied this method to get necessary and sufficient conditions for
discrete-time lossless bounded real lemmas of multidimensional dig-
ital systems [12] and to derive some properties of wide positive
realness and wide strict positive realness [13].

Remark 5: If H(z) is lossless bounded real, i.e.,
I � Ht(z�1)H(z) = 0, then K(z) = 0 with L = 0 and
W = 0. In this case, this lemma becomes the DTLBR lemma:
details are omitted for brevity.

We are now in a position to establish the generalized discrete-time
bounded real (GDTBR) lemma as follows.
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Lemma 8—The GDTBR Lemma:Let the real matrices(A; B;
C; D) be a general realization (including minimal and nonminimal
cases) of thep � q (p � q) transfer matrixH(z) and letC be the
related reachability matrix defined by (18). ThenH(z) is bounded
real if and only if there exist real matricesL and W and a real
symmetric matrixP with CtPC � 0 such that

C
t(At

PA � P + C
t
C + L

t
L)C =0 (27a)

C
t(At

PB + L
t
W + C

t
D) = 0 (27b)

D
t
D +B

t
PB +W

t
W = I: (27c)

Proof: The proof of this lemma is similar to that of Lemma 6;
details are omitted here for brevity.

V. CONCLUSION

In this paper it is first observed that there are three different
restatements which were claimed to be equivalent to the definition of
DTPR. It is shown by counter-examples that two of the restatements
are incorrect when the system has poles on the unit circle. It can be
concluded from Lemma 2 that the conditions regarding the residue
matrices at the poles on the unit circle have a different form from
their counterpart of the continuous-time case. The DTPR lemma is
specialized for minimal systems which have all poles on the unit
cycle. Generalized versions of both the DTPR lemma and bounded
real lemma are presented for a general realization (including minimal
and nonminimal cases) of discrete-time systems. A simple and elegant
proof is also given for the necessity part of the DTBR lemma of
minimal systems. Continuous-time results for nonminimal systems
are briefly considered in the Appendix.

APPENDIX

In this Appendix, we present the generalized continuous-time
positive real (GCTPR) lemma and the generalized continuous-time
bounded real (GCTBR) lemma for continuous-time nonminimal sys-
tems. Consider a continuous-time transfer function matrixH(s) given
by

H(s) = D + C(sI �A)�1B (A.1)

where A; B; C; and D are real constant matrices. Based on the
definitions of positive realness and bounded realness and their related
lemmas for minimal systems [1], we can prove the following lemmas.

GCTPR Lemma:Let (A; B; C; D) be a general realization (in-
cluding minimal and nonminimal cases) of a square transfer matrix
H(s) expressed by (A.1) and letC be the controllability matrix given
by

C = [B AB � � � An�1B ] (A.2)

wheren is the dimension of square matrixA. ThenH(s) is positive
real if and only if there exist real matricesL and W and real
symmetric matrixP with CtPC � 0 such that

C
t(At

P + PA + L
t
L)C =0 (A.3a)

C
t(PB � C

t + L
t
W ) = 0 (A.3b)

D
t +D �W

t
W =0: (A.3c)

GCTBR Lemma:Let (A; B; C; D) be the general realization
(including minimal and nonminimal cases) of a square transfer matrix
H(s) expressed by (A.1) and letC be the controllability matrix given
by (A.2). ThenH(s) is bounded real if and only if there exist real
matricesL and W and real symmetric matrixP with CtPC � 0
such that

C
t(At

P + PA + C
t
C + L

t
L)C =0 (A.4a)

C
t(PB + C

t
D + L

t
W ) = 0 (A.4b)

I �D
t
D �W

t
W =0: (A.4c)

It should be pointed out that another GCTPR lemma was presented
in [14], and our GCTPR lemma in this appendix is a modified and
improved version of [14].
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