
Wesley R. Perkins – Research Statement

This statement presents an overview of my research as a whole, a detailed description of my research
projects, and a brief description of my current and future research goals, wherein I highlight aspects
that would be appropriate for undergraduate- and Master’s-level research.

Overview

My research focuses on the existence, stability, and dynamics of nonlinear wave solutions to partial
differential equations (PDEs) arising from physical applications. In particular, I am interested in
studying nonlinear waves and coherent structures that are motivated by experimental or numerical
observations. Several questions arise when a PDE is presented as a model for a physical system:

Does an idealized version of the observed pattern exist as a solution to the PDE? Is such
a solution stable, i.e. is it able to persist when subjected to small perturbations? What
are the dynamics of such a solution within the PDE as time evolves? Can the PDE
predict new observations? Can it explain why we see some patterns and not others?

The first three questions endeavor to determine, among other things, whether or not the PDE is a
good model for the physical system, and their answers can gauge the strengths and weaknesses of
the PDE and inform what (if anything) needs to change in the model. The last two questions seek to
understand what the mathematics can teach us about the underlying physical application, and the
answers to these questions can motivate new experimental and numerical research. Additionally,
the stability of a particular class of solutions is of fundamental practical importance as solutions
which are unstable do not naturally arise in applications except possibly as transient phenomena.
In particular, understanding why some patterns are stable and others are unstable can motivate
methods of stabilizing unstable patterns, which is key in many applications where there exist
unstable, yet desirable, structures.

There has historically been significant interest in the stability theory of asymptotically constant
structures, such as solitons. More recently, there has been a growing community of mathematicians
interested in the stability of spatially-periodic structures. These are often idealized versions of
physically-observable patterns which are almost spatially periodic, in the sense that their internal
wavelength is much smaller than the size of the physical domain; hence, they may be modeled as
exact periodic solutions on unbounded domains to eliminate the influence of far away boundaries.
Applications where such patterns exist are numerous and include surface and internal water wave
propagation, optical signal propagation, plasma and astrophysics, and inclined thin film flow.

One powerful tool used to study such periodic structures is known as Whitham’s theory of wave
modulations, sometimes referred to as Whitham theory. Whitham theory is a formal, physically-
motivated theory used to understand the stability and dynamics of periodic waves when in the
presence of perturbations that modulate their fundamental characteristics, such as amplitude or
frequency. Whitham theory lacks rigorous justification in general, leading to the open research
problem of establishing such rigorous justification. Nevertheless, Whitham theory is commonly
used by applied mathematicians and physicists, and its predictions are nearly universally accepted.

To study the stability of periodic structures using rigorous mathematics, as opposed to the
formal asymptotic methods used in Whitham theory, one must start by choosing an appropriate
function space to encode the class of perturbations being considered. There are two important and
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widely studied classes of perturbations that arise naturally in applications. If the nonlinear wave
or coherent structure is T -periodic, then one may consider subharmonic perturbations, i.e. NT -
periodic perturbations for some positive integer N , or localized perturbations, i.e. perturbations
which are integrable on the line. Previous results concerning the class of subharmonic perturbations
are non-uniform in N , in the sense that they are degenerate in the limit N →∞. In particular, the
size of the perturbation decreases as N →∞, which is undesirable in situations where (arbitrarily)
large values of N are of physical interest.

It might appear, at first glance, that Whitham theory, subharmonic perturbations, and localized
perturbations have nothing to do with each. However, I have shown that the study of localized
perturbations is fundamental to the rigorous justification of Whitham theory. Moreover, I have
developed new methodologies that establish a deep connection between localized and subharmonic
perturbations. My research has focused on exploring the connections between seemingly disparate
mathematical theories. My research results may be broadly summarized as follows:

1. Modulations of Viscous Fluid Conduit Waves

Jointly with Prof. Mathew Johnson, I have rigorously validated the predictions of Whitham
theory in the context of the conduit equation [9]. The conduit equation is a nonlinear dis-
persive PDE governing the evolution of the circular interface separating a light, viscous fluid
rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers
[11]. Physical experiments conducted in [12] demonstrate the existence of waves that are
locally periodic but whose fundamental characteristics modulate over large space and time
scales. Such a wave may be modeled as a perfectly periodic wave subjected to a perturbation
that modulates its fundamental characteristics. Whitham theory uses an averaged system
to predict whether or not a periodic wave is stable to such perturbations. By validating the
predictions of Whitham theory, we provide theoretical support to the recent experimental
and numerical results in [12] and [11], respectively.

2. Subharmonic Dynamics of Periodic Waves in Dissipative Systems

Jointly with Prof. Mariana Haragus1 and Prof. Mathew Johnson, I have studied the linear
dynamics of spectrally stable T-periodic stationary wave solutions of the Lugiato-Lefever
equation (LLE) [7]. The LLE is a damped, forced NLS-type equation that is widely used to
investigate the dynamical properties of laser fields confined in nonlinear optical resonators [3].
It has been shown that such T -periodic solutions are nonlinearly stable to NT -periodic, i.e.
subharmonic, perturbations for each N ∈ N [15]. Unfortunately, the rate of decay and the
allowable size of the initial perturbations both tend to 0 as N →∞ so that this result is non-
uniform in N and is, in fact, empty in the limit N =∞. We introduce a methodology by which
a uniform in N stability result may be achieved at the linear level. The obtained uniform
decay rates are shown to agree precisely with the decay rates of localized, i.e. integrable
on the line, perturbations. In this work, we unify and expand on several existing results
concerning the stability and dynamics of such waves, and we set forth a general methodology
for studying similar problems, at least at the linear level, in other contexts.

Interestingly, we were unable to push the above analysis to the nonlinear level due to an
unavoidable loss of derivatives that occurs in our iteration scheme. If the PDE has dissipation
in the highest-order term, one can regain these lost derivatives through a technique known as
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“nonlinear damping.” Unfortunately, the dissipation in the LLE occurs in the lowest-order
term, leaving no hope of regaining derivatives through a nonlinear damping estimate. While
we continue to research potential solutions to this problem (see the section on my current
and future research directions below), Prof. Johnson and I explored if, in the presence of
a nonlinear damping estimate, the methodology we developed for the linear analysis could
be used to develop an analogous nonlinear stability result which is uniform in N . To that
end, we investigated the stability and nonlinear dynamics of spectrally-stable wave trains in
reaction-diffusion systems in [10]. Using the nonlinear damping estimate present in reaction-
diffusion systems, we were able to successfully introduce a methodology by which a stability
result for subharmonic perturbations which is uniform in N may be achieved at the nonlinear
level.

In the next two sections, I will describe in detail the projects that I outlined above. I will conclude
by briefly describing my current and future research goals and highlighting aspects of my research
that are amenable to undergraduate- and Master’s-level research projects.

1 Modulations of Viscous Fluid Conduit Waves

We consider the modulational stability of periodic traveling wave solutions to the conduit equation

(1.1) ut + (u2)x − (u2(u−1ut)x)x = 0,

which was derived in [13] to model the evolution of a circular interface separating a light, viscous
fluid rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers [11]
(see Figure 1(a)). In (1.1), u = u(x, t) denotes a nondimensional cross-sectional area of the interface
at nondimensional vertical coordinate x and nondimensional time t. The conduit equation is also
a specific case of the family of magma equations, where it may also be used to model the evolution
of magma as it rises buoyantly through a porous, deformable rock matrix [14].

Physical experiments conducted by Mark Hoefer and his team in [12] demonstrate the existence
of a coherent structure sometimes referred to as a modulated periodic wave (see Figure 1(b)), which
may be described as a wave that is locally periodic but whose fundamental characteristics, such as
amplitude and wave number, actually modulate over large space and time scales. There is a well
developed theory used to describe the stability of periodic waves to such modulational perturba-
tions. This theory was developed by Whitham in the 1970s and is known as Whitham’s theory
of wave modulations, or simply Whitham theory. Recently Maiden and Hoefer used Whitham
theory to numerically predict when a given periodic wave will be stable/unstable to modulational
perturbations [11]. Whitham theory is based on formal asymptotic (WKB) methods, which means
its predictions lack rigorous justification in general. This motivates a desire to rigorously justify
the predictions of Whitham theory in the context of the conduit equation and thereby justify the
results of [11].

The approach of Whitham theory is to express (1.1) in the slow variables (X,S) := (εx, εt)
and carry out a formal WKB expansion as ε → 0. This yields a closed set of linear homogenized
equations, known as the Whitham averaged system, describing the slow evolution of the wave
number k and the two conserved quantities M and Q associated with (1.1). The stability of the
underlying wave in the Whitham averaged system, considered as a constant in the slow variables,
can be determined by linearizing the averaged system about the underlying periodic wave and
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FIG. 1. Interfacial wave breaking of two Stokes fluids causing the spontaneous emergence of coherent oscillations, a DSW. The
leading, downstream edge is approximately a large amplitude soliton whose phase speed is tied to the upstream conduit area.
The trailing, upstream edge is a small amplitude wave packet moving at the group velocity whose wavenumber is tied to the
downstream conduit area. (a) 90� clockwise rotated, time-lapse digital images (aspect ratio 10:1). (b) Space-time contour plot
of the conduit cross-sectional area from (a). Nominal experimental parameters: �⇢ = 0.0928 g/cm3, µi = 91.7 cP, ✏ = 0.030,
downstream flow rate Q0 = 0.50 mL/min, and a� = 2.5.

exhibit dissipationless or frictionless interfacial wave dy-
namics. This will be made mathematically precise below.

By gradually increasing the injection rate, we are able
to initiate the spontaneous emergence of interfacial wave
oscillations on an otherwise smooth, slowly varying con-
duit. See [13] for additional experimental details. Figure
1(a) displays a typical time-lapse of our experiment. At
time 0 s, the conduit exhibits a relatively sharp transition
between narrower and wider regions. Due to buoyancy,
the interface of the wider region moves faster than the
narrower region. Rather than experience folding over on
itself, the interface begins to oscillate due to dispersive
e↵ects as shown in Fig. 1(a) at 30 s. As later times in
Fig. 1(a) attest, the oscillatory region expands while the
oscillation amplitudes maintain a regular, rank ordering
from large to small. By extracting the spatial variation of
the normalized conduit cross-sectional area a from a one
frame per second image sequence, we display in Fig. 1(b)
the full spatio-temporal interfacial dynamics as a contour
plot. This plot reveals two characteristic fronts associ-
ated with the oscillatory dynamics: a large amplitude
leading edge and a small amplitude, oscillatory envelope
trailing edge.

We can interpret these dynamics as a DSW resulting
from the physical realization of the Gurevich-Pitaevskii
(GP) problem [15], a standard textbook problem for the
study of DSWs [9] that has been inaccessible in other dis-
persive hydrodynamic systems. Here, the GP problem is
the dispersive hydrodynamics of an initial jump in con-
duit area. Although we have only boundary control of
the conduit width, our carefully prescribed injection pro-
tocol [13] enables delayed breaking far from the injection
site. This allows for the isolated creation and long-time

propagation of a “pure” DSW connecting two uniform,
distinct conduit areas. Related excitations in the con-
duit system were previously interpreted as periodic wave
trains modeling mantle magma transport [11]. As we now
demonstrate, the interfacial dynamics observed here ex-
hibit a soliton-like leading edge propagating with a well-
defined nonlinear phase velocity, an interior described by
a modulated nonlinear traveling wave, and a harmonic
wave trailing edge moving with the linear group velocity.
The two distinct speeds of wave propagation in one co-
herent structure are a striking realization of the double
characteristic splitting from linear wave theory [14].

The long wavelength approximation of the interfacial
fluid dynamics is the conduit equation [11, 22]

at +
�
a2
�
z
�
�
a2

�
a�1at

�
z

�
z

= 0 . (1)

Here, a(z, t) is the nondimensional cross-sectional area
of the conduit as a function of the scaled vertical coordi-
nate z and time t (subscripts denote partial derivatives).
Both the interface of the experimental conduit system
and equation (1) exhibit the essential features of friction-
less, dispersive hydrodynamics: nonlinear self-steepening
(second term) due to buoyant advection of the intrusive
fluid, dispersion (third term) from normal stresses, and
no dissipation due to the combination of intrusive fluid
mass conservation and negligible mass di↵usion [13]. The
analogy to frictionless flow corresponds to the interfacial
dynamics, not the momentum di↵usion dominated flow
of the bulk. The conduit equation (1) is nondimensional-
ized according to cross-sectional area, vertical distance,
and time in units of A0 = ⇡R2

0, L0 = R0/
p

8✏, and
T0 = µi/L0g�⇢✏, respectively, where R0 is the down-
stream conduit radius, ✏ = µi/µe is the viscosity ratio

Figure 1: (a) A schematic drawing for the conduit equation. In the physical system, denoting
the densities and viscosities of the heavy (outer) and light (inner) fluids as ρH , νH and ρL, νL,
respectively, the conduit equation holds under the assumption that ρH > ρL and νH � νL. The
arrows represent rising due to buoyancy. (b) The formation of a modulated periodic wave train
propagating in a physical experiment - see [12].

determining its spectrum via the Fourier transform. It is formally expected that a necessary
condition for spectral stability of the underlying periodic wave occurs when the spectrum is all real,
i.e. when the quasilinear Whitham averaged system is hyperbolic. On the other hand, we expect
a sufficient condition for spectral instability occurs when any of the spectrum has a non-trivial
imaginary component, i.e. when the quasilinear Whitham averaged system is elliptic. Our goal is
to rigorously establish that the spectrum of the quasilinear Whitham averaged system does, in fact,
predict whether or not a given periodic wave is stable/unstable to modulational perturbations.

With this motivation in hand, standard phase plane analysis implies that periodic traveling
wave solutions of (1.1) of the form u(x, t) = φ(x− ct) exist for some wave profile φ(·) > 0 and wave
speed c > 0. By reducing to quadrature, we find that the wave profiles φ must satisfy

(1.2) 1
2(φ′)2 = E −

(
1
cφ

2 ln |φ|+ aφ2 + φ
)

where a and E are constants of integration. In particular, we show that (1.1) admits (modulo
translation) a three-parameter family, in fact a C1 manifold, of periodic traveling wave solutions
bounded away from zero. It is important to note that the Whitham averaged system is described
in terms of “physical quantities,” namely the wave number k and the conserved quantities M and
Q, while our existence theory was in terms of “mathematical quantities,” namely the wave speed c
and the constants of integration a and E. Under the assumption that the Jacobian satisfies

∂(k,M,Q)

∂(a,E, c)
6= 0,

we may translate the rigorous theory into the proper coordinate system, which opens up the pos-
sibility of comparing the two theories. This assumption is considered to hold generically, and it is
equivalent to the assumption that the quasilinear Whitham system is of an evolutionary type.

In order to rigorously establish that hyperbolicity/ellipticity of the quasilinear Whitham system
has the expected connection to spectral stability/instability, we linearize (1.1) about an arbitrary
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periodic wave profile φ, which yields the linear operator A[φ]. We then consider the L2(R), i.e.
the localized, spectrum of A[φ] near the origin, as this is where information about stability to
modulational perturbations is stored. By Floquet theory, this spectrum is purely continuous and
can be discretely parameterized by a paramter ξ, sometimes referred to as the Bloch parameter
or Bloch frequency. Moreover, standard results imply the existence of three separate branches of
the spectrum given by λj(ξ), j = 1, 2, 3, which are defined and C1 for |ξ| � 1. These branches
correspond to the breaking of a Jordan block at λj(0) = 0.

Once the behavior of the localized spectrum of A[φ] near λj(0) = 0 is understood and once we
have translated into the proper coordinate system, we use specral perturbation theory to understand
the three branches λj(ξ) for |ξ| � 1. In particular, we project onto the three-dimensional total
eigenspace associated with our three branches λj(ξ). This yields a three-dimensional system that,
after the proper algebraic manipulation, is exactly the three-dimensional Whitham system (up to a
harmless shift by the identity). Hence, we establish that the hyperbolicity of the Whitham averaged
system is in fact a necessary condition for spectral stability and ellipticity is a sufficient condition
for spectral instability. We then show that, in the small amplitude regime, the Whitham system
is hyperbolic when the wave number is sufficiently small (i.e. when the wavelength is large) and is
elliptic when the wave number is large (i.e. when the wavelength is small). This is a good match
with the experimental observations in [12], and it verifies that the elliptic regime found by Maiden
and Hoefer in [11] produces spectrally unstable periodic waves.

2 Subharmonic Dynamics of Periodic Waves in Dissipative Sys-
tems

First, we consider the linear stability and dynamics of periodic stationary solutions of the Lugiato-
Lefever equation (LLE)

(2.1) ψt = −iβψxx − (δ + iα)ψ + i|ψ|2ψ + F,

which is an NLS-type equation with damping, detuning, and driving that is widely used as a model
to investigate the dynamical properties of laser fields confined in nonlinear optical resonators [3].
The form of the LLE given in (2.1) is sometimes referred to as the longitudinal/temporal LLE
and was derived in the context of dispersive optical ring cavities: [3]. Despite being derived in
a different, albeit complementary, physical setting, the two-dimensional transverse LLE is math-
ematically equivalent (when reduced to one spatial dimension) to the longitudinal/temporal LLE
given in (2.1) with β = −1, i.e. with anamolous dispersion (see paragraph below) [2]. (2.1) may
also be derived from the Maxwell-Bloch equations [2]. Moreover, the LLE has been found to be the
best framework for the theoretical investigation of Kerr optical frequency comb generation using
whispering gallery mode cavities or integrated ring resonators [3], and it provides an outstanding
example of phenomena of spontaneous pattern formation [2].

In (2.1), ψ(x, t) is a complex-valued function and represents the electric field envelope, t rep-
resents a temporal variable, x can represent a positional variable such as the angle in the circular
cavity, δ = 1 represents the damping term, α ∈ R represents the detuning parameter, F ∈ R+

represents the driving term, and β = ±1 represents the dispersion parameter. If β = 1, we have
normal dispersion, and if β = −1, we have anomalous dispersion, which is the more physical case.

Our investigation was motivated by previous results [5, 15] establishing spectral stability implies
nonlinear asymptotic stability of T -periodic stationary wave solutions when subjected to subhar-
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monic perturbations, i.e. NT -periodic perturbations for some positive integer N . The previous
asymptotic stability results establish an exponential decay rate e−δN t, where δN > 0, and a maxi-
mum allowable size of perturbation εN > 0. Owing to the methods of proof, i.e. either semigroup
theory or center manifold theory, δN and εN unfortunately tend to 0 as N →∞, meaning previous
results are degenerate in the limit N = ∞. Since this limit is physically relevant for the LLE,
our goal is to find a rate of decay and allowable size of perturbation that is uniform in N . Our
strategy for accomplishing this goal is formally motivated by the study of localized, i.e. integrable
on the line, perturbations because such perturbations can formally be seen as the limiting behavior
of subharmonic perturbations when N goes to infinity.

Towards that end, [5] uses bifurcation theory to show that there exist periodic stationary wave
solutions to the LLE which are spectrally stable when subjected to both subharmonic and localized
perturbations. We therefore make an appropriate spectral stability assumption, which is verified to
be true in at least the case exhibited in [5]. We use this assumption to obtain asymptotic stability of
the C0 semi-group associated with the linear operator A[φ], which is obtained from linearizing (2.1)
about a spectrally-stable periodic stationary solution φ. The linear asymptotic stability holds for
localized perturbations and is uniform in N for subharmonic perturbations. Moreover, the uniform
asymptotic rate of decay for subharmonic perturbations is precisely the polynomial rate of decay
coming from localized perturbations.

The tools used to attain linear asymptotic stability are based off a recent general theory for
dissipative modulations derived by [8] and are driven by the use of Floquet-Bloch theory and,
more specifically, the use of the Bloch Transform (a periodic analogue of the more famous Fourier
Transform). Floquet-Bloch theory and the Bloch Transform have previously been heavily developed
for localized perturbations. In our work, we make modifications to the relevant theory and transform
in order to adapt them to the study of subharmonic perturbations.

This allows us to decompose the semi-group associated with A[φ] into several pieces where
asymptotic decay may be more readily obtained. While carefully keeping track of the dependence
on N , our analysis both recovers the previously established degenerate exponential decay result, and
it allows us to establish a polynomial decay result which is uniform in N . Moreover, the analysis
demonstrates that the uniform subharmonic decay rate is sharply controlled by the polynomial
decay rate coming from the localized theory. We see a formal convergence of the subharmonic
result to the localized result as N →∞, which was, in fact, the motivation for our approach.

Furthermore, our analysis allows us to describe the long-term dynamics near our background
wave φ. In particular, the linear evolution of a small subharmonic perturbation ψ(x, 0) = φ(x) +
vN (x, 0) will satisfy, for t� 1,

ψ(x, t) = φ(x) + vN (x, t) ≈ φ(x) + φ′(x)γN (x, t) + “decay” ≈ φ(x+ γN (x, t)) + “decay,”

where γN is a space-time-dependent modulation and where the “decay” is uniform in N . The
introduction of space-time-dependent modulations as a mechanism to obtain such uniform in N
subharmonic stability results is the “big idea” behind this project. Note that when studying
subharmonic perturbations with N -fixed, hence when not seeking uniformity, one only needs to
consider time-dependent modulations in order to achieve exponential decay results. As mentioned
above, such exponential decay results are degenerate in the limit as N →∞. Our research therefore
shows that, in order to obtain uniform in N stability results, one must allow modulations which
depend on both space and time.

The use of space-time-dependent modulations, as compared to the more standard time-dependent
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modulations, is motivated by the corresponding theory for localized perturbations. In that con-
text, we proved that the linear evolution of a small localized perturbation ψ(x, 0) = φ(x) + v(x, 0)
similarly satisfies

ψ(x, t) = φ(x) + v(x, t) ≈ φ(x) + φ′(x)γ(x, t) + “decay” ≈ φ(x+ γ(x, t)) + “decay,”

where γ is a space-time-dependent modulation. In fact, the dynamics of γ are described by
Whitham’s theory of wave modulations, which provides justification for Whitham theory for (2.1)
at both the spectral level (as in the previously described project) and at the level of linear dy-
namics. In our work, we further studied the convergence (for appropriate sequences of initial data)
of the subharmonic modulation functions γN to the modulation function γ coming from the lo-
calized theory. Taken together, this demonstrates an intimate connection between subharmonic
perturbations, localized perturbations, and Whtitham’s theory of wave modulations.

In the case of the LLE, we were unable to push the result to the nonlinear level. This is due
to the fact that there is an unavoidable loss of derivatives that occurs in our iteration scheme. In
contexts when the PDE has dissipation in the highest-order term, one can show through a “nonlinear
damping” result that high Sobolev norms are exponentially slaved to low Sobolev norms, thereby
regaining derivatives lost in the iteration. Unfortunately, the dissipation in the LLE occurs in the
lowest-order term, leaving no hope of regaining derivatives through a nonlinear damping estimate.
We are, however, continuing to study how to work around the low-order dissipation, and this is
exciting as it is motivating the development of new techniques (see the section on my current and
future research directions below).

Inspired by the ideas presented above, we researched if, in the presence of a nonlinear damping
estimate, the methodology we developed for the linear analysis could be used to develop an anal-
ogous nonlinear stability result which is uniform in N . This was done in order to to deepen our
understanding of the theory and to make progress towards overcoming the difficulties for the LLE
outlined above. Towards that end, we consider the nonlinear stability and dynamics of spectrally-
stable periodic traveling wave solutions of systems of reaction-diffusion equations of the form

(2.2) ut = uxx + f(u), x ∈ R, t ≥ 0, u ∈ Rn,

where n ∈ N and f : Rn → Rn is a CK-smooth nonlinearity for some K ≥ 3. Such systems arise
naturally in many areas of applied mathematics, and the behavior of such wave train solutions
when subject to a variety of classes of perturbations has been studied extensively over the last
decade. In particular, localized perturbations have been studied intensively and have been shown
to be connected to Whitham’s theory of wave modulations [8]. Our goal, as before, is to study the
stability of a T -periodic wave solution to (2.2) when subjected to subharmonic, i.e. NT -periodic,
perturbations and thereby establish a stability result which is uniform in N at the nonlinear level.

Following the linear analysis outlined in the case of the LLE above (see also [7]), we find
that the linear analysis predicts that the evolution of a small subharmonic perturbation u(x, 0) =
φ(x) + vN (x, 0) will satisfy, for t� 1

u(x, t) = φ(x) + vN (x, t) ≈ φ(x) + φ′(x)γN (x, t) + “decay” ≈ φ(x+ γN (x, t)) + “decay,”

where γN is a space-time-dependent modulation and where the “decay” is uniform in N and is
precisely that given by the localized theory. We then introduce a decomposition of the nonlinear
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perturbation of the background wave φ which accounts for the space-time-dependent modulation
predicted by the linear theory. We find that the nonlinear perturbation and space-time-dependent
modulation must satisfy a system of implicit integral equations. Using the fact that dissipation
comes from the term with the highest number of derivatives, we are able to derive a result commonly
referred to as nonlinear damping that allows us to close a standard nonlinear iteration scheme.

It is worth recalling that we must do all of the above analysis while keeping track of the
dependence on N so that the nonlinear result is indeed uniform in N . Moreover, we note that
the space-time dependent modulation is slightly more complicated for subharmonic perturbations
than it is for localized perturbations, in part owing to the more discrete nature of the subharmonic
Bloch transform. Lastly, the uniform subharmonic nonlinear rate of decay is again precisely that
given by the localized nonlinear rate of decay.

Current and Future Research Directions

I plan on continuing to study the existence, stability, and dynamics of solutions of nonlinear PDEs
arising in physical systems. Specifically, the research questions that I currently intend to pursue
may be summarized as follows:

1. Three-Dimensional Viscous Fluid Conduits

Along with Prof. Mathew Johnson and Prof. Mark Hoefer2, I am currently seeking to
derive a model for viscous fluid conduits (like those described in Section 1) that is fully three-
dimensional. Ideally this model will be able to explain the robustness of symmetrical patterns
observed in physical experiments, and we hope it will be able to explain asymmetrical pat-
terns that are experimentally observable but are not predicted by the current two-dimensional
model. The derivation of such a model should be achieved by performing an appropriate mul-
tiple scales analysis on the associated boundary value problem for the Navier-Stokes equation
describing the experimental setup. While this has been achieved for two-dimensional viscous
fluid conduits, i.e. those assuming a rotational symmetry, the new challenge here will be to
break the rotational symmetry assumption by adding in the Coriolis effect to the Navier-
Stokes equations. This constitutes the rigorous derivation of a new mathematical model, and
this new model will be numerically explored and experimentally verified. These numerical and
experimental investigations are quite amenable to undergraduate- and Master’s-level research
programs.

2. Nonlinear Stability of Spectrally Stable Periodic Lugiato-Lefever Waves

Along with Prof. Mariana Haragus3, Prof. Johnson, and Dr. Björn de Rijk4, I am currently
researching how to extend the uniform subharmonic linear asymptotic stability obtained for
the Lugiato-Lefever Equation (LLE) in Section 2 to full nonlinear stability. As described in
Section 2, the lack of highest-order dissipation present in the LLE prevents the use of the
more traditional approach known as “nonlinear damping.” However, we hope to attain full
nonlinear stability by adapting recent techniques from the paper [4] to circumvent the lack
of highest-order dissipation present in the LLE. This adaptation is complicated by the fact

2University of Colorado Boulder
3FEMTO-ST institute, Univ. Bourgogne-Franche Comté
4Universität Stuttgart
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that [4] uses pointwise estimates while our linear asymptotic stability analysis is presented in
terms of L2(R). Nevertheless, we are confident that we can attain a nonlinear subharmonic
stability result that is uniform in N , something that is very important to the physicists who
conduct experiments modeled by the LLE.

3. Nonlinear Stability of Viscous Conservation Laws

Jointly with Prof. Johnson, I am currently researching how to attain uniform stability to
subharmonic perturbations at the nonlinear level in the general case of viscous conservation
laws. The analysis in this case is complicated by the fact that there are multiple eigenvalues
at the origin (something that was not present in the case of the Lugiato-Lefever Equation or
the system of reaction-diffusion equations). This leads to the presence of additional modula-
tions, in particular modulations in the mass and wavespeed of the background wave, that are
not present in the aforementioned equations. The presence of these additional modulations
complicates the analysis as we must show that the phase modulation coming from translation
invariance still dominates the dynamics. Furthermore, we no longer expect linear stability
(owing to the breaking of a Jordan block at the origin), but we believe that nonlinear stability
is still possible, as demonstrated in the case of localized perturbations in [8].

4. Further Justification of Whitham Theory

I am interested in rigorously justifying Whitham’s theory of wave modulations for a gener-
alized nonlinear wave equation (in particular, a generalized Whitham equation) with general
pseudo-differential operator and general nonlinearity. This equation can be written as

ut + f(u)x +K ∗ ux = 0, where K̂ ∗ g(x) =
Ω(k)

k
ĝ(k),

where f(u) and Ω(k) are the problem-dependent nonlinear hydrodynamic flux and linear
dispersion relation, respectively. Whitham theory has recently been used to numerically study
this equation in [1]. Building on my experience of rigorously justifying Whitham theory for
the conduit equation [9], my plan is to extend previous rigorous justification of Whitham
theory for a generalized nonlinear wave equation with a quadratic nonlinearity to that of a
general nonlinearity, which is a nontrivial extension. (If possible, it would be interesting to
try to fully justify Whitham theory in general.)

5. Rigorous and Numerical Bifurcation of Periodic Lugiato-Lefever Waves

I am interested in numerically bifurcating from spectrally-stable waves that are shown to exist
in [5, 6], to see if there are more stationary periodic wave solutions to the LLE that satisfy
the assumptions we make in [7]. A project of this form would be accessible to sufficiently
advanced undergraduate- and Master’s-level research students.

Furthermore, I am interested in rigorously bifurcating from constant solutions in the 2-D LLE
in order to justify known pattern formations. Such rigorous bifucation would also be suitable
to undergraduate- and Master’s-level research projects.

More information on my research, including all of my publications, can be found on my webpage
at http://people.ku.edu/∼w128p157/
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