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Abstract

The overarching theme of this dissertation is to investigate the stability and dynamics of spatially-

periodic travelling and stationary wave solutions to partial differential equations (PDEs) arising

from physical applications.

First we study themodulational dynamics of interfacial waves rising buoyantly along a conduit of

a viscous liquid. Formally the behavior of modulated periodic waves on large space and time scales

may be described through the use of Whitham modulation theory. The application of Whitham

theory, however, is based on formal asymptotic (WKB) methods, thus removing a layer of rigor that

would otherwise support their predictions. In this first study, we aim at rigorously verifying the

predictions of the Whitham theory, as it pertains to the modulational stability of periodic waves, in

the context of the so-called conduit equation, a nonlinear dispersive PDE governing the evolution

of the circular interface separating a light, viscous fluid rising buoyantly through a heavy, more

viscous, miscible fluid at small Reynolds numbers. Using rigorous spectral perturbation theory,

we connect the predictions of Whitham theory to the rigorous spectral (in particular, modulational)

stability of the underlying wave trains.

We then study the linear dynamics of spectrally stable )-periodic stationary solutions of the

Lugiato-Lefever equation (LLE), a damped nonlinear Schrödinger equation with forcing that arises

in nonlinear optics. It is known that such)-periodic solutions are nonlinearly stable to #)-periodic,

i.e., subharmonic, perturbations for each # ∈ N with exponential decay rates of the form 4−X# C .

However, both the exponential rates of decay X# and the allowable size of initial perturbations tend

to 0 as # → ∞ so that this result is non-uniform in # and is, in fact, empty in the limit # = ∞.

We introduce a methodology in the context of the LLE by which a uniform stability result for

subharmonic perturbations may be achieved at the linear level. The obtained uniform decay rates

are shown to agree precisely with the polynomial decay rates of localized, i.e., integrable on the
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real line, perturbations of such spectrally stable periodic solutions of the LLE. A key component

of the proofs in this study is the introduction of space-time dependent modulations, which, as we

show, allows us to justify Whitham theory at the level of linear dynamics for the LLE. This work

both unifies and expands on several existing works in the literature concerning the stability and

dynamics of such waves, and sets forth a general methodology for studying such problems in other

contexts.

Interestingly, we were unable to push the above analysis to the nonlinear level due to an

unavoidable loss of derivatives that occurs in our iteration scheme. If the PDE has dissipation in the

highest-order term, one can regain these lost derivatives through a technique known as “nonlinear

damping.” Unfortunately, the dissipation in the LLE occurs in the lowest-order term, leaving no

hope of regaining derivatives through a nonlinear damping estimate. As a proof of concept, we

explore if, in the presence of a nonlinear damping estimate, the methodology we developed for

the linear analysis could be used to develop an analogous nonlinear subharmonic stability result

which is uniform in # . To that end, we investigated the stability and nonlinear dynamics of

spectrally-stable wave trains in reaction-diffusion systems. Using the nonlinear damping estimate

present in reaction-diffusion systems, we were able to successfully introduce a methodology by

which a stability result for subharmonic perturbations which is uniform in # may be achieved at

the nonlinear level.

This proof of concept therefore motivates the idea that methodologies for overcoming the loss

of regularity that occurs in localized nonlinear iteration schemes can be modified to similarly

overcome the loss of regularity that occurs when establishing nonlinear subharmonic stability

results that are uniform in the period of perturbation. Consequently, in the final chapter of the

dissertation we develop a new methodology that allows us to circumvent the loss of regularity

in the case of localized perturbations and in the presence of weak damping, i.e., in the absence

of a nonlinear damping estimate. We return to our study of the Lugiato-Lefever equation and

consider the nonlinear stability of spectrally stable periodic stationary solutions of the LLE. In

our first study of the LLE, we used a delicate decomposition of the associated linearized solution
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operator to obtain linear stability results to localized perturbations with polynomial rates of decay

to a spatio-temporal phase modulation of the underlying wave. In this study, we present a new

nonlinear iteration scheme in which the aforementioned loss of derivatives is compensated through

a coupling to a separate “unmodulated” iteration scheme in which derivatives are not lost, yet

where perturbations decay too slow to close an independent iteration scheme. Our work establishes

the nonlinear stability of spectrally stable periodic stationary solutions of the LLE to localized

perturbations with precisely the same polynomial decay rates predicted from the linear theory.

Moreover, as our study of reaction-diffusion systems showed, it motivates the methodology by

which we may obtain a nonlinear subharmonic stability result for the LLE that is uniform in the

period of perturbation, a result that is currently under investigation by the author et al.
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Chapter 1

Background and Overview

Abstract

The goal of this first chapter is to introduce the notions of stability and classes of perturbations

that we will study in this dissertation, as well as to provide some common theoretical

framework necessary to study the notions of stability and perturbations that we introduce.

1.1 Introduction

This dissertation focuses on the stability and dynamics of nonlinear wave solutions to partial differ-

ential equations (PDEs) arising from physical applications. In particular, we will study nonlinear

waves and coherent structures that are motivated by experimental or numerical observations. These

physically observable patterns can often be studied through a PDE that models the physical system.

Several questions naturally arise when using a PDE to study observed patterns:

• Does an idealized version of the observed pattern exist as a solution to the PDE?

• Is such a solution stable, i.e., is it able to persist in the presence of a small perturbation?

• What are the local dynamics (i.e., the dynamics near such a solution) within the PDE as time

evolves?

• Can the PDE predict new observations?

• Can it explain why we see some patterns and not others?

The first three questions endeavor to determine, among other things, whether or not the PDE is a

good model for the physical system, and their answers can gauge the strengths and weaknesses of
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the PDE and inform what (if anything) needs to change in the model. The last two questions seek to

understand what the PDE can teach us about the underlying physical phenomena, and the answers

to these questions can motivate new experimental and numerical research.

The stability of a particular class of solutions is of fundamental practical importance as solutions

which are unstable do not naturally arise in applications except possibly as transient phenomena.

In particular, understanding why some patterns are stable and others are unstable can motivate

methods of stabilizing unstable patterns via the addition of controls to the physical system. The

ability to stabilize unstable patterns is key in many applications where there exist unstable, yet

desirable, structures.

In the second bullet point above, we motivated the formal notion of stability as the persistence

of a wave in the presence of a small perturbation. To put this in a more mathematical framework,

consider the PDE

DC = � (D) (1.1.1)

posed on a Banach space - . Suppose � : - → - is some generic nonlinear operator, and let q ∈ -

be a stationary wave solution1 to (1.1.1), i.e.,

qC = 0 =⇒ � (q) = 0.

At this point, we introduce the new formal definition of stability as follows.

If D(C) is initially close to q, i.e., if D(0) = D0 is close to q (in an appropriate sense of

“closeness”), then q is stable if D(C) remains close to q (again, in an appropriate sense)

for all time C > 0.

In order to understand what we mean by “closeness,” we need to introduce tools that will allow

us to measure the distance between D0 and q and between D(C) and q for C > 0, respectively. To

1Note that if we wish to study a traveling wave solution q, then we simply shift (1.1.1) to a traveling coordinate
frame, where q is a stationary solution.
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that end, note that we may write

D(C) = q + E(C),

where E(C) := D(C) − q and where E(0) = E0 := D0 − q is assumed to be “small.” Consequently,

in order for q to be stable, we need E(C) to be “small” so that D(C) is “close” to q for C > 0. This

allows us to interpret D(C) as a perturbation of q, where E(C) is our initially small perturbation.

The benefit of viewing D(C) as a perturbation of q is that there are often many classes of

perturbations worth studying. Furthermore, these classes of perturbations motivate our notion of

“closeness.” More explicitly, we may wish to study the stability of q with respect to perturbations

E(C) ∈ + for some Banach space + , where + may or may not be related to - . The topology of +

provides us with the ability to measure the relative size of an object; for instance, we can measure

the size of E(C) with the+-norm, ‖ · ‖+ . We therefore conclude that stability can formally be defined

as follows.

If E(C) starts small, i.e., if ‖E0‖+ � 1, then q is stable if E(C) stays small, i.e., if

‖E(C)‖+ � 1 for C > 0.”2

Note that this more mathematical formulation of stability is consistent with our original notion that

q is stable if it persists in the presence of initially small perturbations.

While there are all types of nonlinear waves and coherent structures that are studied using

this formal mathematical framework, there are two broad categories that are of significant interest;

namely, asymptotically constant structures (e.g., pulses and fronts) and spatially-periodic structures.

Each broad category comeswith its own associated classes of initial perturbations that are physically

relevant. This dissertation will focus on the study of spatially-periodic structures, and we now

introduce the pertinent ambient space - and perturbation space(s) + that are used to study the

stability of spatially-periodic structures.

Consider a )-periodic stationary wave solution q to (1.1.1) posed on - . Since q is )-periodic,

2Generically, the notion for which we measure the smallness of E0 need not be the same as the notion for which we
measure the smallness of E(C). Moreover, these notions of sizes need not be norms or metrics, but can be seminorms
or pseudometrics. (In fact, pseudometrics are relevant in many physical applications, as we will see in later chapters.)
For the purposes of this introduction, we stick with norms.
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(a)

Stability of periodic waves

co-periodic perturbations

subharmonic perturbations

localized perturbations

(b)

Stability of periodic waves

co-periodic perturbations

subharmonic perturbations

localized perturbations

(c)

Stability of periodic waves

co-periodic perturbations

subharmonic perturbations

localized perturbations

(d)

Stability of periodic waves

co-periodic perturbations

subharmonic perturbations

localized perturbations

Figure 1.1: (a) A representative example of a stationary )-periodic wave q ∈ !?per(0, )). (b) An
example of when the background wave q is subjected to a small subharmonic perturbation E0 (here
in red). Observe that the perturbation has the same period as the background wave so that it is
#)-periodic with # = 1, i.e., it is a small co-periodic perturbation. (c) Another example of when
the background wave q is subjected to a small subharmonic perturbation E0. Here, the perturbation
has 4 times period as the background wave so that it is #)-periodic with # = 4. (d) An example
of when the background wave q is subjected to a small localized perturbation E0.

one natural choice for the space - would be

- = !
?
per(0, )) := { 5 ∈ !? (0, )) | 5 (G + )) = 5 (G) for a.e. G},

where ? ∈ [1,∞]. In other words, - represents the space of )-periodic functions that are ?-

integrable over one period. For example, see Figure 1.1(a). In order to study the stability of q, we

need to identify the space+ of admissible initial perturbations E0. When studying periodic solutions

to PDEs of the form (1.1.1), there are two imporant and widely studied classes of perturbations that

arise naturally in applications. One class of perturbations is referred to as the class of subharmonic

perturbations, i.e., #)-periodic perturbations3 for some positive integer # . In this case, we have

that

+ = !
?
per(0, #))

for some # ∈ N, e.g., see Figure 1.1(b)-(c). The other class of perturbations is referred to as the

class of localized perturbations, i.e., perturbations which are integrable on the real line. In this

case, we have that

+ = !? (R),

e.g., see Figure 1.1(d). We note that, while most of our results can be extended to the - and +

listed above for general ?, we choose to work in the Hilbertian framework when ? = 2.

3Note that the special case of # = 1 is often referred to as co-periodic perturbations, in which case + = - . For
example, see Figure 1.1(b).
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Observe that localized perturbations can formally be understood as the limit of subharmonic

perturbations as# →∞. Indeed, notice that as# increaseswithout bound, functions in !?per(0, #))

must become increasingly localized in order for the integral over one period to converge.4 This

observation will be critical in our study of subharmonic perturbations.

Our goal for the rest of this chapter is as follows. First, we make our formal notion of stability

rigorous for a general - and + . Then we introduce the main tools needed to study the stability of

spatially-periodic structures q ∈ - = !2
per(0, )) in the presence of both localized perturbations,

i.e., + = !2(R), and subharmonic perturbations, i.e., + = !2
per(0, #)).

1.2 Preliminaries

Recall we are studying the PDE (1.1.1)

DC = � (D)

posed on - , where � : - → - is some generic nonlinear operator. Further recall that q ∈ - is a

stationary wave solution to (1.1.1), i.e.,

qC = 0 =⇒ � (q) = 0.

As motivated above, we wish to study the stability of q with respect to perturbations E(C) ∈ + ,

where + and - generically have no relationship to each other. In order to account for the possible

mismatch of spaces, we consider the perturbed solution

D(C) = q + E(C), D0 = q + E0,

4Alternatively, if we consider Figure 1.1, we can see that the subharmonic perturbations necessarily become more
sparse, i.e., they become more localized, as # increases without bound.
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where D(0) = D0 and E(0) = E0. Substituting this into (1.1.1) gives rise to the PDE describing the

evolution of the perturbation, i.e., the perturbation evolution equation. In other words, we see that

E(C) satisfies the IVP

EC = � (q + E), E(0) = E0 (1.2.1)

posed on+ .5 We assume that (1.2.1) is locally well-posed (see Definition 1.2.1) on a dense subspace

, that is continuously embedded in + .6

Definition 1.2.1 (Local Well-Posedness). We say that (1.2.1) is locally well-posed on, ⊆ + if for

all E0 ∈ , , there exists a time g = g(E0) > 0 such that there exists a unique solution E(C) ∈ , of

(1.2.1) for C ∈ [0, g) with E(0) = E0. Moreover, g < ∞ if and only if

lim
C↗g
‖E(C)‖+ = ∞.

This last condition is sometimes referred to as the blow-up alternative.

Since E = 0 is clearly an equilibrium solution to (1.2.1) and since

‖D(C) − q‖+ � 1⇐⇒ ‖E(C) − 0‖+ � 1,

we have that the stability of q ∈ - as a solution to (1.1.1) is equivalent to the stability of 0 ∈ +

as a solution to (1.2.1). Therefore, we say that q is a nonlinearly stable solution of (1.1.1) if the

following definition holds.

Definition 1.2.2 (Nonlinear Stability). Let q ∈ - be a stationary solution to (1.1.1). Then, q is

said to be nonlinearly stable if for all Y > 0, there exists a X > 0 such that whenever E0 ∈ , ⊆ +

and ‖E0‖+ < X, then the unique solution E(C) of (1.2.1) with initial data E(0) = E0 exists for all

5As we will see below, when q is a stationay wave solution to (1.1.1), � (q + E) = O(‖E‖+ ). Thus, it is reasonable
to expect that � (q + ·) : + → + .

6In general, we do not need (1.2.1) to be locally well-posed on a dense subspace of + . In fact, we only need (1.2.1)
to be locally well-posed in an open neighborhood of the origin.
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C > 0 and satisfies

‖E(C)‖+ ≤ Y.

Otherwise, we say that q is nonlinearly unstable. If, in addition, we have that ‖E(C)‖+ → 0 as

C →∞, then we say that q is nonlinearly asymptotically stable.

At this point, it is natural to ask how we prove that q is a nonlinearly stable solution to (1.1.1).

Well, recall (1.2.1)

EC = � (q + E)

and note that we can write

� (q + E) = � (q) + �� (q)E + [� (q + E) − � (q) − �� (q)E]︸                                  ︷︷                                  ︸
O(‖E‖2

+
)

,

where here L[q] := �� (q) is the Fréchet derivative of � evaluated at q considered as a densely-

defined operator from + into itself, i.e., L[q] : � (L[q]) ⊆ + → + . In order to make sure the

problem remains well-posed, we assume that the domain of L[q] satisfies

� (L[q]) ⊆ , ⊆ +,

where each subspace is dense and continuously embedded. Recalling that � (q) = 0, we find that

EC = L[q]E + N(E), (1.2.2)

where N(E) = � (q + E) − �� (q)E = O(‖E‖2
+
).

Note that (1.2.2) is clearly equivalent to (1.2.1). However, splitting � into its linear and

nonlinear components is beneficial since, assuming that L[q] generates a �0-semigroup, we can
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use Duhamel’s formula to rewrite (1.2.2) as the implicit integral equation

E(C) = 4L[q]CE0 +
∫ C

0
4L[q] (C−B) N(E(B))︸    ︷︷    ︸

O(‖E(B)‖2
+
)

3B, (1.2.3)

where 4L[q]CE0 is the unique solution to the linear IVP

EC = L[q]E, E(0) = E0 (1.2.4)

posed on + . In general, it proves to be quite challenging to study the implicit integral equation

(1.2.3) straight out of the gate. Instead, we often approach this problem by observing that if ‖E(C)‖+

is small, then ‖E(C)‖2
+
would be much smaller than ‖E(C)‖+ . Therefore, it stands to reason that

solutions to (1.2.1) will be well approximated by solutions to (1.2.4). This motivates the following

notion of stability.

Definition 1.2.3 (Linear Stability). Let q ∈ - be a stationary solution of (1.1.1). Then q is said to

be linearly stable if for all Y > 0 there exists a X > 0 such that whenever E0 ∈ + and ‖E0‖+ < X,

then the unique solution E(C) of the linearized problem (1.2.4) with initial data E(0) = E0 exists for

all C > 0 and satisfies

‖E(C)‖+ ≤ Y.

Otherwise, we say that q is linearly unstable. If, in addition, we have that ‖E(C)‖+ → 0 as C →∞,

then we say that q is linearly asymptotically stable.7

While proving the linear stability of q is generally easier than proving the nonlinear stability of

q, it is still often a challenging problem. So how do we study the linear stability of q? Well, we

know that (1.2.4) has the unique solution

E(C) = 4L[q]CE0,

7Note that for the notion of linear stability, we dropped the space , , where the nonlinear problem was locally
well-posed.
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where 4L[q]C is referred to as the linear solution operator. Consequently, the linear stability of q

often comes down to establishing bounds on the linear solution operator.

Standard theory from the study of ordinary differential equations (ODEs) actually gives us some

insight into how to establish these bounds. Indeed, we know from ODE theory that the eigenvalues,

i.e., the spectrum, of the linear operator completely determine the bounds on the linear solution

operator. While this is a much more delicate matter when studying PDEs, the ODE theory still

provides motivation for the ability to use spectral information to study the linear solution operator.

As such, we make the following definitions.

Definition 1.2.4. Suppose ! is a closed linear operator with dense domain � (!) ⊆ / for some

Banach Space / . Then the resolvent set of ! acting on / is given by

d/ (!) := {_ ∈ C | (! − _�)−1 is a bounded linear operator}.

Furthermore, the spectrum of ! acting on / is given by

f/ (!) := C \ d/ (!).

In many applications, it is useful to further decompose the spectrum of ! as follows.

Definition 1.2.5. Suppose ! is a closed linear operator with dense domain � (!) ⊆ / for some

Banach Space / . We say that _ ∈ f/ (!) is an eigenvalue of ! (in /) if

ker(! − _�) ≠ {0},

i.e., if there exists a I ∈ / \ {0} such that !I = _I. Then, the point spectrum of ! acting on / is

given by

fpt,/ (!) := {_ ∈ f/ (!) | _ is an isolated eigenvalue of finite multiplicity},
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and the essential spectrum of ! acting on / is given by

fess,/ (!) := f/ (!) \ fpt,/ (!).

Recalling from ODE theory that linear stability is only possible when all of the eigenvalues of

! have nonpositive real parts, we define another notion of stability.

Definition 1.2.6 (Spectral Stability). Let q ∈ - be a stationary solution of (1.1.1). Then q is said

to be spectrally stable if the spectrum of the linear operator L[q], coming from the linearized

problem (1.2.4), acting on + lies in the closed left half-plane,8 i.e., if

f+ (L[q]) ⊆ {_ ∈ C | <(_) ≤ 0}.

Otherwise, we say that q is spectrally unstable.

In an ideal situation, we can use the spectral information to climb up the ladder of stability and

establish nonlinear stability. In other words, if we can establish the spectral stability of q, then we

try to use the spectral information to establish bounds on the linear solution operator 4L[q]C . These

bounds hopefully allow us to conclude linear stability, at which point we try to use some sort of

nonlinear iteration scheme on the implicit integral equation (1.2.3) in order to conclude nonlinear

stability. While the strategy sounds straightforward enough, it can be quite delicate to execute in

practice.

Again, it is natural to ask how we study the spectral stability of q. In general, when - ≠ + ,

studying the spectral stability is very tricky due to the mismatch of spaces where q and E live.

Recall, however, that we will be specifically focusing on the stability of spatially-periodic waves,

so we now turn our attention to the specific choices of - and + given above.

In the case when - = !2
per(0, )) and + = !2(R), there is a well-developed theory for studying

the spectral (in)stability of q, which we will explore in the next section. Moreover, there is a

8This can equivalently be expressed as<(f+ (L[q])) ≤ 0.
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well-developed transform that can be used to translate the spectral information into bounds on the

linear solution operator. Hence, this transform is often used to establish the linear (in)stability of

q, at which point a nonlinear iteration scheme may be used to establish the nonlinear (in)stability

of q.

In the case when - = !2
per(0, )) and+ = !2

per(0, #)), we introduce a new, but related, theory to

aid in the study of the spectrum ofL[q]. Moreover, we will introduce a new, but related, transform,

which in turn helps us study the linear and nonlinear (in)stability of q.

1.3 Floquet-Bloch Theory

We now assume that the linearization of (1.1.1) about a )-periodic stationary wave solution

q ∈ !2
per(0, )) gives rise to the linear problem

EC = A[q]E,

posed on either + = !2(R) or !2
per(0, #)) for some positive integer # . We further assume that

A[q] is a degree = differential operator with )-periodic coefficients,9 and it is assumed thatA[q]

is closed when acting on either + = !2(R) or !2
per(0, #)) with dense domain � (A[q]) = �B (R)

or �B
per(0, #)), respectively, for some B ≥ 1. In order to study the spectral stability of q, we need

to study the spectral problem

A[q]E = _E (1.3.1)

and note that, since (1.3.1) is an ODE, we can rewrite it as a linear homogeneous differential

equation

. ′ = �(G;_). (1.3.2)

for some = × = matrix �(G;_) of complex continuous functions such that �(G + ) ;_) = �(G;_).

By standard Floquet Theory (for details, see [40]), we know that any fundamental matrix solution

9In [21], we study the Floquet theory for an operator A that is a general < × <-matrix differential operator. For
extensions beyond the case where A is a differential operator, please see [20, 28].
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of (1.3.2) must be of the form

Φ(G;_) = %(G;_)4�(_)G ,

where %(G +) ;_) = %(G;_) ∈ C=×= and where �(_) ∈ C=×= is some constant (in G) matrix. It then

follows that any solution to (1.3.1) must be of the form

E(G;_) = 4`(_)G ?(G;_),

where ?(G +) ;_) = ?(G;_) and `(_) is an eigenvalue of �(_). Observe that if<(`(_)) > 0, then

E(G;_) G→−∞−−−−−→ 0, E(G;_) G→∞−−−−→ ∞

at exponential rates. Similarly, if<(`(_)) < 0, then

E(G;_) G→−∞−−−−−→ ∞, E(G;_) G→∞−−−−→ 0

at exponential rates. In either case, we have that E(G;_) ∉ + for either + = !2(R) or !2
per(0, #)).

Consequently, E(G;_) is at best a bounded solution of the form

E(G;_, b) = 48bGF(G;_, b), (1.3.3)

for some b ∈ [−c/), c/)) and where F ∈ !2
per(0, )). At this point, we now individually study the

implications of this analysis in the localized case, i.e., when + = !2(R), and in the subharmonic

case, i.e., when + = !2
per(0, #)).
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1.3.1 Floquet-Bloch Theory for Localized Perturbations

To begin our study of the !2(R)-spectrum of A[q], we have shown that standard results from

Floquet theory imply that non-trivial solutions of the spectral problem (1.3.1)

A[q]E = _E

cannot be integrable10 on R and that, at best they are bounded functions on the line: see, for

example, [40, 55]. In particular, the !2(R)-spectrum of A[q] can contain no eigenvalues, and

hence must be entirely essential. Further, we have shown that any bounded solution of (1.3.1) must

be of the form (1.3.3)

E(G) = 48bGF(G)

for some F ∈ !2
per(0, )) and b ∈ [−c/), c/)), where here we have suppressed the parameter

dependence of E and F. From these observations, it can be shown that _ ∈ C belongs to the

!2(R)-spectrum of A[q] if and only if the problem


A[q]E = _E

E(G + )) = 48b)E(G)
(1.3.4)

admits a non-trivial solution for some b ∈ [−c/), c/)). Equivalently, substituting (1.3.3) into

(1.3.4), we see that (1.3.4) holds if and only if there exists a b ∈ [−c/), c/)) and a non-trivial

F ∈ !2
per(0, )) such that

_F = 4−8bGA[q]48bGF =: Ab [q]F. (1.3.5)

For details, see [40, 55, 28], for example. The one-parameter family of operatorsAb [q] are called

the Bloch operators associated to A[q], and b is referred to as the Bloch parameter or sometimes

as the Bloch frequency. Observe that A0 [q] corresponds to considering the operator A[q] with

)-periodic, i.e., co-periodic, boundary conditions. Note that each Ab [q] acts on the space of

10In particular, such solutions can not have finite norm in ! ? (R) for any 1 ≤ ? < ∞.
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)-periodic functions !2
per(0, )), on which they are closed with dense and compactly embedded

domain �B
per(0, )).11

Since the domains of the Bloch operators are compactly embedded in !2
per(0, )), their spectra

consist entirely of isolated eigenvalues of finite algebraic multiplicities12 which, furthermore,

depend continuously on the Bloch parameter b. By the above Floquet-Bloch theory, we in fact have

the spectral decomposition

f!2 (R) (A[q]) =
⋃

b∈[−c/),c/))
f!2

per (0,))
(
Ab [q]

)
; (1.3.6)

see, for example, [17]. This characterizes the !2(R)-spectrum of A[q] as the union of countably

many continuous curves _(b) corresponding to the eigenvalues of the associated Bloch operators

Ab [q]. For more details, see [55].

1.3.2 Notions of Spectral Stability

Equipped with this new understanding of the !2(R)-spectrum of A[q], we now introduce two

more notions of spectral stability. In particular, when (1.1.1) is translationally invariant, the above

characterization of the spectrum of A[q] acting on !2(R) implies that the spectrum necessarily

touches the imaginary axis at the origin. Consequently, we introduce the following notion of

stability that will be used throughout this dissertation.

Definition 1.3.1 (Diffusive Spectral Stability). Let q ∈ !2
per(0, )) be a stationary solution of (1.1.1).

Then q is said to be diffusively spectrally stable provided the following conditions hold:

(i) the spectrum of the linear operator A[q] acting on !2(R) satisfies

f!2 (R) (A[q]) ⊂ {_ ∈ C : <(_) < 0} ∪ {0};

(ii) there exists \ > 0 such that for any b ∈ [−c/), c/)) the real part of the spectrum of the Bloch

11In particular, note that the space where q lives is now consistent with the space where Ab [q] acts.
12In other words, the !2

per (0, ))-spectra of the Bloch operators is entirely point spectra.
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operator Ab [q] := 4−8bGA[q]48bG acting on !2
per(0, )) satisfies

<
(
f!2

per (0,)) (Ab [q])
)
≤ −\b2;

(iii) _ = 0 is a simple )-periodic eigenvalue of A0 [q] with associated eigenfunction q′.13

We note that since the pioneering work of Schneider [58, 59, 60] the above has been the

standard spectral stability assumption in nonlinear stability results for periodic traveling or standing

waves in dissipative systems: see, for example, the more recent works [13, 29, 30, 31, 56] and

references therein. In particular, this is the best one can hope for in the case of translationally

invariant periodic patterns, and extensions of this to systems with more symmetries (hence more

spectral curves passing through the origin) are regularly used: see, for example, [2, 31]. Most

importantly, the above diffusive spectral stability assumption, and its extensions, has been shown

to imply important details regarding the nonlinear dynamics near q under localized, or general

bounded, perturbations, including long-time dynamics of the associated modulation functions. For

more information, see the above mentioned works.

To determine the (diffusive) spectral stability of a)-periodic wave qwhen subjected to localized

perturbations, onemust therefore determine all of the)-periodic eigenvalues for eachBloch operator

for b ∈ [−c/), c/)). In general, this is a very difficult task, and it may not be possible to rigorously

understand the !2(R)-spectrum of A[q]. However, the spectral decomposition (1.3.6), hence the

(diffusive) spectral stability of q, can often be studied via well-conditioned numerical analysis.

While a rigorous understanding of the entire !2(R)-spectrum ofA[q] is not possible in general,

that does notmeanwe cannotmake any rigorous conclusions about the spectrum. Indeed, we usually

know the )-periodic generalized kernel ofA0 [q], i.e., gkerper(A0 [q]), explicitly as a result of the

symmetries in the PDE (1.1.1). Spectral perturbation theory then allows us to conclude spectral

information about the !2
per(0, ))-spectrum ofAb [q] for |b | � 1 near _ = 0. Hence, we often have

a completely rigorous understanding of the spectrum of A[q] acting on !2(R) near the origin,

13In situations where (1.1.1) has more symmetries, this condition may be relaxed to incorporate the larger)-periodic
generalized kernel of A0 [q].
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_ = 0. This motivates the following notion of stability.

Definition 1.3.2 (Spectral Modulational Stability). Let q ∈ !2
per(0, )) be a stationary solution of

(1.1.1). Then q is said to be modulationally stable if, in a sufficiently small neighborhood of the

origin, the spectrum of A[q] acting on !2(R) lies in the closed left half-plane. In other words, q

is modulationally stable if, in a sufficiently small neighborhood of the origin, q is spectrally stable.

Otherwise, q is said to be modulationally unstable.14

It is natural to ask what the physical relevance of Definition 1.3.2 is. Well, when studying

periodic waves, there is a third important class of perturbations known as long wavelength pertur-

bations. In particular, there is a special class of long wavelength perturbations that correspond to

slow modulations of q. These slow modulations of q correspond to perturbations that slowly vary,

i.e., modulate, the fundamental characteristics of the periodic wave, such as amplitude or frequency,

over large space-time scales. It has been shown in many recent works [3, 6, 38, 35, 32] that the

spectral stability of q when subjected to such slow modulations corresponds to the modulational

stability described in Definition 1.3.2.

To motivate this, observe from (1.3.4) that the spectrum of �0 [q] corresponds to the spectral

stability of q to )-periodic perturbations, i.e., to perturbations with the same period as the carrier

wave. Similarly, (1.3.4) implies that each |b | � 1 corresponds to the spectral stability of q to

long wavelength perturbations of the carrier wave. As mentioned above, slow modulations of q

form a special class of long wavelength perturbations in which the effect of the perturbation is to

slowly vary, namely modulate, the wave characteristics and the translational mode. These wave

characteristics and the translational mode usually correspond to symmetries in the PDE (1.1.1).

As such, variations in the wave characteristics and translational mode naturally provide spectral

information about the co-periodic Bloch operator A0 [q] at the origin _ = 0. From the above

considerations, it is natural to expect that the spectral stability of the underlying wave q to slow

modulations corresponds to the case when the !2
per(0, ))-spectrum of the Bloch operators Ab [q]

14Note thatmodulational stability is a necessary condition for spectral stability inDefinition 1.2.6, whilemodulational
instability is a sufficient condition for spectral instability.
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near (_, b) = (0, 0) lie in the closed left half-plane, i.e., when q is modulationally stable in the

sense of Definition 1.3.2. For more discussion regarding this motivation, see [5].

1.3.3 Bloch Transform of Localized Functions

Now that we have an understanding of how to characterize the !2(R)-spectrum of A[q], we seek

to use this spectral information to understand the linear solution operator 4A[q]C . In that direction,

note that, from the earlier characterization of the spectrum of A[q], it is clearly desirable to have

the ability to decompose arbitrary functions in !2(R) into superpositions of functions of the form

48bGF(G) with b ∈ [−c/), c/)) and F ∈ !2
per(0, )), see (1.3.3). This may be accomplished by

noting that any function 6 ∈ !2(R) admits a Bloch decomposition, or inverse Bloch transform

representation, given by

6(G) = 1
2c

∫ c/)

−c/)
48bG 6̌(b, G)3b, where 6̌(b, G) :=

∑
ℓ∈Z

42c8ℓG/) 6̂(b + 2cℓ/)) (1.3.7)

and where 6̂(·) denotes the Fourier transform of 6, defined here as

6̂(:) =
∫ ∞

−∞
4−8:G6(G)3G, : ∈ R.

Indeed, observe that for any Schwartz function 6 we have that

2c6(G) =
∫ ∞

−∞
48bG 6̂(b)3b =

∑
ℓ∈Z

∫ c/)

−c/)
48(b+2cℓ/))G 6̂(b + 2cℓ/))3b =

∫ c/)

−c/)
48bG 6̌(b, G)3b,

and then the general result follows by density. Note that for each fixed b ∈ [−c/), c/)) the function

6̌(b, ·) is )-periodic and hence the above procedure decomposes, as desired, arbitrary functions in

!2(R) into a (continuous) superposition of functions of the form 48b ·6̌(b, ·), each of which has a

fixed Bloch frequency b.
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Defining the Bloch transform

B : !2(R) → !2
(
[−c/), c/)); !2

per(0, ))
)

via the action 6 ↦→ 6̌ with 6̌ given by (1.3.7), the standard Parseval identity for the Fourier transform

implies that the Bloch transform is a bounded linear operator,

‖6‖2
!2 (R) =

1
2c)

∫ c/)

−c/)

∫ )

0
|B(6) (b, G) |2 3G 3b = 1

2c)
‖B(6)‖2

!2( [−c/),c/));!2
per (0,))) . (1.3.8)

Furthermore, for E ∈ �B (R) we have

B (A[q]E) (b, G) =
(
Ab [q] Ě(b, ·)

)
(G)

and

A[q]E(G) = 1
2c

∫ c/)

−c/)
48bGAb [q] Ě(b, G)3b,

showing that the Bloch transform B diagonalizes the )-periodic coefficient linear operatorA[q] in

the same way that the standard Fourier transform diagonalizes constant coefficient linear operators.

Here, the Bloch operators Ab [q] may be viewed as operator-valued symbols of the linearized

operator A[q] under the action of B. Furthermore, assuming that A[q] and its associated Bloch

operatorsAb [q] generate�0-semigroups on !2(R) and !2
per(0, )), respectively, it is straightforward

to check the identities

B
(
4A[q]CE

)
(b, G) =

(
4Ab [q]C Ě(b, ·)

)
(G)

and

4A[q]CE(G) = 1
2c

∫ c/)

−c/)
48bG4Ab [q]C Ě(b, G)3b. (1.3.9)

Combined with (1.3.8), this latter identity allows us to conclude information about the semigroup

4A[q]C acting on !2(R) by synthesizing, over b ∈ [−c/), c/)), information about the Bloch

semigroups 4Ab [q]C acting on !2
per(0, )). As we will see in later chapters, this decomposition is
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key to understanding the linear stability of q in the presence of localized perturbations.

1.3.4 Floquet-Bloch Theory for Subharmonic Perturbations

In this and the following section, we introduce a version of Floquet-Bloch theory that is appropriate

for the study of subharmonic perturbations. Following the intuition outlined at the end of Section

1.1, we know that localized perturbations can formally be understood as the limit of subharmonic

perturbations as # →∞. One of our main goals in later chapters is to exploit this formal intuition

in our study of subharmonic perturbations. Consequently, we will use the Floquet-Bloch theory

for localized perturbations outlined in the previous section as motivation for the development of a

Floquet-Bloch theory that is appropriate for the study of subharmonic perturbations. Specifically,

given a differential operator A[q] with )-periodic coefficients, as in the previous section, we aim

at understanding both the !2
per(0, #))-spectrum ofA[q] and how the associated semigroup 4A[q]C

acts on #)-periodic functions.

To begin our study of the !2
per(0, #))-spectrum ofA[q], recall from earlier in Section 1.3 that

non-trivial solutions of the spectral problem (1.3.1)

A[q]E = _E

cannot be integrable on R and that, at best, they are bounded functions of the form (1.3.3)

E(G) = 48bGF(G)

for some F ∈ !2
per(0, )) and b ∈ [−c/), c/)), where here we have suppressed the parameter

dependence of E and F. Recalling that the domain of A[q] is �B
per(0, #)) for some B ≥ 1, we

have that the domain of the linear operator is compactly embedded in !2
per(0, #)). Therefore, the

spectrum ofA[q] acting on !2
per(0, #)) consists entirely of isolated eigenvalues of finite algebraic

multiplicities; hence, it is entirely point spectrum. Now observe that if we fix # ∈ N and define the
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set

Ω# :=
{
b ∈ [−c/), c/)) | 48b#) = 1

}
, (1.3.10)

then the perturbation E satisfies #)-periodic boundary conditions if and only if b ∈ Ω# . In

particular, it can be shown that _ ∈ C belongs to the !2
per(0, #))-spectrum of A[q] if and only if

there exists a b ∈ Ω# and a non-trivial F ∈ !2
per(0, )) such that

Ab [q]F = _F,

where the Bloch operatorAb [q] is defined as in (1.3.5). As before, eachAb [q] acts on !2
per(0, ))

with densely defined and compactly embedded domain �B
per(0, )), and hence their spectra consists

entirely of isolated eigenvalues with finite algebraic multiplicities which, furthermore, depend

continuously on b. In fact, we have the spectral decomposition

f!2
per (0,#)) (A[q]) =

⋃
b∈Ω#

f!2
per (0,))

(
Ab [q]

)
. (1.3.11)

This characterizes the #)-periodic spectrum of A[q] as the union of )-periodic eigenvalues for

the Bloch operators {Ab [q]}b∈Ω# .

Remark 1.3.3. In particular, (1.3.11) implies that diffusively spectrally stable periodic waves, in

the sense of Definition 1.3.1, are spectrally stable for all subharmonic perturbations. Since the

!2
per(0, #))-spectrum of A[q] is purely point spectrum consisting of isolated eigenvalues with

finite algebraic multiplicities, if q is diffusively spectrally stable, then we must have _ = 0 is a

simple eigenvalue – with associated eigenfunction the derivative q′ of the periodic wave – and that

the remaining eigenvalues have negative real parts, satisfying the spectral gap condition

<
(
f!2

per (0,#)) (A[q]) \ {0}
)
≤ −X# ,

for some X# > 0. Because the eigenvalues of the Bloch operatorsAb [q] depend continuously on b,
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it is not difficult to see that the spectral gap X# above tends to 0, as # →∞. For more information

on the implications of this remark, see Chapters 3 and 4 below.

Remark 1.3.4. For definiteness, we note that the set Ω# given by (1.3.10) may be written explicitly

when # is even by

Ω# =

{
b 9 =

2c 9
#)

: 9 = −#
2
, −#

2
+ 1, . . . ,

#

2
− 1

}
and when # is odd by

Ω# =

{
b 9 =

2c 9
#)

: 9 = −# − 1
2

, −# − 1
2
+ 1, . . . ,

# − 1
2

}
.

In particular, observe that we have 0 ∈ Ω# and |Ω# | = # for all # ∈ N and that, furthermore,

Δb 9 := b 9 − b 9−1 =
2c
#)

for each appropriate 9 .

1.3.5 Bloch Transform of Subharmonic Functions

We now seek to use the spectral decomposition (1.3.11) to understand how the linear solution

operator 4A[q]C acts on #)-periodic functions. From the discussion above, it is clearly desirable to

have the ability to decompose arbitrary functions in !2
per(0, #)) into superpositions of functions

of the form 48bGF(G) with b ∈ Ω# and F ∈ !2
per(0, )). This is achieved by noting that a given

6 ∈ !2
per(0, #)) admits a Fourier series representation

6(G) = 1
#)

∑
:∈Z

42c8:G/#) 6̂(2c:/#)),

where here 6̂ represents the Fourier transform of 6 on the torus given by

6̂(Z) =
∫ #)/2

−#)/2
4−8Z H6(H)3H. (1.3.12)
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Note that 6̂(Z) is the :-th Fourier coefficient of the #)-periodic function 6 when Z = 2c:/#) .

Together with the identity (valid for any 5 for which the sum converges)

∑
:∈Z

5 (2c:/#)) =
∑
b∈Ω#

∑
ℓ∈Z

5 (b + 2cℓ/)),

it follows that 6 may be represented as

6(G) = 1
#)

∑
b∈Ω#

∑
ℓ∈Z

48(b+2cℓ/))G 6̂(b + 2cℓ/)).

In particular, defining for b ∈ Ω# the )-periodic Bloch transform of a function 6 ∈ !2
per(0, #)) as

B) (6) (b, G) :=
∑
ℓ∈Z

42c8ℓG/) 6̂(b + 2cℓ/)), (1.3.13)

the above yields the inverse Bloch representation formula

6(G) = 1
#)

∑
b∈Ω#

48bGB) (6) (b, G) (1.3.14)

which is valid for all 6 ∈ !2
per(0, #)). Note that the function B) (6) (b, ·) is clearly )-periodic

for each b ∈ Ω# , and hence the above representation formula decomposes arbitrary #)-periodic

functions in the desired fashion. Further note that the equalities (1.3.13) and (1.3.14) are the

analogue of (1.3.7) for #)-periodic functions.

Before proceeding, we note that, in fact, the )-periodic Bloch transform

B) : !2
per(0, #)) → ℓ2

(
Ω# : !2

per(0, ))
)

as defined above satisfies the subharmonic Parseval identity

〈 5 , 6〉!2 (0,#)) =
1
#)2

∑
b∈Ω#

〈B) ( 5 ) (b, ·),B) (6) (b, ·)〉!2 (0,)) , (1.3.15)
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valid for all 5 , 6 ∈ !2
per(0, #)). Indeed, observe that

∑
b∈Ω#

〈B) ( 5 ) (b, ·),B) (6) (b, ·)〉!2 (0,)) =
∑
b∈Ω#

∫ )

0
B) ( 5 ) (b, G)B) (6) (b, G)3G

=
∑
b∈Ω#

∫ )

0

∑
:,ℓ∈Z

42c8(ℓ−:)G/) 5̂ (b + 2c:/))6̂(b + 2cℓ/))3G

=
∑
b∈Ω#

∑
:,ℓ∈Z

(∫ )

0
42c8(ℓ−:)G/)3G

)
5̂ (b + 2c:/))6̂(b + 2cℓ/))

= )
∑
b∈Ω#

∑
ℓ∈Z

5̂ (b + 2cℓ/))6̂(b + 2cℓ/))

= )
∑
:∈Z

5̂

(
2c:
#)

)
6̂

(
2c:
#)

)
= #)2 〈 5 , 6〉!2 (0,#)) ,

as claimed. In particular, this yields the useful identity

‖6‖2
!2 (0,#)) =

1
#)2

∑
b∈Ω#

‖B) (6) (b, ·)‖2!2 (0,))

valid for all 6 ∈ !2
per(0, #)), establishing that (up to normalization) B) is an isometry, just as

the Bloch transform B in the case of localized perturbations. (1.3.15) also leads to the following

lemma needed later in our analysis.

Lemma 1.3.5. Let # ∈ N. If 5 ∈ !2
per(0, )) and 6 ∈ !2

per(0, #)), then

B) ( 5 6) (b, G) = 5 (G)B) (6) (b, G),

In particular, for such 5 and 6 we have the identity

〈 5 , 6〉!2 (0,#)) =
1
)
〈 5 (G),B) (6) (0, G)〉!2 (0,)) .
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Proof. For 5 ∈ !2
per(0, )) and 6 ∈ !2

per(0, #)), we calculate the #)-periodic Fourier transform as

5̂ 6(I) =
∫ #)

0
4−8IH 5 (H)6(H)3H

=

∫ #)

0
4−8IH

(
1
)

∑
:∈Z

42c8:H/) 5̂ (2c:/))
)
6(H)3H

=
1
)

∑
:∈Z

5̂ (2c:/))
(∫ #)

0
4−8(I−2c:/))H6(H)3H

)
=

1
)

∑
:∈Z

5̂ (2c:/)) 6̂(I − 2c:/)).

Thus, we have

B) ( 5 6) (b, G) =
1
)

∑
ℓ∈Z

42c8ℓG/)
(∑
:∈Z

5̂ (2c:/))6̂(b + 2c(ℓ − :)/))
)

=
1
)

∑
:∈Z

5̂ (2c:/))
∑
ℓ∈Z

42c8ℓG/) 6̂ (b + 2c(ℓ − :)/))

=
1
)

∑
:∈Z

42c8:G/) 5̂ (2c:/))
∑
ℓ∈Z

42c8ℓG/) 6̂ (b + 2cℓ/))

= 5 (G)B) (6) (b, G),

which proves the first equality.

Next, from this equality and Parseval’s identity (1.3.15) we obtain that

〈 5 , 6〉!2 (0,#)) =
1
#)2

∑
b∈Ω#

〈 5 (G)B) (1) (b, ·),B) (6) (b, ·)〉!2 (0,)) .

Noting that

1̂ (b + 2cℓ/)) =


#), if b + 2cℓ/) = 0

0, otherwise

and that the condition b + 2cℓ/) = 0 holds for b ∈ Ω# and ℓ ∈ Z if and only if b = ℓ = 0, we find

that B) (1) (b, G) = #) , which proves the second equality. �
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Similarly to the case for localized perturbations, we note that for E ∈ �B
per(0, #))

B) (A[q]E) (b, G) =
(
Ab [q]B) (E) (b, ·)

)
(G)

and

A[q]E(G) = 1
#)

∑
b∈Ω#

48bGAb [q]B) (E) (b, G).

Hence we may view the Bloch operators Ab [q] as operator valued symbols associated to A[q]

under the action of the )-periodic Bloch transform B) . If the operatorA[q] and its corresponding

Bloch operators Ab [q] generate �0-semigroups on !2
per(0, #)) and !2

per(0, )), respectively, it is

now straightforward to check the identities

B)
(
4A[q]CE

)
(b, G) =

(
4Ab [q]CB) (E) (b, ·)

)
(G)

and

4A[q]CE(G) = 1
#)

∑
b∈Ω#

48bG4Ab [q]CB) (E) (b, G). (1.3.16)

Combined with (1.3.15), this latter identity allows us to conclude information about the semigroup

4A[q]C acting on !2
per(0, #)) by synthesizing (over b ∈ Ω# ) information about theBloch semigroups

4Ab [q]C acting on !2
per(0, )). As we will see in later chapters, this decomposition is key to

understanding the linear stability of q in the presence of subharmonic perturbations.

An important observation here is that since (1.3.14) can be rewritten as

6(G) = 1
2c

∑
b∈Ω#

48bGB) (6) (b, G)Δb, Δb =
2c
#)

,

the representation (1.3.14) has the form of a Riemann sum approximation of the Bloch decompo-

sition formula (1.3.7) for functions 6 ∈ !2(R). Similarly, the representation in (1.3.16) may be

considered as a Riemann sum approximation of the formula (1.3.9). These interpretations of the
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above identities will be crucial in the forthcoming chapters.15

Remark 1.3.6. In the case # = 1, corresponding to co-periodic perturbations, we have Ω1 = {0}

and hence the Bloch transform B) (6) simply recovers the Fourier series representation for 6 ∈

!2
per(0, )). Furthermore, the representation formulas forA[q] and 4A[q]C given above are reduced

to the obvious equalities A[q] = A0 [q] and 4A[q]C = 4A0 [q]C .

1.4 Outline of Dissertation

The outline for the rest of the dissertation is as follows. In Chapter 2 we study the modulational

stability of )-periodic traveling waves in the context of viscous fluid conduits described by the

conduit equation. Formally, the behavior of such modulated periodic waves on large space and time

scales is well described by Whitham’s theory of wave modulations, i.e., Whitham theory. Our goal

for this chapter is to rigorously justify the connection between Whitham theory and modulational

stability for the conduit equation following some of the intuition provided in Section 1.3.2 above.

In Chapter 3 we study the linear stability of )-periodic standing waves in the context of the

Lugiato-Lefever equation (LLE)16when subjected to both localized and subharmonic perturbations.

One of our main goals for this chapter is to establish a linear stability result to subharmonic

perturbations that is uniform in # in order to overcome a degeneracy that happens in the limit as

# → ∞. Throughout this first chapter, we have motivated the idea that the study of localized

perturbations provide the necessary intuition to establish a uniform in # result. We make this idea

more concrete in Chapter 3 through the introduction of a new methodology.

We will see in the context of the LLE that, when trying to upgrade our linear results to the

nonlinear level, the standard nonlinear iteration scheme breaks down due to an unavoidable “loss

of regularity.” However, we know that in cases where the dissipation is sufficiently strong, we

can use a “nonlinear damping” result to regain this lost regularity, at least in the case of localized

perturbations. Consequently, this motivates the structure for the rest of the dissertation. Recalling

15Further notice that the subharmonic Parseval identity (1.3.15) can be interpreted as a Riemann sum approximation
of the localized Parseval identity (1.3.8), though this interpretation is less important for our analysis.

16The LLE is a damped nonlinear Schödinger equation with forcing that arises is nonlinear optics.
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that the localized case served as motivation for the uniform study of subharmonic perturbations, we

first seek to understand if it is possible – in the presence of sufficiently strong damping, allowing

one to circumvent the loss of regularity via a nonlinear damping result – to establish a nonlinear

stability result to subharmonic perturbations that is uniform in the period of the perturbations. This

is the focus of Chapter 4, where we study the uniform nonlinear stability of )-periodic travelling

waves when subjected to subharmonic perturbations in the context of systems of reaction-diffusion

equations.

Chapter 4 confirms thatmethodologies used to circumvent the loss of regularity that occurs in our

nonlinear iteration schemes for localized perturbations can motivate an appropriate methodology

that can similarly circumvent the loss of regularity in the case of subharmonic perturbations.

Consequently, in Chapter 5, we return to the context of the Lugiato-Lefever equation in order

to develop a new methodology that allows us to circumvent the loss of regularity in the case of

localized perturbations and in the presence of weak damping, i.e., in the absence of a nonlinear

damping estimate. With this methodology in hand, along with the intuition provided from Chapter

4, we are currently studying the ability to use this to establish the desired uniform subharmonic

stability result for the Lugiato-Lefever equation [23].
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Chapter 2

Spectral Modulational Instability of Periodic Waves in Viscous

Fluid Conduits

Abstract

In this chapter, we are interested in studying the modulational dynamics of interfacial waves

rising buoyantly along a conduit of a viscous liquid. Formally, the behavior of modulated

periodic waves on large space and time scales may be described through the use of Whitham

modulation theory. The application of Whitham theory, however, is based on formal asymp-

totic (WKB) methods, thus removing a layer of rigor that would otherwise support their

predictions. In this study, we aim at rigorously verifying the predictions of the Whitham

theory, as it pertains to the modulational stability of periodic waves, in the context of the

so-called conduit equation, a nonlinear dispersive PDE governing the evolution of the circular

interface separating a light, viscous fluid rising buoyantly through a heavy, more viscous,

miscible fluid at small Reynolds numbers. In particular, using rigorous spectral perturbation

theory, we connect the predictions of Whitham theory to the rigorous spectral (in particular,

modulational) stability of the underlying wave trains. This makes rigorous recent formal re-

sults on the conduit equation obtained by Maiden and Hoefer. This chapter is representative

of [32], which was a joint work with Mathew Johnson.

28



2.1 Introduction

In this chapter, we consider the modulation of periodic traveling wave solutions to the conduit

equation

DC + (D2)G − (D2(D−1DC)G)G = 0, (2.1.1)

which was derived in [53] to model the evolution of a circular interface separating a light, viscous

fluid rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers. In

(2.1.1), D = D(G, C) denotes a nondimensional cross-sectional area of the interface at nondimensional

vertical coordinate G and nondimensional time C: see Figure 2.1(a). The conduit equation (2.1.1)

has also been studied in the geological context, where it is known to describe, under appropriate

assumptions, the vertical transport of molten rock up a viscously deformable pipe (for example,

narrow conduits and dykes) in the earth’s crust. In that context, (2.1.1) is a special case of the more

general “magma” equations [61, 62]

DC + (D=)G − (D= (D−<DC)G)G = 0 : (2.1.2)

where here the parameters = and < correspond to permeability of the rock and the bulk viscosity,

respectively. The physical regime for these exponents is 2 ≤ = ≤ 5 and 0 ≤ < ≤ 1: see [61].

Clearly, the conduit equation corresponds to (2.1.2) with (=, <) = (2, 1).

In contrast to magma, however, viscous fluid conduits are easily accessible in a laboratory

setting: see, for example, [48] and references therein. Consequently, there has been quite a bit of

study recently into the dynamics of solutions of the conduit equation (2.1.1) and their comparison to

laboratory experiments. As described in [47], early experimental studies of viscous fluid conduits

concentrated primarily on the formation of the conduit itself via the continuous injection of an

intrusive viscous fluid into an exterior, miscible, much more viscous fluid, see [53]. Since then,

a considerable amount of effort has been spent studying the dynamics and stability of solitary

waves, as well as soliton-soliton interactions [53, 26, 65, 44]. More recently, it has been observed
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(a)

u(x, t)

ρL, νL

ρH, νH

x
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2

FIG. 1. Interfacial wave breaking of two Stokes fluids causing the spontaneous emergence of coherent oscillations, a DSW. The
leading, downstream edge is approximately a large amplitude soliton whose phase speed is tied to the upstream conduit area.
The trailing, upstream edge is a small amplitude wave packet moving at the group velocity whose wavenumber is tied to the
downstream conduit area. (a) 90� clockwise rotated, time-lapse digital images (aspect ratio 10:1). (b) Space-time contour plot
of the conduit cross-sectional area from (a). Nominal experimental parameters: �⇢ = 0.0928 g/cm3, µi = 91.7 cP, ✏ = 0.030,
downstream flow rate Q0 = 0.50 mL/min, and a� = 2.5.

exhibit dissipationless or frictionless interfacial wave dy-
namics. This will be made mathematically precise below.

By gradually increasing the injection rate, we are able
to initiate the spontaneous emergence of interfacial wave
oscillations on an otherwise smooth, slowly varying con-
duit. See [13] for additional experimental details. Figure
1(a) displays a typical time-lapse of our experiment. At
time 0 s, the conduit exhibits a relatively sharp transition
between narrower and wider regions. Due to buoyancy,
the interface of the wider region moves faster than the
narrower region. Rather than experience folding over on
itself, the interface begins to oscillate due to dispersive
e↵ects as shown in Fig. 1(a) at 30 s. As later times in
Fig. 1(a) attest, the oscillatory region expands while the
oscillation amplitudes maintain a regular, rank ordering
from large to small. By extracting the spatial variation of
the normalized conduit cross-sectional area a from a one
frame per second image sequence, we display in Fig. 1(b)
the full spatio-temporal interfacial dynamics as a contour
plot. This plot reveals two characteristic fronts associ-
ated with the oscillatory dynamics: a large amplitude
leading edge and a small amplitude, oscillatory envelope
trailing edge.

We can interpret these dynamics as a DSW resulting
from the physical realization of the Gurevich-Pitaevskii
(GP) problem [15], a standard textbook problem for the
study of DSWs [9] that has been inaccessible in other dis-
persive hydrodynamic systems. Here, the GP problem is
the dispersive hydrodynamics of an initial jump in con-
duit area. Although we have only boundary control of
the conduit width, our carefully prescribed injection pro-
tocol [13] enables delayed breaking far from the injection
site. This allows for the isolated creation and long-time

propagation of a “pure” DSW connecting two uniform,
distinct conduit areas. Related excitations in the con-
duit system were previously interpreted as periodic wave
trains modeling mantle magma transport [11]. As we now
demonstrate, the interfacial dynamics observed here ex-
hibit a soliton-like leading edge propagating with a well-
defined nonlinear phase velocity, an interior described by
a modulated nonlinear traveling wave, and a harmonic
wave trailing edge moving with the linear group velocity.
The two distinct speeds of wave propagation in one co-
herent structure are a striking realization of the double
characteristic splitting from linear wave theory [14].

The long wavelength approximation of the interfacial
fluid dynamics is the conduit equation [11, 22]

at +
�
a2
�
z
�
�
a2

�
a�1at

�
z

�
z

= 0 . (1)

Here, a(z, t) is the nondimensional cross-sectional area
of the conduit as a function of the scaled vertical coordi-
nate z and time t (subscripts denote partial derivatives).
Both the interface of the experimental conduit system
and equation (1) exhibit the essential features of friction-
less, dispersive hydrodynamics: nonlinear self-steepening
(second term) due to buoyant advection of the intrusive
fluid, dispersion (third term) from normal stresses, and
no dissipation due to the combination of intrusive fluid
mass conservation and negligible mass di↵usion [13]. The
analogy to frictionless flow corresponds to the interfacial
dynamics, not the momentum di↵usion dominated flow
of the bulk. The conduit equation (1) is nondimensional-
ized according to cross-sectional area, vertical distance,
and time in units of A0 = ⇡R2

0, L0 = R0/
p

8✏, and
T0 = µi/L0g�⇢✏, respectively, where R0 is the down-
stream conduit radius, ✏ = µi/µe is the viscosity ratio

Figure 2.1: (a) A schematic drawing for the conduit equation. In the physical system, denoting
the densities and viscosities of the heavy (outer) and light (inner) fluids as d� , a� and d! , a! ,
respectively, the conduit equation holds under the assumption that d� > d! and a� � a! . The
arrows represent rising due to buoyancy. (b) The formation of periodic wave trains propagating
in a physical experiment. Reprinted figure with permission from [48] Copyright (2019) by the
American Physical Society.

experimentally that the competition of dispersive effects due to buoyancy and the nonlinear self-

steepening effects of the surrounding media may result in the formation of dispersive shock waves

(DSWs): see, for example, [48]. As described there, by adjusting the injection rate of the intrusive

viscous fluid appropriately it was found that interfacial wave oscillations form behind a sharp,

soliton-like leading edge, with the wider regions moving faster than narrower regions: see Figure

2.1(b). Such patterns correspond to dispersively regularized shock waves and have been the subject

of much recent study due to their experimental realization [62, 1, 68]. Consequently, spatially

modulated oscillations seem to form a fundamental building block regarding the long-time dynamics

of the physical experiment. It is thus reasonable to expect that any reasonable mathematical model

describing these physical experiments should admit oscillatory wave forms that are persistent (i.e.,

stable) when subject to slow wave modulations. Motivated by these observations, in this chapter

we aim at studying the rigorous modulational, i.e., side-band, stability of periodic traveling wave

forms in the conduit equation (2.1.1).

While the stability and dynamics of solitary waves of the magma and conduit equations has

been studied extensively, as described above, a rigorous analysis of the local dynamics of periodic
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traveling waves seems lacking. Note this problem is complicated by the fact that while these

equations are dispersive, they generally lack a Hamiltonian structure1. Most existing analyses seem

to appeal to Whitham’s theory of wave modulations: see, for example, [14, 43, 47, 50]. This

theory proceeds by rewriting the governing PDE in slow coordinates (-, () = (YG, YC) then uses a

multiple scale (WKB) approximation of the solution and seeks a homogenized system, known as

the Whitham modulation equations, describing the mean behavior of the resulting approximation.

This approach is widely used to describe the behavior of modulated periodic waves on large space

and time scales, and in particular, is expected to predict the stability of periodic wavetrains to slow

modulations (compare to Definition 1.3.2 and the discussion following). Specifically, hyperbolicity

(i.e., local well-posedness) of the Whitham system about a periodic solution q of the governing

PDE is expected to be a necessary condition for the stability to slow modulations of q: see, for

example, [70].

Whitham modulation theory has recently been applied to the conduit equation (2.1.1), where

the authors, by coupling their analysis to numerical time evolution studies and numerical analysis

of the Whitham system, identify an amplitude-dependent region of parameter space where such

periodic wave trains are expected to be stable to slow modulations. However, we note the formal

asymptotic methods used inWhitham theory are not, in general, rigorously justified, so the primary

goal of this chapter is to (rigorously) connect the predictions from Whitham modulation theory

to the rigorous dynamical stability of the underlying periodic wave train solutions of the conduit

equation (2.1.1). Specifically, our main result, Theorem 2.3.1, establishes that hyperbolicity of the

Whitham modulation equations about a periodic wave q of (2.1.1) is indeed a necessary condition

for the stability of q to slow modulations. This will be accomplished in Section 2.4 by performing

a rigorous analysis of the spectrum of the linearization of (2.1.1) about such periodic traveling

waves q. Specifically, using Floquet-Bloch theory and spectral perturbation theory we show that

the spectrum near the origin of the linearization of (2.1.1) about q consists of three �1 curves

1We note the magma equations (2.1.2) admit a Hamiltonian formulation only when = +< = 0, which is outside the
parameter regime relevant to magma dynamics. See [66] for a nonlinear stability analysis in this seemingly nonphysical
case.
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which, locally, satisfy

_ 9 (b) = 8U 9b + >(b)

where the U 9 are precisely the characteristic speeds associated with the Whitham modulation

equations about q. Consequently, a necessary condition for spectral stability of q is that all the

U 9 are real, which is equivalent to the associated Whitham system being weakly hyperbolic at q.

Such a rigorous connection between the stability of periodic waves and the Whitham modulation

equations has been established previously in a number of contexts: see, for example, [6, 38, 5, 3, 63]

and references therein. The specific approach here follows more closely the analysis in [3], which

is based off the work of Serre in [63].

The organization of the chapter is as follows. In Section 2.2, we begin by recalling some basic

facts about the conduit equation (2.1.1). Specifically, we discuss the conservation laws associated

to (2.1.1) as well as the existence analysis for periodic traveling wave solutions. In Section 2.3,

we derive the Whitham modulation equations associated with (2.1.1) and state our main result

Theorem 2.3.1. We begin the proof of Theorem 2.3.1 in Section 2.4, where we perform a rigorous

spectral stability calculation using spectral perturbation theory. Specifically, there we derive a

3 × 3 matrix which rigorously encodes the spectrum of the linearized operator associated with

(2.1.1) about a periodic traveling wave near the origin in the spectral plane. The proof of our

main result, providing a rigorous connection between the Whitham modulation equations and the

rigorous spectral analysis in Section 2.4, is then given in Section 2.5. Finally, we end by analyzing

our results for waves with asymptotically small oscillations in Section 2.6.

2.2 Basic Properties of the Conduit Equation

In this section, we collect some important basic facts about the conduit equation (2.1.1).
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2.2.1 Conservation Laws & Conserved Quantities

First, we note that it is shown in [64, Corollary 5.7] that the conduit equation is globally well-

posed for initial data D(G, 0) − 1 ∈ �1(R), so long as D(G, 0) satisfies the physically reasonable

requirement of being bounded away from zero. Further, even though the conduit equation admits

nearly elastic solitonic collisions, it is shown through the failure of the Painlevé test to not be

completely integrable [25]. Nevertheless, (2.1.1) admits (at least) the following two conservation

laws: 
DC + (D2 − D2(D−1DC)G)G = 0

(D−1 + D−2(DG)2)C + (D−1DGC − D−2DGDC − 2 ln |D |)G = 0
(2.2.1)

Notice (2.2.1)(i) is simply a restatement of (2.1.1), showing that the conduit equation itself corre-

sponds to conservation of mass. The existence of more conservation laws for the general magma

equations (2.1.2) was studied by Harris in [24]. There it was shown that (2.1.2) generally only

admits two conservation laws2. However, this analysis was shown to be inconclusive in a couple

of cases, one of which occurs when < = 1, = ≠ 0, which the conduit equation (2.1.1) clearly falls

into3. Consequently, it seems to be currently unknown if (2.1.1) admits more conservation laws or

not, though Harris seems to think the existence of additional conservation laws unlikely.

Restricting to solutions that are)-periodic in the spatial variable G, the conservation laws (2.2.1)

give rise to the following two conserved quantities:

" (D) :=
∫ )

0
D 3G, &(D) :=

∫ )

0

D + (DG)2
D2 3G. (2.2.2)

As we will see, these conserved quantities will play an important part in our forthcoming analysis.

Note that the conserved quantity " corresponds to conservation of mass, while the conservation

of & does not seem to have a clear physical meaning [43].

2One conservation law is always the magma equation (2.1.2) itself, while the structure for the other law varies
depending on the parameters (=, <).

3The other case is given by < = = + 1, = ≠ 0, where a third conservation is shown to exist.
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2.2.2 Existence of Periodic Traveling Waves

Traveling wave solutions of (2.1.1) correspond to solutions of the form D(G, C) = q(G− 2C) for some

wave profile q(·) and wave speed 2 > 0. The profile q(I) is readily seen to be a stationary solution

of the evolutionary equation

DC − 2DI + (D2)I − (D2(D−1(DC − 2DI))I)I = 0, (2.2.3)

written here in the traveling coordinate I = G − 2C. After a single integration, stationary solutions

of (2.2.3) are seen to satisfy the second-order ODE

− 22� = −2q + q2 + 2q2(q−1q′)′, (2.2.4)

where here ′ denotes differentiation with respect to I and � ∈ R is a constant of integration.

Multiplying (2.2.4) by q−3q′, the profile equation can be rewritten4 as

−22�q−3q′ = −2q−2q′ + q−1q′ + 2
2
[
q−2(q′)2

]′
and hence may be reduced by quadrature to

1
2 (q
′)2 = � −

(
1
2
q2 ln |q | + 0q2 + q

)
, (2.2.5)

where here 0 ∈ R is a second constant of integration. By standard phase plane analysis, the

existence and non-existence of bounded solutions of (2.2.4) is determined entirely by the effective

potential

+ (q; 0, 2) := 1
2
q2 ln |q| + 0q2 + q.

Indeed, for a given 0, 2 ∈ R, a necessary and sufficient condition for the existence of periodic

solutions of (2.2.5) is that+ (·; 0, 2) has localminima. Furthermore, since (in the physicalmodeling)

4Alternatively, one can use the identity 2(q−1q′) ′ = q(q′)−1 (
q−2 (q′)2

) ′.
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the dependent variable q represents the cross-sectional area of the viscous fluid conduit, we

additionally require that the local minima occur for q > 0.

To characterize the parameters (0, 2) for which + (·; 0, 2) has a strictly positive local minima,

we study the critical points of + (·; 0, 2). Noting that

+q (q; 0, 2) = 2
2
q ln |q | + 1

2
q + 20q + 1, +qq (q; 0, 2) = 2

2

(
ln |q| + 3

2 + 02
)

and

+qqq (q; 0, 2) = 2
2q
,

we see that, since 2 > 0, the derivative +q (·; 0, 2) has a local maximum at q− := −4−(02+3/2) and a

local minimum at q+ := 4−(02+3/2) . Since +q (·; 0, 2) additionally satisfies

lim
q→0+

+q (q; 0, 2) = 1, +q (q+; 0, 2) = 1 − 2
2
4−(02+3/2) < 1, and lim

q→+∞
+q (q; 0, 2) = +∞

for all 0 ∈ R, 2 > 0, it follows that the number of positive roots of+q (·; 0, 2) for 2 > 0 is determined

by the sign of the quantity 0 − Z (2), where here

Z (2) :=
1
2

ln
(
2
2

)
− 3

22
.

See Figure 2.2(a) for a plot of 0 = Z (2). Indeed, if 0 > Z (2), then +q (q+; 0, 2) is positive and

hence +q (·; 0, 2) has no positive roots, while 0 < Z (2) implies +q (q+; 0, 2) is negative and hence

+q (·; 0, 2) has exactly two positive roots 0 < q1 < q2. In the latter case, it is clear from the

above analysis that q1 and q2 are local maxima and minima, respectively, of the effective potential5

+ (·; 0, 2): see Figure 2.2(b).

Remark 2.2.1. We collect here some easily verifiable properties of the function Z (2). First, Z (2)

only has one root, which occurs at 2 = 24− 3
2 , and one critical point (an absolute minimum), which

5In the border case 0 = Z (2), it follows that +q (q+; 0, 2) = 0. Using the above analysis, we may then conclude q+
is a saddle point of the effective potential + (·; 0, 2).
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Figure 2.2: (a) A plot of Z (2) for 2 > 0. Strictly positive periodic traveling wave solutions of (2.2.4)
exist for 0 < Z (2). (b) A plot of the effective potential + (q; 0, 2) for 2 = 1 and 0 = −1 < Z (1).

occurs at 2 = 24−1/2. Furthermore, lim2→0+ Z (2) = +∞ and lim2→+∞ Z (2) = 0. See Figure 2.2(a)

for a numerical plot.

Returning to (2.2.5), it follows that if we define the set

B :=
{
(0, �, 2) ∈ R3 : 2 > 0, 0 < Z (2), � ∈ (+ (q2(0, 2); 0, 2), + (q1(0, 2); 0, 2))

}
,

then for each (0, �, 2) ∈ B the profile equation (2.2.4) admits a one-parameter family, parameterized

by translation invariance, of strictly positive periodic solutions q(G; 0, �, 2) with period

) = ) (0, �, 2) =
√

2
∫ qmax

qmin

3q√
� −+ (q; 0, 2)

=

√
2

2

∮
W

3q√
� −+ (q; 0, 2)

,

where here qmin ∈ (q1, q2) and qmax ∈ (q2,∞) are roots of � − + (·; 0, 2) corresponding to the

minimum and maximum values of the profile q, respectively, and integration over W represents

a complete integration from qmin to qmax, and then back to qmin again. Naturally, one must

appropriately choose the branch of the square root in each direction. Alternatively, one could

interpret the contour W as a closed (Jordan) curve in the complex plane C that encloses a bounded

set containing both qmin and qmax. Since the values qmin/max are smooth functions of the traveling

wave parameters (0, �, 2), a standard procedure shows the above integrals may be regularized at

the square root branch points and hence represent �1 functions of 0, � , and 2. In this way, we have
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proven the existence of a 4-parameter family (in fact, a �1 manifold) of periodic traveling wave

solutions of (2.2.4):

q(G − 2C + G0; 0, �, 2), G0 ∈ R, (0, �, 2) ∈ B

with period ) = ) (0, �, 2). Notice as � ↘ + (q2; 0, 2) the profile q(·; 0, �, 2) converges to a

constant solution, while ) (0, �, 2) → +∞ as � ↗ + (q1, 0, 2) which corresponds to a solitary

wave limit. Without loss of generality, we may choose G0 such that q is an even function, which we

will do throughout the rest of the chapter.

Remark 2.2.2. In [65], the authors study the existence and nonlinear stability of traveling solitary

waves of the more general class of magma equations (2.1.2). In the context of the conduit equation

(2.1.1), the authors considered solitary waves satisfying q → 1 as |G | → ∞, which they show to

exist for all 2 > 2. Taking |G | → ∞ in (2.2.4) and requiring that q = 1 be a local maximum of

+ (·; 0, 2), we see these waves correspond to the choice 22� = 2 − 1, 0 = � − 1, and 2 > 2. See

also Remark 2.4.4 below.

By a similar procedure as above, the conserved quantities " and & defined in (2.2.2) can be

restricted to the manifold of periodic traveling wave solutions of (2.1.1). Indeed, given a)-periodic

traveling wave q(·; 0, �, 2) of (2.2.3), we can define the functions ",& : B → R via


" (0, �, 2) :=

∫ ) (0,�,2)

0
q(I; 0, �, 2) 3I =

√
2

2

∮
W

q3q√
� −+ (q; 0, 2)

&(0, �, 2) :=
∫ ) (0,�,2)

0

q(I; 0, �, 2) + (q′(I; 0, �, 2))2
(q(I; 0, �, 2))2

3I =

√
2

2

∮
W

(q + 2(� −+ (q; 0, 2))) 3q
q2

√
� −+ (q; 0, 2)

(2.2.6)

where the contour integral over W is defined as before. Following previous arguments, the above

integrals can be regularized near their square root singularities and hence represent �1 functions

on B. As we will see, the gradients of these conserved quantities along the manifold of periodic

traveling wave solutions of (2.1.1) will play an important role in our analysis.
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2.3 The Whitham Modulation Equations

In this section, we begin our study of the long-time dynamics of an arbitrary amplitude, slowly

modulated periodic traveling wave solution of the conduit equation (2.1.1). An often used, yet

completely formal, approach to study the dynamics of such slowly modulated periodic waves is to

analyze the associated Whitham modulation equations [70]. While Whitham originally formulated

this approach in terms of averaged conservation laws [69], it was later shown to be equivalent

to an asymptotic reduction derived through formal multiple-scales (WKB) expansions [46]. For

completeness, we recall the derivation in the context of the conduit equation (2.1.1): see also the

description in [47, Appendix C].

To provide an asymptotic description of the slowmodulation of periodic travelingwave solutions

of (2.1.1), we separate both space and time into separate fast and slow scales. For Y > 0 sufficiently

small, we introduce the “slow” variables (-, () := (YG, YC) and note that, in the slow coordinates,

(2.1.1) can be written as

YD( + 2YDD- − Y3DD--( + Y3D--D( = 0 (2.3.1)

Following Whitham [69, 70], we seek solutions of (2.3.1) of the form

D(-, (; Y) = D0
(
-, (, 1

Y
k(-, ()

)
+ YD1

(
-, (, 1

Y
k(-, ()

)
+$ (Y2)

where here the phase k is chosen to ensure that the functions D 9 are 1-periodic functions of the

third coordinate \ = k(-, ()/Y. Substituting this ansatz into (2.3.1) yields a hierarchy of equations

in algebraic orders of Y that must all be simultaneously satisfied. At the lowest order in Y, which

here corresponds to O(1), we find the relation

k(D
0
\ + k- ((D

0)2)\ − k2
-k( ((D0)2((D0)−1D0

\)\)\ = 0. (2.3.2)

After the identification : := k- and l := −k( as the spatial and temporal frequencies of the
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modulation, respectively, and 2 := l
:
as the wave speed, (2.3.2) is recognized, up to a global factor

of −: , as the derivative with respect to the “fast” variable \ of the nonlinear profile equation (2.2.4),

rescaled for 1-periodic functions. Note that, here, : ,l and 2 are now functions of the slow variables

- and (. Consequently, for a fixed - and ( we may choose D0 to be a periodic traveling wave

solution of (2.1.1), and hence of the form

D0(\, -, () = q(\, 0(-, (), � (-, (), 2(-, ())

for some even solution q of (2.2.4) with (0(-, (), � (-, (), 2(-, ()) ∈ B. Notice the consistency

condition (k-)( = (k()- implies the local wave number : and wave speed 2 must slowly evolve

according to the relation

:( + (:2)- = 0, (2.3.3)

which is sometimes referred to as “conservation of waves”. Note that (2.3.3) effectively serves

as a nonlinear dispersion relation. Indeed, in the case of linear waves one would have k(-, () =

: (- − 2(), which clearly satisfies (2.3.3).

Continuing to study the above hierarchy of equations, at O(Y) we find

:m\L[D0]D1 = � [D0]D0
( + � (D

0), (2.3.4)

where here L[D0] and � [D0] are linear differential operators defined via


L[D0] :=

(
2 − 2D0 − :22D0

\\

)
+ 2:22D0

\m\ − :
22D0m2

\ ,

� [D0] :=
(
1 + :2D0

\\

)
− :2D0m2

\

supplemented with 1-periodic boundary conditions, and

� (D0) = ((D0)2)- +
3
2
(:2)-2D0D0

\\ −
1
2
(:2)-2(D0

\)
2

+ 2:22-D
0D0
\\ + 2:22D0D0

-\\ − :
22((D0

\)
2)-

39



contains all the nonlinear terms in D0 and its derivatives. Treating (2.3.4) as a forced linear equation

for the unknown D1, it follows by the Fredholm alternative that (2.3.4) is solvable in the class of

1-periodic functions if and only if

� [D0]D0
( + � (D

0) ⊥ kerL2
per (0,1)

(
L† [D0]m\

)
,

where here

L† [D0] =
(
2 − 2D0 − :22D0

\\

)
− 2:22m\

(
D0
\ ·

)
− :22m2

\

(
D0 ·

)
denotes the adjoint operator of L[D0] on !2

per(0, 1). In particular, noting the identity6

L† [ 5 ]
(
5 −36

)
= 5 −3L[ 5 ]6, (2.3.5)

a straightforward calculation7 shows that

ker!2
per (0,1)

(
L† [D0]m\

)
= span

{
1, (D0)−2} .

Thus, our two solvability conditions become

〈
1, � [D0]D0

( + � (D
0)

〉
!2

per (0,1;3\) = 0 and
〈
(D0)−2, � [D0]D0

( + � (D
0)

〉
!2

per (0,1;3\) = 0.

To put the above solvability conditions in a more useful form, we note that since

�† [D0] =
(
1 + :2D0

\\

)
− :2m2

\

(
D0·

)
,

integration by parts (in \) and the identity �† [D0]1 = 1 imply that the first equation above can be

6Although you can verify the identity using the forms listed above, this identity immediately follows from the
alternative form for L[ 5 ] given in (2.4.3) below.

7Here, we are using that differentiating (2.3.2) with respect to \ gives L[D0]D0
\
= 0. Further, we note the third

linearly independent solution of L† [D0]E \ = 0 is not periodic in \.
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rewritten as

m(" (D0) = −
〈
1, ((D0)2)- − 2(:2)-2(D0

\)
2 − 2:22- (D0

\)
2 − 2:22((D0

\)
2)-

〉
= m-

〈
1, 2:22(D0

\)
2 − (D0)2

〉
!2

per (0,1;3\) ,

where here " (D0) =
∫ 1

0 D0(\)3\ is simply the conserved quantity " in (2.2.2) evaluated at the

1-periodic traveling wave D0(·). Similarly, using the identities

〈
(D0)−2, D0D0

\\

〉
=

〈
(D0)−2, (D0

\)
2〉 〈

(D0)−2, D0D0
-\\

〉
=

〈
(D0)−2, D0

\D
0
-\

〉
,

which follow from integration by parts, the second solvability condition can be rewritten as

〈
�† [D0] (D0)−2, D0

(

〉
= −

〈
(D0)−2, ((D0)2)- +

3
2
(:2)-2(D0

\)
2 − 1

2
(:2)-2(D0

\)
2
〉

−
〈
(D0)−2, 2:22- (D0

\)
2 + 2:22D0

\D
0
-\ − :

22((D0
\)

2)-
〉

= −
〈
(D0)−2, ((D0)2)-

〉
− 2: (:2)-

〈
(D0)−2, (D0

\)
2〉 .

Using (2.3.3) and the fact that

m(&(D0) = −
〈
�† [D0] (D0)−2, D(

〉
+ 2::(

〈
(D0)−2, (D0

\)
2〉 ,

where here&(D0) =
∫ 1

0
D0+(D0

\
)2

(D0)2 3\ is the conserved quantity& in (2.2.2) evaluated at the 1-periodic

traveling wave D0(·), the above can be rewritten as

m(&(D0) =
〈
(D0)−2, ((D0)2)-

〉
= m-

〈
1, 2 ln |D0 |

〉
.
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Taken together, (2.3.3) and the above solvability conditions yield the first order, 3 × 3 system


:( + m- (:2) = 0

"( = m-
〈
1, 2:22(D0

\)
2 − (D0)2

〉
!2

per (0,1)

&( = m-
〈
1, 2 ln |D0 |

〉
!2

per (0,1)

(2.3.6)

which, by the above formal arguments, is expected to govern (at least to leading order) the slow

evolution of the wave number : and the conserved quantities " and & of a slow modulation of the

periodic traveling wave D0.

System (2.3.6) is referred to as the Whitham modulation system associated to the conduit

equation (2.1.1). Heuristically, it is expected that the Whitham modulation equations (2.3.6) relate

to the dynamical stability of periodic traveling wave solutions of (2.1.1) in the following way.

Suppose (00, �0, 20) ∈ B so that q(·; 00, �0, 20) is an even, ) = 1/:-periodic solution of (2.2.4).

From the above formal analysis, we see that (2.2.4) has a modulated periodic traveling wave of the

form

D(G, C; Y) = q
(

1
Y
k(YG, YC); 0(YG, YC), � (YG, YC), 2(YG, YC)

)
+ >(Y),

where the parameters (0(YG, YC), � (YG, YC), 2(YG, YC)) evolve near (00, �0, 20) in B in such a way

that : , " , and& satisfy the Whitham system (2.3.6). Note this requires that the nonlinear mapping

R3 3 (0, �, 2) ↦→ (:, ",&) ∈ R3

be locally invertible near (00, �0, 20). By the implicit function theorem, it is sufficient to assume

the Jacobian of this mapping at (00, �0, 20) is non-zero8. In particular, any 1-periodic solution q0

of (2.2.4), being independent of the slow variables - and (, is necessarily a constant solution of

(2.3.6). The stability of q0 to slow modulations is thus expected to be governed (to leading order,

at least) by the linearization of (2.3.6) about q0. Specifically, using the chain rule to rewrite (2.3.6)

8This condition will appear later in our rigorous theory as well: see the discussion following the proof of Theorem
2.4.6 below. It also appears in the formal work of Maiden & Hoefer [47].
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in the quasilinear form ©«
:

"

&

ª®®®®®¬(
= D(D0)

©«
:

"

&

ª®®®®®¬-
, (2.3.7)

where here

D(D) =

©«
−(2 + :2: ) −:2" −:2&〈

1, 2:22D2
\
− D2〉

:

〈
1, 2:22D2

\
− D2〉

"

〈
1, 2:22D2

\
− D2〉

&

〈1, 2 ln |D |〉: 〈1, 2 ln |D |〉" 〈1, 2 ln |D |〉&

ª®®®®®¬
,

it is natural to expect the stability of q0 to slow modulations to be governed by the eigenvalues of

the 3 × 3 matrix D(q0). Indeed, linearizing (2.3.7) about the constant solution q0, we see that the

eigenvalues of the linearization are of the form

_̃ 9 (b) = 8bU 9 ,

where {U 9 }39=1 are the eigenvalues of D(q0) and b ∈ R. Consequently, if the Whitham system is

weakly hyperbolic9 at q0, so that the eigenvalues of D(q0) are all real, then the eigenvalues of the

linearization of (2.3.6) are purely imaginary, indicating a marginal (spectral) stability. Conversely,

if D(q0) has an eigenvalue with non-zero imaginary part, in which case (2.3.7) is elliptic at q0, then

the linearization of (2.3.6) has eigenvalues with positive real part, indicating (spectral) instability

of q0.

The goal of this chapter is to rigorously validate the above predictions of Whitham modulation

theory as they pertain to the stability of periodic traveling wave solutions of (2.1.1). Following

the works in [38, 5, 3], this will be accomplished by using rigorous spectral perturbation theory

to analyze the spectrum of the linearization of (2.2.3) about such a solution and, in particular,

9Note full hyperbolicity of the system additionally requires the eigenvalues U 9 are semi-simple, i.e. that their
algebraic and geometric multiplicities agree.
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relating the spectrum of the linearization in a neighborhood of the origin in the spectral plane

to the eigenvalues of the matrix D(q0) defined above. Our main result is the following, which

establishes that weak-hyperbolicity of the Whitham system (2.3.6) is indeed a necessary condition

for the spectral stability of the underlying wave q0.

Theorem 2.3.1. Suppose q0 is an even,)0 = 1/:0-periodic, strictly positive traveling wave solution

of (2.1.1) with wave speed 20 > 0, and that the set of nearby periodic traveling wave profiles q

with speed close to 20 is a 3-dimensional manifold parameterized by (:, " (q), &(q)), where 1/:

denotes the fundamental period of q. Then a necessary condition for q0 to be spectrally stable is

that the Whitham modulation system (2.3.6) be weakly hyperbolic at (:0, " (q0), &(q0)), in the

sense that all their characteristic speeds must be real.

To prove Theorem 2.3.1 we will show that, under appropriate non-degeneracy assumptions, the

spectrum of the linearization of (2.2.3) about a periodic traveling wave q0 consists, in a sufficiently

small neighborhood of the origin, of precisely three �1 curves which expand as

_ 9 (b) = _̃ 9 (b) + O(b) = 8U 9b + O(b), |b | � 1,

where here the U 9 are precisely the eigenvalues of the matrix D(q0). Interestingly, this shows

that spectral stability in a neighborhood of the origin of q0, otherwise known as “modulational

stability” (see Definition 1.3.2), cannot be concluded from the weak, or even strong, hyperbolicity

of the Whitham modulation system (2.3.6). While we do not pursue it here, such information may

be able to be deduced from determining the second-order corrector in b to the spectral curves _ 9 (b)

deduced above.

2.4 Rigorous Modulational Stability Theory

We now begin our rigorous mathematical study of the dynamical stability of periodic traveling

wave solutions of (2.1.1) when subject to localized, i.e., integrable, perturbations on the line.
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Following [38, 5, 3], we conduct a detailed analysis of the spectral problem associated with the

linearization of (2.1.1) about a periodic traveling wave solution. The first step in this analysis is

to understand the structure of the generalized kernel of the associated linearized operators when

subject to perturbations that are co-periodic with the underlying wave. With this information in

hand, we then use Floquet-Bloch theory and rigorous spectral perturbation theory to obtain an

asymptotic description of the spectrum of the linearization considered as an operator on !2(R) in

a sufficiently small neighborhood of the origin.

2.4.1 Linearization & Set Up

To begin, let (0, �, 2) ∈ B and denote by q = q(·; 0, �, 2) the corresponding even, ) = ) (0, �, 2)-

periodic equilibrium solution of (2.2.3). We are now interested in rigorously describing the local

dynamics of (2.2.3) near q. Specifically, we are interested in understanding if q is stable to small

localized, i.e., integrable on R, perturbations. To this end, we note that the linearization of (2.2.3)

about q is given by

� [q]EC = mIL[q]E, (2.4.1)

where here � [q] and L[q] are linear operators on !2(R) defined by


� [q] 5 := 5 − (q2(q−1 5 )′)′ = 5 + q′′ 5 − q 5 ′′,

L[q] 5 := 2 5 − 2q 5 − 2q′′ 5 + 22q′ 5 ′ − 2q 5 ′′.
(2.4.2)

Note that L[q] can also be written in the form

L[q] 5 = 2 5 − 2q 5 − 22q(q−1q′)′ 5 − 2q2(q−1 5 )′′. (2.4.3)

Observe these are both closed linear operators on !2(R) with densely defined domains �2(R). As

the linear evolution equation (2.4.1) is autonomous in time, its dynamics can be (at least partly)
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understood by studying the associated generalized spectral problem

_� [q]E = mIL[q]E, (2.4.4)

posed on !2(R), where here _ ∈ C is a spectral parameter corresponding to the temporal frequency

of the perturbation. To put (2.4.4) in a more standard form, we note the following lemma.

Lemma 2.4.1. The operator � [q] : �1(R) → !2(R) defined in (2.4.2)(i) is a (weakly) invertible

operator. That is, for every 6 ∈ !2(R) the equation

� [q]E = 6

has a unique weak solution in �1(R).

Proof. Observe that by defining

� [q] 5 := � [q] (q 5 ) = q 5 − (q2 5 ′)′

we have � [q] (q−1 5 ) = � [q] 5 so that, in particular, � [q] is (weakly) invertible if and only if

� [q] is (weakly) invertible. Since q > 0 uniformly, it follows that � [q] is a symmetric, uniformly

elliptic differential operator. Consequently, a standard argument using the Riesz representation

theorem implies that for every 6 ∈ !2(R) the elliptic equation

� [q] 5 = 6

has a unique weak solution in �1(R), i.e. that � [q] : �1(R) → !2(R) is (weakly) invertible. The

result now follows. �

Remark 2.4.2. The (weak) invertibility of � [q] implies that the bilinear form generated by10

10Throughout, we denote, with a slight abuse of notation, the operator (� [q])−1 by simply�−1 [q]. The same abuse
of notation will be used when referring to adjoints of operators depending on q.
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�−1 [q] is well-defined on !2(R). As we will see, this will be sufficient in order to verify Theorem

2.3.1.

By Lemma 2.4.1, the generalized spectral problem (2.4.4) is equivalent to the spectral problem

for the linear operator

�[q] := �−1 [q]mIL[q] (2.4.5)

considered as a closed, densely defined linear operator on !2(R). Motivated by the above consid-

erations, we recall Definition 1.2.6 and say that a periodic traveling wave q of (2.1.1) is said to be

spectrally unstable if the !2(R)-spectrum of �[q] intersects the open right half plane, i.e. if

f!2 (R) (�[q]) ∩ {_ ∈ C : Re(_) > 0} ≠ ∅,

while it is spectrally stable otherwise. This motivates a detailed study of the spectrum of the linear

operator �[q].

Remark 2.4.3. Observe that while (2.1.1) is a nonlinear dispersive PDE, it does not possess a

Hamiltonian structure. Consequently, while the spectrum of �[q] is symmetric about the real axis,

owing to the fact that q is real-valued, it is not necessarily symmetric about the imaginary axis.

Remark 2.4.4. Recall that in [65] the authors considered the stability of solitary traveling wave

solutions of the magma equations (2.1.2), which corresponds to the conduit equation (2.1.1) when

(=, <) = (2, 1). In that case, the linearization (in [65]) of (2.2.3) about a solitary wave q is given,

after some manipulation, by

� [q]EC = EC − (q2(q−1EC)I)I = mI
[
−2E + 2(2 − 1)q−1E − 2q2m2

I (q−1E)
]

which, using (2.4.3), is equivalent to our representation (2.4.4) provided that q satisfies

q + 2q(q−1q′)′ = 2 + (1 − 2)q−1
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Recalling Remark 2.2.2, this latter condition follows directly from (2.2.4)with the choice 22� = 2−1

associated to the solitary waves considered in [65].

Recall that we have already characterized the !2(R)-spectrum of )-periodic coefficient linear

differential operators in Section 1.3.1. In particular, we demonstrated that the !2(R)-spectrum

satisfies the spectral decomposition (1.3.6). While �[q] is not in the form that we studied in Section

1.3.1, it can be shown that the !2(R)-spectrum of �[q] still satisfies the spectral decomposition

f!2 (R) (�[q]) =
⋃

b∈[−c/),c/))
f!2

per (0,))
(
�b [q]

)
,

thereby continuously parameterizing the essential !2(R)-spectrum of �[q] by a one-parameter

family of )-periodic eigenvalues of the associated Bloch operators �b [q] := 4−8bG�[q]48bG . For

more details on this extension beyond differential operators, see [20, 28].

To determine the spectral stability of a periodic traveling wave q, one must therefore determine

all of the )-periodic eigenvalues for each Bloch operator for b ∈ [−c/), c/)). Outside of some

very special cases, one does not expect to be able to do this complete spectral analysis explicitly.

However, as we saw in the discussion following Definition 1.3.2, for the purposes of modulational

stability analysis, we need only consider the spectrum of the operators �b [q] in a neighborhood

of the origin in the spectral plane and only for |b | � 1. Recalling this discussion, observe from

(1.3.4) – which, again, still holds for our present case – that the spectrum of �0 [q] corresponds to

the spectral stability of q to )-periodic perturbations, i.e. to perturbations with the same period as

the carrier wave. Similarly, |b | � 1 corresponds to long wavelength perturbations of the carrier

wave. Furthermore, slow modulations of q form a special class of long wavelength perturbations

in which the effect of the perturbation is to slowly vary, namely modulate, the wave characteristics

– the parameters 0, � and 2 in the present setting – and the translational mode. As we will see,

variations in these parameters naturally provide spectral information about the co-periodic Bloch

operator �0 [q] at the origin in the spectral plane. From the above considerations, it is natural to

expect that the spectral stability of the underlying wave q to slow modulations corresponds to the
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case when the spectrum of the Bloch operators �b [q] near (_, b) = (0, 0) lie in the closed left

half-plane. For more discussion regarding this motivation, see [5].

In order to prove Theorem 2.3.1, our program will roughly break down into three steps. First,

we will analyze the structure of the generalized kernel of the unmodulated Bloch operator �0 [q],

showing that, under certain geometric conditions, this operator has _ = 0 as an eigenvalue with

algebraic multiplicity three and geometric multiplicity two. Secondly, we will use rigorous spectral

perturbation theory to examine how the spectrum near the origin of the modulated operators �b [q]

bifurcates from _ = 0 for 0 < |b | � 1. Through this, we will derive a 3 × 3 linear system

that encodes the leading order asymptotics of the spectral curves near _ = 0 for 0 < |b | � 1.

Finally, we will see by a direct term by term comparison that this linear system, derived through

rigorous spectral perturbation theory, agrees exactly (up to a harmless shift by the identity) with

the linearized Whitham modulation system (2.3.6).

2.4.2 Analysis of the Unmodulated Operators

As described above, the first main step in our analysis is to understand the )-periodic generalized

kernel of the unmodulated operator �0 [q] defined in (2.4.5), as well as its adjoint operator11 �†0 [q].

We begin by characterizing the )-periodic kernel of L[q] and its adjoint. To this end, note that

differentiating the profile equation (2.2.4) with respect to I, as well as with respect to the parameters

0, � , and 2, yields the identities

L[q]q′ = 0 = L[q]q0, L[q]q� = 22, L[q]q2 = 2� −
(
q + (q′)2 − qq′′

)
. (2.4.6)

Recalling that L[q] and L† [q] are related via (2.3.5), we have the following result.

Lemma 2.4.5. Let q be a non-trivial )-periodic solution of the profile equation (2.2.4). So long

11Information about the adjoint is necessary to construct the spectral projections for �0 [q] at _ = 0.

49



as )0 ≠ 0, we have

kerL2
per (0,T) (L[q]) = span {q′} and kerL2

per (0,T)

(
L† [q]

)
= span

{
q−3q′

}
.

Under the same assumption, we also have

kerL2
per (0,T)

(
�† [q]

)
= span

{
1, �† [q]q−2} .

Proof. Recalling q may be chosen to be even, we have that q′ and q0 are odd and even functions of

I, respectively, so it follows from (2.4.6) that q′ and q0 provide two linearly independent solutions of

the second order differential equation L[q] 5 = 0. To identify the kernel of L[q], we must impose

)-periodic boundary conditions. Since q′ is clearly )-periodic, it follows that the )-periodic kernel

of L[q] has dimension at least one. However, the fact that ) depends on the parameter 0 implies

that the function D0 is generally not periodic. Indeed, differentiating the obvious relation

©«
q(0; 0, �, 2)

q′(0; 0, �, 2)

ª®®¬ =
©«
q() ; 0, �, 2)

q′() ; 0, �, 2)

ª®®¬
with respect to 0 gives ©«

q0 (0)

q0G (0)

ª®®¬ −
©«
q0 ())

q0G ())

ª®®¬ = )0
©«
q′())

q′′())

ª®®¬
which, using that L[q] is a second order differential equation and that q is non-trivial12, implies

that q0 is )-periodic if and only if )0 is zero. This yields the characterization of the )-periodic

kernel of L[q], and the kernel of L† [q] follows immediately from (2.3.5).

Finally, to characterize the )-periodic kernel of �† [q], observe that

�† [q] = −L† [q]mG (�−1)† [q] .

12Note since q satisfies the second order ODE (2.2.4), vanishing of the vector (q′()), q′′()))) would imply q is the
the trivial solution by uniqueness. Alternatively, note that while q′()) = 0 by normalization, a direct calculation from
(2.2.5) shows that q′′()) = −+q (qmin; 0, 2), which again is non-zero since q is not an equilibrium solution of (2.2.4).
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Since the adjoint of� [q] is invertible on the space of)-periodic functions, and recalling�† [q]1 =

1, the claim now follows from the characterization of the kernel of L† [q]. �

Next, we use Lemma 2.4.5 along with the Fredholm alternative to identify, under appropriate

genericity conditions, the )-periodic generalized kernels of �[q] and �† [q]. To this end, observe

that (2.4.6) implies that

�[q]{q′, q0, q� } = 0 and �[q]q2 = −q′,

which, among other things, yields three linearly independent functions satisfying the third order

ODE mGL[q] 5 = 0. In Lemma 2.4.5 above, we showed that q0 is not )-periodic provided that

)0 is non-zero. Using similar arguments, it is readily seen that the functions q� and q2 are not

)-periodic provided that )� and )2 are non-zero, respectively. Indeed, we find that

©«
q� (0)

q�G (0)

q�GG (0)

ª®®®®®¬
−

©«
q� ())

q�G ())

q�GG ())

ª®®®®®¬
= )�

©«
q′())

q′′())

q′′′())

ª®®®®®¬
,

with an analogous equation holding for q2. Recalling by the above discussion that q′′()) is non-

zero, the desired result follows. For notational simplicity, we introduce the following Poisson

bracket style notation for two-by-two Jacobian determinants

{�, �}G,H := det
©«
�G �H

�G �H

ª®®¬
and an analogous notation for three-by three Jacobian determinants:

{�, �, �}G,H,I := det

©«
�G �H �I

�G �H �I

�G �H �I

ª®®®®®¬
.
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Using the above identities, it follows that, while q0 and q� are not individually )-periodic, the

linear combination

)0q� − )�q0 = {), q}0,�

lies in the )-periodic kernel of �[q]. Similarly, we see that the functions {), q}0,2 and {), q}�,2

are both )-periodic and satisfy

�[q]{), q}0,2 = −)0q′ and �[q]{), q}�,2 = −)�q′. (2.4.7)

We now state the main result for this section.

Theorem 2.4.6. Let q = q(·; 0, �, 2) be a )-periodic solution of the profile equation (2.2.4), and

assume the Jacobians )0, {), "}0,� and {), ",&}0,�,2 are non-zero. Then _ = 0 is an eigenvalue

of the Bloch operator �0 [q] with algebraic multiplicity three and geometric multiplicity two. In

particular, defining

Φ1 := {), "}0,�q′ Φ2 := {), q}0,� Φ3 := {), ", q}0,�,2

Ψ1 := [ Ψ2 := 1 Ψ3 := −{), "}0,��† [q]q−2 − {),&}0,� ,

where [ ∈ !2
per(0, )) is the unique odd function satisfying �†0 [q][ = −Ψ3, we have that {Φℓ}3ℓ=1

and {Ψ 9 }39=1 provide a biorthogonal bases for the generalized kernels of of �0 [q] and �†0 [q],

respectively. In particular, we have 〈Ψ 9 ,Φℓ〉 = 0 if and only if 9 ≠ ℓ. Furthermore, the functions

Φℓ and Ψ 9 satisfy the equations

�0 [q]Φ1 = 0 = �0 [q]Φ2, �0 [q]Φ3 = −Φ1,

and

�
†
0 [q]Ψ2 = 0 = �†0 [q]Ψ3, �

†
0 [q]Ψ1 = −Ψ3.

Proof. Since )0 ≠ 0 by assumption, the characterization of the kernel of �†0 [q] follows from

52



Lemma 2.4.5. Further, note a function 5 belongs to the )-periodic kernel of �0 [q] if and only if

5 is )-periodic and either L[q] 5 = 0 or L[q] 5 is a non-zero constant. From (2.4.6), it follows

immediately that

ker!2
per (0,)) (�0 [q]) = span {Φ1,Φ2} .

Furthermore, q′ is in the range of �0 [q] by (2.4.7). Hence, by the Fredholm alternative (or by

parity), we have that 〈Ψ2,Φ1〉 = 0 = 〈Ψ3,Φ1〉. For the periodic element that lies in the Jordan chain

above q′, we take a specific linear combination of {), q}0,2 and {), q}�,2, namelyΦ3. Furthermore,

by the Fredholm alternative the Jordan chain above q′ terminates at height one if and only if

Φ3 ∉ ker
(
�
†
0 [q]

)⊥
.

Since Φ3 has zero mean by construction, we clearly have 〈Ψ2,Φ3〉 = 0 and hence the above

condition is equivalent to showing

〈Ψ3,Φ3〉 = −{), "}0,�
〈
�† [q]q−2, {), ", q}0,�,2

〉
is non-zero. To write the above in a more usable form, observe from the definition of & in (2.2.6)

that

&0 =

∫ )

0

(
2qq′q′0 − qq0 − 2(q′)2q0

q3

)
3G + [q()) + (q

′()))2])0
(q()))2

.

Note by integration by parts that

∫ )

0

(
q′

q2

)
q′03G = −

∫ )

0

(
qq′′ − 2(q′)2

q3

)
q0 3G

and hence
&0 = −

∫ )

0

(
q + 2qq′′ − 2(q′)2

q3

)
q0 3G +

[q()) + (q′()))2])0
(q()))2

= −
〈
�† [q]q−2, q0

〉
+ [q()) + (q

′()))2])0
(q()))2

.

(2.4.8)
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Similar expressions hold for &� and &2 and hence we find

〈Ψ3,Φ3〉 = {), "}0,� {), ",&}0,�,2,

which is non-zero by hypotheses. The proves our characterization of the generalized )-periodic

kernel of the operator �0 [q].

Finally, we consider the generalized kernel of the adjoint operator �†0 [q]. Following the method

for calculating 〈Ψ3,Φ3〉 above, we immediately find that 〈Ψ2,Φ2〉 = {), "}0,� , which is assumed

to be non-zero. Hence, by the Fredholm alternative, Ψ2 is not in the range of �†0 [q]. By similar

arguments, we find

〈Ψ3,Φ2〉 = −{), "}0,�
(〈
�† [q]q−2, {), q}0,�

〉
+ {),&}0,�

)
= 0,

so that, again by the Fredholm alternative, Ψ3 belongs in the range of �†0 [q]. Since Φ3 is even and

�0 [q] switches parity, the fact that the kernel of �0 [q] consists entirely of even functions implies

there exists a unique )-periodic odd function [ that satisfies

�
†
0 [q][ = −Ψ3.

Furthermore, we note that Ψ1 = [ is not in the range of �†0 [q] since

〈Ψ1,Φ1〉 = − 〈Ψ1, �0 [q]Φ3〉 = 〈Ψ3,Φ3〉 = {), "}0,� {), ",&}0,�,2,

which is non-zero by assumption. This completes the characterization of the generalized kernel of

�
†
0 [q]. To finish the proof, we note that 〈Ψ1,Φ2〉 = 0 = 〈Ψ1,Φ3〉 by parity. �

We now make some important comments regarding the assumptions in Theorem 2.4.6. The

above result was obtained through the observation that infinitesimal variations along themanifold of

periodic traveling wave solutions yield tangent vectors that lie in the generalized kernels. Through
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our existence theory in Section 2.2.2, this manifold was parameterized by the wave speed 2 and

the integration constants 0 and � . While this parameterization is natural from the mathematical

perspective, following directly from the Hamiltonian formulation (2.2.5) of the profile equation

(2.2.4), it is different than the parameteriztaion that naturally arises in Whitham theory. Indeed,

recall from Section 2.3 that the Whitham modulation system (2.3.6) describes the slow evolution

of the wave number : and conserved quantities " and &, thus yielding a parameterization of the

manifold of periodic traveling wave solutions of the conduit equation (2.1.1) in terms of these phys-

ical quantities. Consequently, a-priori these two approaches work with different parameterizations

of the same manifold.

In order to make comparisons between these two approaches, it is natural to assume that we

can smoothly change between these parameterizations. Specifically, we require that the manifold

of periodic traveling wave solutions of (2.1.1) constructed in Section 2.2.2 can be locally reparam-

eterized in a �1 manner by the wave number : and the conserved quantities " and &, i.e. that the

mapping

B 3 (0, �, 2) ↦→ (: (0, �, 2), " (0, �, 2), &(0, �, 2)) ∈ R3

is locally �1-invertible at each point. By the Implicit Function Theorem, this is guaranteed by

requiring that the Jacobian determinant

m (:, ",&)
m (0, �, 2) = {:, ",&}0,�,2

of the above map is non-singular at each point in B. Recalling that : (0, �, 2) = 1
) (0,�,2) we see that

{:, ",&}0,�,2 = −
1
)2 {), ",&}0,�,2,

it follows that such a �1-reparameterization is possible provided {), ",&}0,�,2 ≠ 0, which is

one of the primary assumptions in Theorem 2.4.6. Likewise, the requirement that {), "}0,� ≠ 0

is equivalent to saying that waves with fixed wave speed can be locally reparameterized in a �1
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manner by the wave number : and mass " .

With the above observations in mind, we now seek a restatement of Theorem 2.4.6 that is

generated with respect to infinitesimal variations along the : , " , and & coordinates. To see the

dependence on the wave number : explicitly, we begin by rescaling the spatial variable as H = :G

and note that )-periodic traveling wave solutions of (2.1.1) correspond to 1-periodic traveling wave

solutions (with the same period) of the rescaled evolution equation

DC + : (D2)H − :2(D2(D−1DC)H)H = 0 (2.4.9)

where : = 1/) . After rescaling the traveling coordinate \ = :I = : (G − 2C) = H − lC, where

l = :2 is temporal frequency, it is readily seen that traveling wave solutions of (2.4.9) correspond

to solutions of the form D(H, C) = q(H − lC). Hence, q(\) is a stationary 1-periodic solution of the

evolutionary equation

DC − :2D\ + : (D2)\ − :2(D2(D−1(DC − :2D\)\)\ = 0 (2.4.10)

The rescaled profile equation now reads

22� = 2q − q2 + :22(q′)2 − :22qq′′, (2.4.11)

where now ′ denotes differentiation with respect to \. Through this rescaling, the )-periodic

solutions q of (2.2.4) now correspond to 1-periodic solutions of (2.4.11) for some : . Similarly, the

conserved quantities evaluated on the manifold of 1-periodic solutions of (2.4.11) take the form


" :=

∫ 1

0
q(\; :, ",&) 3\

& :=
∫ 1

0

q(\; :, ",&) + :2(q′(\; :, ",&))2
(q(\; :, ",&))2

3\

(2.4.12)
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while the linearization of (2.4.10) now reads

� [q]EC = :m\L[q]E

where, with a slight abuse of notation, � [q] and L[q] are defined as in (2.4.2), albeit with :m\

replacing mI, i.e. 
� [q] 5 = 5 − :2(q2(q−1 5 )′)′ = 5 + :2q′′ 5 − :2q 5 ′′

L[q] 5 = 2 5 − 2q 5 − :22q′′ 5 + 2:22q′ 5 ′ − :22q 5 ′′
(2.4.13)

Clearly, the rescaled operator � [q] is invertible as before, leading us to the consideration of the

spectral problem

�[q]E = _E (2.4.14)

posed on !2(R), where now, again with a slight abuse of notation, �[q] = �−1 [q]:m\L[q] is

a linear operator with 1-periodic coefficients and � [q] and L[q] are differential operators as in

(2.4.13).

By Theorem 2.4.6, we know that _ = 0 is a 1-periodic eigenvalue of the rescaled operator �[q]

in (2.4.14) with algebraic multiplicity three and geometric multiplicity two. In fact, differentiating

(2.4.11) with respect to G, " , and & yields

�[q]q′ = 0, �[q]q" = −:2"q′, �[q]q& = −:2&q′

Observe that since the profiles q(·; :, ",&) are always 1-periodic by construction, it follows the

functions q" and q& are also 1-periodic. In particular, the functions q′ and 2"q& − 2&q" are

linearly independent and span the 1-periodic kernel of �[q]. We also mention that, as in Lemma

2.4.5, the functions 1 and �† [q]q−2 span the 1-periodic kernel of the rescaled operator �† [q].

Furthermore, using similar arguments as in (2.4.8) we see that

〈1, q"〉 = 1 = −
〈
�† [q]q−2, q&

〉
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and 〈
1, q&

〉
= 0 =

〈
�† [q]q−2, q"

〉
.

We also have

〈1, q′〉 = 0 =
〈
�† [q]q−2, q′

〉
by parity. Consequently, there is a linear combination of the functions 1 and �† [q]q−2 that

is orthogonal to the 1-periodic kernel of �[q]. It follows there is a 1-periodic function in the

generalized kernel of �† [q]. Letting �b [q] denote the Bloch operators associated with �[q],

defined now for b ∈ [−c, c), we have the following result.

Corollary 2.4.7. Let q = q(0, �, 2) be a )-periodic solution of the profile equation (2.2.4), and

assume that the Jacobian determinants )0, {), "}0,� and {), ",&}0,�,2 are all non-zero. Then

_ = 0 is an eigenvalue of �0 [q] with algebraic multiplicity three and geometric multiplicity two.

In particular, defining

Φ0
1 := q′ Φ0

2 := q" Φ0
3 := q&

Ψ0
1 := V Ψ0

2 := 1 Ψ0
3 := −�† [q]q−2,

where V ∈ !2
per(0, 1) is the unique odd function satisfying �†0 [q]V ∈ ker

(
�
†
0 [q]

)
and

〈
V,Φ0

1
〉
= 1,

we have that {Φ0
ℓ
}3
ℓ=1 and {Ψ

0
9
}3
9=1 provide a basis of solutions for the generalized kernels of �0 [q]

and �†0 [q], respectively. In particular, we have
〈
Ψ0
9
,Φ0

ℓ

〉
= X 9ℓ and the Φ0

ℓ
and Ψ0

9
satisfy the

equations

�0 [q]Φ0
1 = 0, �0 [q]Φ0

2 = −:2"Φ
0
1, �0 [q]Φ0

3 = −:2&Φ
0
1

and

�
†
0 [q]Ψ

0
2 = 0 = �†0 [q]Ψ

0
3, �

†
0 [q]Ψ

0
1 ∈ span{Ψ0

2,Ψ
0
3} \ {0}.

Before continuing, we note for future use that the function q: is also 1-periodic and satisfies

the equation

�[q]q: = −:2:q′ − 2:22�−1 [q]
(
(q′)2 − qq′′

)′
. (2.4.15)
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Furthermore, differentiating (2.4.12) with respect to : , while holding " and & constant, yields the

important relations

〈1, q:〉 = 0 and
〈
�† [q]q−2, q:

〉
= 2:

〈
q−2, (q′)2

〉
. (2.4.16)

2.4.3 Modulational Stability Calculation

Now that we have constructed a basis for the generalized kernels of �0 [q] and its adjoint in a

coordinate system compatible with theWhitham system (2.3.6), we proceed to study how this triple

eigenvalue bifurcates from the (_, b) = (0, 0) state. To this end, recall from (1.3.6) that this is

equivalent to seeking the 1-periodic eigenvalues in a neighborhood of the origin of the associated

Bloch operators

�b [q] = �−1
b [q]: (m\ + 8b)Lb [q]

for |b | � 1, where here �b [q] := 4−8b\� [q]48b\ and Lb [q] := 4−8b\L[q]48b\ are the Bloch

operators associated with the operators � [q] and L[q] defined in (2.4.13). Following [5, 38, 3],

we begin expanding the Bloch operators for |b | � 1. As these expressions are analytic in b, it is

straightforward to verify that

Lb [q] = !0 + (8:b)!1 + (8:b)2!2 and �b [q] = �̃0 + (8:b)�̃1 + (8:b)2�̃2,

where here

!0 := L[q], !1 := 2:2 (q′ − qm\) , !2 := −2q

and

�̃0 := � [q], �̃1 := −2q:m\ , �̃2 := −q.
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are operators acting on !2
per(0, 1). Using that �̃0 [q] is invertible on !2

per(0, 1) and rewriting the

expansion for �b [q] as

�b [q] =
(
� + (8:b)�̃1�̃

−1
0 + (8:b)

2�̃2�̃
−1
0

)
�̃0,

it follows �−1
b
[q] can be expanded for |b | � 1 as the Neumann series

�−1
b [q] = �̃−1

0

∞∑
ℓ=0
(−1)ℓ [((8:b)�̃1 + (8:b)2�̃2)�̃−1

0 ]
ℓ

= G0 + (8:b)G1 + (8:b)2G2 + O(|b |3),

where here

G0 = �
−1 [q], G1 = 2�−1 [q] (q:m\ (�−1 [q] · ))

and

G2 = �
−1 [q] (q�−1 [q] · ) + 4�−1 [q] (q:m\ (�−1 [q] (q:m\ (�−1 [q] · ))))

are again acting on !2
per(0, 1). The Bloch operators �b [q] can thus be expanded for |b | � 1 as

�b [q] = (G0 + (8:b)G1 + (8:b)2G2 + O(|b |3)) (:m\ + 8:b) (!0 + (8:b)!1 + (8:b)2!2)

= �0 + (8:b)�(1) + (8:b)2�(2) + O(|b |3)

where, after some manipulation,



�0 = �0 [q],

�(1) = G1:m\!0 + G0:m\!1 + G0!0

= G0 (2q:m\�0 + :m\!1 + !0) ,

�(2) = G2:m\!0 + G1:m\!1 + G0:m\!2 + G1!0 + G0!1

= G0 (q�0 + 4q:m\G0q:m\�0 + 2q:m\G0:m\!1 + :m\!2 + 2q:m\G0!0 + !1) .

(2.4.17)
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Note to assist in our computations of the actions of �(1) and �(2) later, we have expanded these

operators in (2.4.17) as to identify any factors of �0 present in them, as well as to pull out a global

factor of G0.

Now, by Corollary 2.4.7, we know _ = 0 is an isolated eigenvalue of �0 [q] with algebraic

multiplicity three. Since �b [q] is a relatively compact perturbation of �0 [q] for all |b | � 1

depending analytically on the Bloch parameter b, it follows that the operator �b [q] will have

three eigenvalues {_ 9 (b)}39=1, defined for |b | � 1, bifurcating from _ = 0 for 0 < |b | � 1. The

modulational stability or instability of qmay then be determined by tracking these three eigenvalues

for |b | � 1. To this end, observe we may use the bases identified in Corollary 2.4.7 to build explicit

rank 3 spectral projections onto the generalized kernels of �0 [q] and �†0 [q]. By standard spectral

perturbation theory (see, for example, Theorems 1.7 and 1.8 in [41, Chapter VII.1.3]) these dual

bases extend analytically into dual right and left bases {Φb
ℓ
}3
ℓ=1 and {Ψ

b

9
}3
9=1 associated to the three

eigenvalues {_ 9 (b)}39=1 near the origin that satisfy 〈Ψb
9
,Φ

b

ℓ
〉 = X 9ℓ for all |b | � 1. For |b | � 1, we

may now construct b-dependent rank 3 eigenprojections

Π(b) : !2
per(0, 2c) →

3⊕
9=1

ker
(
�b [q] − _ 9 (b)�

)
,

Π̃(b) : !2
per(0, 2c) →

3⊕
9=1

ker
(
�
†
b
[q] − _ 9 (b)�

)
,

with ranges coinciding with the total left and right eigenspaces associated with the eigenvalues

{_ 9 (b)}39=1. Using this one-parameter family of eigenprojections, for each fixed |b | � 1 we

can project the infinite dimensional spectral problem for �b [q] onto the three-dimensional total

eigenspace associated with the eigenvalues {_ 9 (b)}39=1. In particular, the action of the operators

�b [q] on this subspace can be represented by the 3 × 3 matrix operator

�b := Π̃(b)�b [q]Π(b) =
(〈
Ψ
b

9
, �b [q]Φbℓ

〉)3

9 ,ℓ=1
.

It follows that for each |b | � 1 the eigenvalues _ 9 (b) correspond precisely to the values _ where
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the matrix �b − _� is singular, where here � denotes the identity matrix13 on R3. In what follows,

we aim to explicitly construct this matrix for |b | � 1.

First, we observe that Corollary 2.4.7 implies that �b at b = 0 is given by14

�0 =

©«
0 −:2" −:2&

0 0 0

0 0 0

ª®®®®®¬
.

Expanding the right and left bases Φb
ℓ
and Ψb

9
as15

Φ
b

ℓ
= Φ0

ℓ + (8:b)
(

1
8:
mb Φ

b

ℓ

���
b=0

)
+ (8:b)2

(
1
(8:)2 m

2
b Φ

b

ℓ

���
b=0

)
+ O(|b |3)

and

Ψ
b

9
= Ψ0

9 + (8:b)
(

1
8:
mb Ψ

b

9

���
b=0

)
+ (8:b)2

(
1
(8:)2 m

2
b Ψ

b

9

���
b=0

)
+ O(|b |3),

yields an expansion of the matrix �b of the form

�b = �0 + (8:b)� (1) + (8:b)2� (2) + O(|b |3).

Note that, explicitly,

� (1) =

(〈
Ψ0
9 , �0

1
8:
mb Φ

b

ℓ

���
b=0
+ �(1)Φ0

ℓ

〉
+

〈
1
8:
mb Ψ

b

9

���
b=0

, �0Φ
0
ℓ

〉)3

9 ,ℓ=1
.

To continue, we need information regarding mbΦb1 at b = 0. We claim that, up to harmless

modifications of the basis functions used above, we can arrange for this first order variation to be

exactly q: , while simultaneously preserving biorthogonality of the bases up to O(|b |2). Indeed,

observe that by differentiating the identityΠ(b)�b [q]Φb1 = �b [q]Φ
b

1 and evaluating at b = 0 yields

13Here, we are using that Π̃(b)Π(b) is the identity by construction.
14The horizontal and vertical lines are included only to organize the 3 × 3 matrices into sub-blocks.
15Note the expansion in 8:b, rather than simply 8b, is natural due to our spatial rescaling. Further, it is consistent

with how �b [q] naturally expands in the rescaled system.
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the relation

Π(0)
(
�0

(
1
8:
mb Φ

b

1

���
b=0

)
+ �(1)Φ0

1

)
+ 1
8:
mb Π(b) |b=0 �0Φ

0
1 = �0

(
1
8:
mb Φ

b

1

���
b=0

)
+ �(1)Φ0

1.

Recalling �0Φ
0
1 = 0, and noting that (2.4.15) can be rewritten as �(1)Φ0

1 = −�0q: − :2:Φ0
1, we

find that

Π(0)
(
�0

(
1
8:
mb Φ

b

1

���
b=0
− q:

))
= �0

(
1
8:
mb Φ

b

1

���
b=0
− q:

)
which implies that 1

8:
mb Φ

b

1

���
b=0
− q: lies in the generalized kernel of �0 [q]. Consequently, there

exists constants {0 9 }39=1 such that

1
8:
mb Φ

b

1

���
b=0

= q: +
3∑
9=1
0 9Φ

0
9 .

Replacing Φb1 with

Φ̃
b

1 := Φb1 − (8:b)
3∑
9=1
0 9Φ

0
9

while simultaneously replacing Ψb
9
for 9 = 1, 2, 3 with

Ψ̃
b

9
:= Ψb

9
+ (8:b)0 9Ψb1,

we readily see that

Φ̃
b

1 = Φ
0
1 + (8:b)q: + O(|b |

2), �b = Π̃(b)Π(b) = � + O(|b |2), (2.4.18)

as claimed. Note that �b is the 3×3 matrix describing the action of the identity operator with respect

to the modified bases. For notational simplicity, we will drop the tildes throughout the remainder

and refer to these modified bases as simply {Φb
ℓ
}3
ℓ=1 and {Ψ

b

9
}3
9=1 With the above choices, the terms

involving the variations in Ψb
9
can be directly computed. For example, using Corollary 2.4.7 we
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have

〈
1
8:
mb Ψ

b

9

���
b=0

, �0Φ
0
2

〉
= −:2"

〈
1
8:
mb Ψ

b

9

���
b=0

,Φ0
1

〉
= :2"

〈
Ψ
b

9
, 1
8:
mb Φ

0
1
��
b=0

〉
= :2"

〈
Ψ0
9 , q:

〉
,

where the second equality follows since (2.4.18)(ii) implies

0 = mb
〈
Ψ
b

9
,Φ

b

1

〉���
b=0

=

〈
mb Ψ

b

9

���
b=0

,Φ0
1

〉
+

〈
Ψ
b

9
, mb Φ

0
1
��
b=0

〉
.

Using the above modified bases, straight forward calculations yield

� (1) =

©«
−:2: ∗ ∗

0
〈
Ψ0

2, �
(1)Φ0

2
〉 〈

Ψ0
2, �

(1)Φ0
3
〉

0
〈
Ψ0

3, �
(1)Φ0

2 + :2"q:
〉 〈

Ψ0
3, �

(1)Φ0
3 + :2&q:

〉
ª®®®®®¬
,

where here “∗” is used to denote undetermined terms that, as we will see, are irrelevant to our

calculation. Similarly, one finds

� (2) =

©«
∗ ∗ ∗〈

Ψ0
2, �

(2)Φ0
1 + �

(1)q:
〉

∗ ∗〈
Ψ0

3, �
(2)Φ0

1 + �
(1)q: + :2:q:

〉
∗ ∗

ª®®®®®¬
Noticing the above implies the matrix �b satisfies

�b =

©«

O(|b |) O(1)

O(|b |2) O(|b |)

ª®®®®®®®®¬
,

where the upper left block is 1 × 1, it follows by standard arguments that the eigenvalues _ 9 (b) are

at least �1 in b, and can thus be written as _ 9 (b) = 8:b` 9 (b) for some continuous functions ` 9
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defined for |b | � 1. Further, introducing, for 0 < |b | � 1, the invertible matrix16

((b) :=

©«
8:b 0 0

0 1 0

0 0 1

ª®®®®®¬
and defining �̂b := 1

8:b
((b)�b((b)−1 and �̂b := ((b)�b((b)−1, it follows �̂b and �̂b are analytic in

8:b and, at b = 0, are given by �̂0 = � and

�̂0 =

©«
−:2: −:2" −:2&〈

Ψ0
2, �

(2)Φ0
1 + �

(1)q:
〉 〈

Ψ0
2, �

(1)Φ0
2
〉 〈

Ψ0
2, �

(1)Φ0
3
〉〈

Ψ0
3, �

(2)Φ0
1 + �

(1)q: + :2:q:
〉 〈

Ψ0
3, �

(1)Φ0
2 + :2"q:

〉 〈
Ψ0

3, �
(1)Φ0

3 + :2&q:
〉

ª®®®®®¬
(2.4.19)

Furthermore, the ` 9 (b) are the eigenvalues of the matrix �̂b since clearly

det(�b − _(b)�b) = (8:b)3 det(�̂b − `(b) �̂b)

In summary, we have proven the following result.

Theorem 2.4.8. Under the hypotheses of Corollary 2.4.7, in a sufficiently small neighborhood of

the origin, the spectrum of �[q] on !2(R) consists of precisely three �1 curves {_ 9 (b)}39=1 defined

for |b | � 1 which can be expanded as

_ 9 (b) = 8:b` 9 (0) + >( |b |), 9 = 1, 2, 3

where the ` 9 (0) are precisely the eigenvalues of the matrix �̂0 above. In particular, a necessary

condition for q to be a spectrally stable solution of (2.1.1) is that all the eigenvalues of �̂0 are real.

Note the possible spectral instability predicted from Theorem 2.4.8 is of modulational type, oc-

16Note that the conjugating by ((b) effectively replaces the coefficient of the q′, corresponding to the local phase
k, with the wave number |b |k ∼ kG . This is reminiscent of the fact that the Whitham system (2.3.6) involves the wave
number kG , rather than the phase k.
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curring near the origin in the spectral plane for side-band Bloch frequencies. In general, computing

the eigenvalues of �̂0 is a difficult task, requiring one to identify the above inner products in terms

of known quantities: see, for example, [7, 5]. As we will see, however, this identification is not

necessary in order to rigorously connect modulational instability of q to the Whitham modulation

system (2.3.6). Indeed, recalling the quasilinear form (2.3.7) of the Whitham modulation system

(2.3.6), in the next section we will prove that

D(q) = �̂0 − 2�

so that, in particular, a necessary condition for the spectral stability of q is that the matrix D(q) is

weakly hyperbolic, i.e. that all of its eigenvalues are real, thus establishing Theorem 2.3.1.

2.5 Proof of Theorem 2.3.1

In this section, we establish Theorem 2.3.1. We will use a direct, row-by-row calculation to show

that

D(q) = �̂0 − 2�,

where here D(q) is the linearized matrix associated to the Whitham modulation equations (2.3.7)

and the eigenvalues of �̂0, defined in (2.4.19), rigorously describe the structure of the !2(R)-

spectrum of the linearized operator �[q] in a sufficiently small neighborhood of the origin: see

Theorem 2.4.8. To this end, first observe that the first rows of each of these matrices are clearly

identical. To compare the second rows, it is enough to establish the identities



〈
1, �(2)q′ + �(1)q:

〉
=

〈
1, 2:22(q′)2 − q2〉

:
,〈

1, �(1)q"
〉
− 2 =

〈
1, 2:22(q′)2 − q2〉

"
,〈

1, �(1)q&
〉
=

〈
1, 2:22(q′)2 − q2〉

&
.

(2.5.1)
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For the first equality, observe from (2.4.17) that, after some manipulations,

�(2)q′ + �(1)q: = �−1 [q]
(
:2(q′)2 − 3:2qq′′ − 2:22:qq

′′ + 2:22m\ (q′q: − qq′: ) + L[q]q:
)

(2.5.2)

which, recalling that �−† [q] (1) = 1 and using integration by parts, yields

〈
1, �(2)q′ + �(1)q:

〉
=

〈
1, 4:2(q′)2 + 2:22: (q′)2 + L[q]q:

〉
.

Since integration by parts implies

〈1,L[q]q:〉 =
〈
1, 2q: − 2qq: − :22q′′q: + 2:22q′q′: − :

22qq′′:
〉

= 2 〈1, q:〉 +
〈
1,−(q2): + 2:22((q′)2):

〉
it follows that 〈

1, �(2)q′ + �(1)q:
〉
= 2 〈1, q:〉 +

〈
1, 2:22(q′)2 − q2〉

:
,

which, recalling 〈1, q:〉 = 0 by (2.4.16)(i), establishes (2.5.1)(i). The other two equalities in (2.5.1)

follow in a similar way. Indeed, using analogous manipulations as above, as well as integration by

parts, we find 〈
1, �(1)q"

〉
= 2 〈1, q"〉 +

〈
1, 2:22(q′)2 − q2〉

"

and 〈
1, �(1)q&

〉
= 2

〈
1, q&

〉
+

〈
1, 2:22(q′)2 − q2〉

&
.

Since 〈1, q"〉 = 1 and
〈
1, q&

〉
= 0 by the biorthogonality relations in Corollary (2.4.7), the

identities (2.5.1)(ii)-(iii) follow. This establishes that the second rows of the matrices D(q) and

�̂0 − 2� are identical.
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To compare the third rows, we aim to establish the following three identities:



〈
�† [q]q−2, �(2)q′ + �(1)q: + :2:q:

〉
= − 〈1, 2 ln |q |〉: ,〈

�† [q]q−2, �(1)q" + :2"q:
〉
= − 〈1, 2 ln |q |〉"〈

�† [q]q−2, �(1)q& + :2&q:
〉
+ 2 = − 〈1, 2 ln |q |〉&

(2.5.3)

Focusing on the first term, we note that (2.5.2) and integration by parts implies

〈
�† [q]q−2, �(2)q′ + �(1)q: + :2:q:

〉
=

〈
q−2,−2: (2 + :2: ) (q′)2 + 2:22(q′′q: − qq′′: ) + L[q]q:

〉
+

〈
�† [q]q−2, :2:q:

〉
so that, by (2.4.16)(ii),

〈
�† [q]q−2, �(2)q′ + �(1)q: + :2:q:

〉
= −2

〈
�† [q]q−2, q:

〉
+
〈
q−2, 2:22(q′′q: − qq′′: ) + L[q]q:

〉
.

Now, using the fact that
〈
q−2, qq′′

:

〉
=

〈
q−2, q′q′

:

〉
we see

〈
q−2,L[q]q:

〉
= −

〈
q−2, 2qq:

〉
+

〈
q−2, 2q: − :22q′′q: + 2:22q′q′: − :

22qq′′:
〉

= −2 〈1, ln |q |〉: +
〈
q−2, 2q: − :22

(
q′′q: − qq′′:

)〉
and hence

〈
�† [q]q−2, �(2)q′ + �(1)q: + :2:q:

〉
= − 2

〈
�† [q]q−2, q:

〉
− 〈1, 2 ln |q|〉:

+
〈
q−2, 2q: + :22

(
q′′q: − qq′′:

)〉
= − 2

〈
�† [q]q−2, q:

〉
− 〈1, 2 ln |q|〉: + 2

〈
q−2, � [q]q:

〉
.

The identity (2.5.3)(i) has now been established. The other two equalities follow similarly. Indeed,
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using analogous manipulations as above, as well as integration by parts, we find that

〈
�† [q]q−2, �(1)q" + :2"q:

〉
= − 〈1, 2 ln |q|〉" + 2

〈
�† [q]q−2, q"

〉
and 〈

�† [q]q−2, �(1)q& + :2&q:
〉
= − 〈1, 2 ln |q |〉& + 2

〈
�† [q]q−2, q&

〉
.

Recalling that
〈
�† [q]q−2, q"

〉
= 0 and

〈
�† [q]q−2, q&

〉
= −1 by the biorthogonality relations in

Corollary (2.4.7), the identities (2.4.16)(ii)-(iii) follow. This complete the proof of Theorem 2.3.1

2.6 Analysis for Small Amplitude Waves

In general, determining whether the Whitham system (2.3.6) is weakly hyperbolic at a given

periodic traveling solution of (2.1.1) is a difficult matter. See [5, 7], for example, for cases where

this information can be computed in the presence of a Hamiltonian structure. Nevertheless, one can

use well-conditioned numerical methods to approximate the entries of the matrix D(q) in (2.3.7),

thereby producing a numerical stability diagram. Such numerical analysis was recently carried out

in [47]. There, the authors findings indicate, among other things, that the Whitham modulation

system (2.3.6) is hyperbolic about a given periodic traveling wave q provided q has sufficiently large

period, while the system is elliptic for sufficiently small periods. Formally then, the authors findings

suggest long waves are modulationally stable while short waves are modulationally unstable. For

asymptotically small waves, however, it is possible to use asymptotic analysis to analyze the

hyperbolicity of the Whitham modulation system (2.3.6). While this analysis is discussed in [47],

for completeness we reproduce their result for small amplitude waves.

To this end, we note that ) = 1/:-periodic traveling wave solutions with speed 2 of the conduit

equation (2.1.1) correspond to 1-periodic stationary solutions of the profile equation

− lq′ + 2:qq′ + :2lqq′′′ − :2lq′q′′ = 0, (2.6.1)
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where wherel = :2 is the frequency and primes denote differentiation with respect to the traveling

variable \ = :G−lC. Using an elementary Lyapunov-Schmidt argument, one can show that solution

pairs (q, l) of (2.6.1) with asymptotically small oscillations about its mean17 " admit a convergent

asymptotic expansion in �3
per(0, 1) of the form

q(\; :, ", �) = " + � cos(2c\) +
∞∑
9=2

� 9q 9 (\; :, ")

l(:, ", �) = l0(:, ") + �2l2(:, ") + O(�4)

valid for |�| � 1, where the functions q 9 are 1-periodic and satisfy

∫ 1

0
q 9 (\)3\ = 0 =

∫ 1

0
q 9 (\) cos(2c\)3\

for all 9 ≥ 2. Further, it is an easy calculation to see that

q2(\) =
1

6(2c)2:l0"
cos(4c\) = (2c)

2:2" + 1
12(2c)2:2"2 cos(4c\)

and

l0 =
2:"

(2c)2:2" + 1
, l2 =

1 − 8(2c)2:2"

12(2c)2:"2((2c)2:2" + 1)
.

Using these asymptotic expansions, the Whitham modulation system (2.3.6) about these waves

expands for |�| � 1 as



:( + m-
(
l0 + �2l2

)
= O(�3)

"( + m-
(
"2 − 1

2�
2
(
2(2c)2:l0 − 1

))
= O(�3)(

1 + O(�2)
) (
�2

)
(
+ �2 m

2l0

m:2 :- +
(
�2

)
-

ml0
m:
+ 4�2

(
1 − 2(2c)2:2"

(2(2c)2:2" + 1)3

)
"- = O(�3).

17Note that, here, the mean " agrees with the mass, as defined in (2.2.2), since we are working with 1-periodic
functions. More generally, these quantities would differ by factor of : .
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Using the chain rule, this system can be rewritten in the quasilinear form

©«
:

"

�

ª®®®®®¬(
+ �(:, ", �)

©«
:

"

�

ª®®®®®¬-
= 0,

where here � expands in � as

�(:, ", �) = �0(:, ") + ��1(:, ") + �2�̃(:, ", �),

with �̃(:, ", �) a bounded, continuous matrix-valued function and

�0 =

©«
ml0
m:

ml0
m"

0

0 2" 0

0 0 ml0
m:

ª®®®®®¬
, �1 =

©«
0 0 2l2

0 0 1 − 2(2c)2:l0

1
2
m2l0
m:2 2

(
1 − 2(2c)2:2"

(2(2c)2:2"+1)3

)
0

ª®®®®®¬
.

Based on the above asymptotics, the eigenvalues of the Whitham system (2.3.6) about the small

amplitude 1-periodic traveling wave q(·; :, ", �) may be asymptotically expanded as


_1(:, ", �) = 2" + O(�2)

_±(:, ", �) =
ml0
m:
± �

√
−=(:, ") m

2l0

m:2 + O(�
2),

where we have explicitly

=(:, ") = 8[(2c)2:2"]2 + 5[(2c)2:2"] + 3
12(2c)2:"2( [(2c)2:2"] + 1) ( [(2c)2:2"] + 3)

.

Since
m2l0

m:2 (:, ") =
16c2:"2 (

(2c:)2" − 3
)

((2c:))2" + 1)3
,

and since =(:, ") is clearly a strictly positive function of : and " , we have the following result.
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Theorem 2.6.1. Let q(·; :, ", �) be a 1-periodic traveling wave solution of (2.6.1) with asymp-

totically small amplitude. Then q is modulationally unstable if

(2c:)2 > 3
"
.

Further, a necessary condition for q to be modulationally stable is

0 < (2c:)2 < 3
"
.

Theorem2.6.1makes rigorous the formal calcluations in [47] regarding small amplitude periodic

traveling wave solutions18 of (2.1.1). Note that while the above analysis shows the Whitham

system (2.3.6) is (strictly) hyperbolic when 0 < (2c:)2 < 3/" , this is not sufficient to conclude

modulational stability of the underlying wave q since hyperbolicity of (2.3.6) only guarantees the

eigenvalues ofAb [q] lie on the imaginary axis to first order in b, i.e. it guarantees tangency of the

spectral curves at _ = 0 to the imaginary axis. Of course, modulational stability requires that the

spectral curves near the origin are confined to the left half plane, and hence cannot be concluded19

from only first order information. Modulational stability was concluded in [47] for the conduit

equation, however, in the case 0 < (2c:)2 < 3/" through numerical time evolution. It would be

interesting to rigorously verify this prediction.

Remark 2.6.2. Note that a slightly different approach to proving Theorem 2.3.1 would have been

to expand the matrix � (q) in (2.3.7), and using the chain rule to express derivatives with respect to

& in terms of derivatives with respect to (:, ", �). This calculation of course produces the same

result. However, here we preferred to start working directly with the variables (:, ", �) in the

Whitham system, since this is the natural parameterization in the asymptoically small amplitude

limit.

18In [47], however, note that : was the wave number relative to 2c-perturbations, while in our work : denotes
the wave number relative to 1-periodic perturbations. This accounts for the extra factor of 2c present in our result
compared to that in [47].

19An exception to this rule occurs when the PDE admits a Hamiltonian strucutre. See, for example, related work on
the KdV equation [6, 5].
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Chapter 3

Linear Modulational and Subharmonic Dynamics of Spectrally

Stable Periodic Waves in the Lugiato-Lefever Equation

Abstract

In this chapter, we study the linear dynamics of spectrally stable )-periodic stationary solu-

tions of the Lugiato-Lefever equation (LLE), a damped nonlinear Schrödinger equation with

forcing that arises in nonlinear optics. Such )-periodic solutions are nonlinearly stable to

#)-periodic, i.e. subharmonic, perturbations for each # ∈ Nwith exponential decay rates of

perturbations of the form 4−X# C . However, both the exponential rates of decay X# and the al-

lowable size of the initial perturbations tend to 0 as # →∞, so that this result is non-uniform

in # and, in fact, empty in the limit # = ∞. The primary goal of this chapter is to introduce a

methodology, in the context of the LLE, by which a uniform stability result for subharmonic

perturbations may be achieved, at least at the linear level. The obtained uniform decay rates

are shown to agree precisely with the polynomial decay rates of localized, i.e. integrable on

the real line, perturbations of such spectrally stable periodic solutions of the LLE. This work

both unifies and expands on several existing works in the literature concerning the stability

and dynamics of such waves, and sets forth a general methodology for studying such problems

in other contexts. This chapter is representative of [21], which was a joint work with Mariana

Haragus and Mathew Johnson.
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3.1 Introduction

In this chapter, we consider the stability and dynamics of periodic stationary solutions of the

Lugiato-Lefever equation (LLE)

kC = −8VkGG − (1 + 8U)k + 8 |k |2k + �, (3.1.1)

wherek(G, C) is a complex-valued function depending on a temporal variable C and a spatial variable

G, the parameters U, V are real, and � is a positive constant. The model (3.1.1) was derived from

Maxwell’s equations in [45] as a model to study pattern formation within the optical field in a

dissipative and nonlinear optical cavity filled with a Kerr medium and subjected to a continuous

laser pump. In this context, k(G, C) represents the field envelope, U > 0 represents a detuning

parameter, � > 0 represents a normalized pump strength, and |V | = 1 is the dispersion parameter.

The case V = 1 is referred to as the “normal” dispersion case while V = −1 is referred to as the

“anomalous” dispersion case.

Since its derivation, the LLE has been intensely studied in the physics literature in the context of

nonlinear optics, having more recently become a model for high-frequency optical combs generated

by microresonators in periodic optical wave guides (see, for example, [9] and references therein).

Until recently, however, there have been relatively few mathematically rigorous studies of the LLE.

Several recent works have established the existence of periodic standing solutions of (3.1.1). Such

solutions k(G, C) = q(G) correspond to )-periodic solutions of the profile equation

− 8Vq′′ − (1 + 8U)q + 8 |q |2q + � = 0. (3.1.2)

Using tools from bifurcation theory, the existence of periodic standing waves bifurcating both

locally and globally from constant solutions has been shown in [51, 49, 12, 11]. Another type of

periodic solutions has been recently constructed in the case of anomalous dispersion V = −1 in [19].

These solutions correspond to bifurcations from the standard arbitrary amplitude dnoidal solutions
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of the cubic NLS equation, for small | (�, U) |. We also refer to [18] for a local bifurcation analysis

of bounded solutions of (3.1.2) including, besides periodic, also localized and quasi-periodic

solutions.

Our work focuses on the dynamical stability and long-time asymptotic dynamics of spatially

periodic standing solutions of (3.1.1) when subject to varying classes of perturbations. Note that

if q is a )-periodic standing solution of (3.1.1) and we decompose q = qA + 8q8 into its real and

imaginary parts, then a function of the form k(G, C) = q(G) + E(G, C), with E = EA + 8E8, is a solution

of (3.1.1) provided it satisfies the real system

mC
©«
EA

E8

ª®®¬ = A[q]
©«
EA

E8

ª®®¬ + N(E), (3.1.3)

where here N(E) is at least quadratic in E and A[q] is the (real) linear differential operator

A[q] = −� + JL[q], (3.1.4)

with

J =
©«

0 −1

1 0

ª®®¬ , L[q] =
©«
−Vm2

G − U + 3q2
A + q2

8
2qAq8

2qAq8 −Vm2
G − U + q2

A + 3q2
8

ª®®¬ .
The choice of a function space for the evolution problem (3.1.3) is determined by the class of

perturbations of the)-periodic standingwave. Choosing aHilbertian framework, we take !2
per(0, ))

for co-periodic perturbations, !2
per(0, #)) with # ∈ N for so-called subharmonic perturbations,

and !2(R) for localized perturbations.1 Recall that the spectral stability of a periodic wave q to a

given class of perturbations is determined by the spectrum of the linear operatorA[q] when acting

on the associated function space. Similarly, the linear stability of q is given by the properties of the

associated evolution semigroup (4A[q]C)C≥0, and the nonlinear (orbital) stability by the behavior of

1Since operators here are defined on vector valued functions, throughout this work we will abuse notation slightly
and write !2 (R) rather than !2 (R) × !2 (R), and similarly for all other Lebesgue and Sobolev spaces. Furthermore,
when the meaning is clear from context, we will write functions in ( 51, 52) ∈ !2 × !2 as simply 5 ∈ !2.
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the solutions of the nonlinear equation (3.1.3).

The spectral stability of periodic waves bifurcating locally from constant solutions has been

studied in [11, 12]. It turns out that most of these waves are unstable for subharmonic perturbations,

with # larger than a certain value #2 ≥ 1 depending on the parameters U and �, and that there is

precisely one family of such waves which are spectrally stable for all subharmonic perturbations,

and also for localized perturbations. These stable periodic waves bifurcate supercritically in the

case of anomalous dispersion, V = −1, for any fixed parameter U < 41/30 and bifurcation parameter

�2 = �2
1 + `, for sufficiently small ` > 0, where �2

1 = (1 − U)
2 + 1. More precisely, there exists

`0 > 0 such that for any ` ∈ (0, `0), the LLE has an even periodic solution with Taylor expansion

q` (G) = q∗ +
3(U + 8(2 − U))
�1(41 − 30U)1/2

cos(
√

2 − U G) `1/2 +$ (`), (3.1.5)

where q∗ is the unique constant solution satisfying the algebraic equation

(1 + 8U)q − 8q |q |2 = �1.

The solution q` is )-periodic with period ) = 2c/
√

2 − U, and it is of class �∞. We point out that

this parameter regime has been investigated in the original work of Lugiato and Lefever [45] who

determined the value U2 = 41/30 as an instability threshold.

For co-periodic perturbations which are �2, i.e., belong to the domain of the linear operator

A[q], the nonlinear asymptotic stability of the periodic waves (3.1.5) is a direct consequence of

the bifurcation analysis used for their construction [51, 12]. Using Strichartz-type estimates, this

result has been extended to more general !2
per(0, ))-perturbations in [52]. As pointed out in [12,

Section 6(a)], the bifurcation analysis used to construct these periodic waves can be extended to

spaces of #)-periodic functions, for any arbitrary but fixed # , which then also gives a nonlinear

stability result for these waves for �2-subharmonic perturbations. However, this stability result is

not uniform in #: for a given periodic wave q` as in (3.1.5), nonlinear stability is obtained for a

76



finite number of integers # , only.2

For localized perturbations, as well as for general bounded perturbations, the spectral stability

of the periodic waves (3.1.5) has been proved in [12, Theorem 4.3]. Based on Floquet-Bloch theory

and spectral perturbation theory, this result shows that the periodic waves given by (3.1.5) are

diffusively spectrally stable in the sense of Definition 1.3.1, which we repeat here for convenience.

Definition 3.1.1. A )-periodic stationary solution q ∈ �1
loc(R) of (3.1.1) is said to be diffusively

spectrally stable provided the following conditions hold:

(i) the spectrum of the linear operator A[q] given by (3.1.4) and acting in !2(R) satisfies

f!2 (R) (A[q]) ⊂ {_ ∈ C : <(_) < 0} ∪ {0};

(ii) there exists \ > 0 such that for any b ∈ [−c/), c/)) the real part of the spectrum of the Bloch

operator Ab [q] := 4−8bGA[q]48bG acting on !2
per(0, )) satisfies

<
(
f!2

per (0,)) (Ab [q])
)
≤ −\b2;

(iii) _ = 0 is a simple eigenvalue of A0 [q] with associated eigenvector the derivative q′ of the

periodic wave.3

This stability notion was first introduced in [31] for more general classes of viscous conservation

and balance laws, and is stated here in the context of (3.1.1). The properties (i)-(iii) in this definition

are the main assumptions required for the present analysis. Recall from Section 1.3.1 that Floquet-

Bloch theory shows that the spectrum ofA[q] acting on !2(R) is equal to the union of the spectra

of the Bloch operators Ab [q] acting on !2
per(0, )) for b ∈ [−c/), c/)). Similarly, in Section

1.3.4 we showed that, for subharmonic perturbations, the spectrum of the operator A[q] acting

on !2
per(0, #)) is the union of the spectra of the Bloch operators Ab [q] acting on !2

per(0, )) for

b ∈ Ω# , which is defined in (1.3.10) as a discrete subset of the interval [−c/), c/)) such that

2This is a result of their construction, which is based on center manifold techniques.
3Recall, by our slight abuse of notation above, here we are writing q′ instead of the technically correct (q′A , q′8).

77



48b#) = 1. Recall from Remark 1.3.3 that this implies that diffusively spectrally stable periodic

waves are spectrally stable for all subharmonic perturbations. In particular, we concluded that for

such perturbations, the spectrumofA[q] is purely point spectrum consisting of isolated eigenvalues

with finite algebraic multiplicities, _ = 0 is a simple eigenvalue, with associated eigenvector the

derivative q′ of the periodic wave, and the remaining eigenvalues have negative real parts, satisfying

the spectral gap condition

<
(
f!2

per (0,#)) (A[q]) \ {0}
)
≤ −X# , (3.1.6)

for some X# > 0. As the eigenvalues of the Bloch operatorsAb [q] depend continuously on b, it is

not difficult to see that the spectral gap X# above tends to 0, as # →∞. For more information, see

Section 1.3

For the periodic waves bifurcating from the dnoidal solutions of the NLS equation, the authors

proved in [19] that some of these are spectrally stable to co-periodic perturbations. That this spectral

stability corresponds to nonlinear stability was recently established in [67, Theorem 1]. The power

of this result is that it reduces the problem of nonlinear stability for co-periodic perturbations to

a spectral problem which, in turn, may be amenable to well-conditioned analytical and numerical

methods. Furthermore, the proof of this result can be easily extended to subharmonic perturbations,

leading to the following nonlinear stability result for diffusively spectrally stable periodic standing

solutions of (3.1.1).

Theorem 3.1.2. Let q ∈ �1
loc(R) be a )-periodic standing solution of (3.1.1) and fix # ∈ N.

Assume that q is diffusively spectrally stable in the sense of Definition 1.3.1 and, for each # ∈ N,

take X# > 0 such that (3.1.6) holds. Then for each # ∈ N, q is asymptotically stable to subharmonic

#)-periodic perturbations. More precisely, for every X ∈ (0, X# ) there exists an Y = YX > 0 and

a constant � = �X > 0 such that whenever D0 ∈ �1
per(0, #)) and ‖D0 − q‖�1 (0,#)) < Y, then the
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solution D of (3.1.1) with initial data D(0) = D0 exists globally in time and satisfies

‖D(·, C) − q(· − W∞)‖�1 (0,#)) ≤ �4−XC ‖D0 − q‖�1 (0,#)) ,

for all C > 0, where W∞ = W∞(#) is some real constant.

The key to the proof of Theorem 3.1.2, which is presented in [67] for # = 1, is a careful estimate

of the resolvent operator, which allows one to apply the Gearhart-Prüss theorem and obtain an

exponential decay rate for the semigroup generated by the linear operator A[q]. Specifically, one

shows that for each X ∈ (0, X# ) there exists a constant � = �X > 0 such that

4A[q]C (1 − P0,#
)
5


�1 (0,#))

≤ �4−XC ‖ 5 ‖�1 (0,#)) (3.1.7)

for all 5 ∈ �1
per(0, #)), where here P0,# is the rank-one spectral projection onto the #)-periodic

kernel of A[q]: see Remark 3.2.6(ii) for more details. Equipped with this linear exponential

decay result, the remainder of the proof of Theorem 3.1.2 follows from standard nonlinear iteration

arguments: for details, see [67]. We point out that using Strichartz-type estimates, the nonlinear

stability result in Theorem 3.1.2 can be extended to !2-subharmonic perturbations [4].

An important observation concerning Theorem 3.1.2 is that it lacks uniformity in # in two

(related) aspects. Indeed, note that both the exponential rate of decay, specified by X, as well as the

allowable size of initial perturbations, specified by Y = YX, are controlled completely in terms of

the size of the spectral gap X# > 0 of the linearized operator A[q] in (3.1.6). Since X# → 0 as

# → ∞, it follows that both X and Y chosen in Theorem 3.1.2 necessarily tend to zero as # → ∞

and that, consequently, the nonlinear stability result Theorem 3.1.2 is empty in the limit # = ∞.

Note that at the linear level, the lack of uniformity in the allowable size of the initial perturbations

is due to the fact that � = �X →∞ as X→ 0 in (3.1.7).

In light of the above observations, it is therefore natural to ask if there is a way to obtain a

stability result to subharmonic, i.e. #)-periodic, perturbations which is uniform in # . In such a

result, one should require that both the rate of decay and allowable size of the initial perturbations
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are uniform in # , thus depending only on the background wave q. At the linear level, this would

correspond to proving the existence of a non-negative function 6 : (0,∞) → (0,∞) with 6(C) → 0

as C →∞ such that an inequality of the form

4A[q]C (1 − P0,#
)
L(!2

per (0,#)))
≤ 6(C)

holds for all # ∈ N and C > 0. Our main result, stated below, shows that establishing such a

uniform linear estimate is possible for the LLE (3.1.1), with polynomial rates of decay instead

of exponential. Further, it gives additional insight into the long-time dynamics of subharmonic

perturbations.

Theorem 3.1.3 (Uniform Subharmonic Linear Asymptotic Stability). Suppose q ∈ �1
loc(R) is a

)-periodic standing wave solution of (3.1.1) that is diffusively spectrally stable, in the sense of

Definition 1.3.1. For each # ∈ N let

P0,# : !2
per(0, #)) → span{q′}

be the spectral projection of !2
per(0, #)) onto the #)-periodic kernel of A[q]. Then there exists

a constant � > 0 such that for every # ∈ N and 5 ∈ !1
per(0, #)) ∩ !2

per(0, #)) we have

4A[q]C (1 − P0,# ) 5

!2

per (0,#))
≤ � (1 + C)−1/4‖ 5 ‖!1

per (0,#))∩!2
per (0,#)) (3.1.8)

valid for all C > 0. Furthermore, there exists a constant � > 0 such that for all # ∈ N and

5 ∈ !1
per(0, #)) ∩ !2

per(0, #)) there exists a #)-periodic function W# (·, C) = W# (·, C; 5 )W# (·, C) −
〈
q′,P0,# 5

〉
!2

per (0,))

‖q′‖2
!2

per (0,))


!2

per (0,#))

≤ � (1 + C)−1/4‖ 5 ‖!1
per (0,#))∩!2

per (0,#)) (3.1.9)

and 4A[q]C 5 − q′W# (·, C)
!2

per (0,#))
≤ � (1 + C)−3/4‖ 5 ‖!1

per (0,#))∩!2
per (0,#)) , (3.1.10)
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for all C > 0.

Remark 3.1.4. More than above, we show in Section 3.5 below that the polynomial rates in Theorem

3.1.3 in fact provide sharp uniform rates of decay for subharmonic perturbations. Moreover, observe

that the uniform polynomial rates of decay require control of the initial data in !1. As we will see

in our analysis, this is due to the fact that linear diffusion equation does not exhibit decay from

!2(R) to !2(R), but does from !1(R) to !2(R): see Remark 3.3.1 below.

To interpret the above result, suppose that k(G, C) is a solution of (3.1.1) with initial data

k(G, 0) = q(G) + Y 5 (G) with |Y | � 1 and 5 ∈ !1
per(0, #)) ∩ !2

per(0, #)). By (3.1.8) it follows that,

at the linear level, for Y ≠ 0 sufficiently small, the solution k essentially behaves for large time like

k(G, C) ≈ q(G) + YP0,# 5 (G) = q(G) + Y

〈
q′,P0,# 5

〉
!2

per (0,))

‖q′‖2
!2

per (0,))
q′ ≈ q ©«G + Y

〈
q′,P0,# 5

〉
!2

per (0,))

‖q′‖2
!2

per (0,))

ª®¬ ,
corresponding to standard asymptotic (orbital) stability of q with asymptotic phase. This recovers

(again, at the linear level) the asymptotic stability result in Theorem 3.1.2, but now with asymptotic

rates of decay which are uniform in # . Further than this, Theorem 3.1.3 implies that there exists a

function W# (G, C) which is #)-periodic in G such that

k(G, C) ≈ q(G) + YW# (G, C)q′(G) ≈ q(G + YW# (G, C)), C � 1,

with, by (3.1.10), a faster rate of convergence (in time), giving a refined insight into the long-time

local dynamics near q (described by a space-time dependent translational modulation) beyond the

more standard asymptotic stability as in Theorem 3.1.2. As a consistency check, note that (3.1.9)

implies that as C → ∞ the function W# (·, C) tends to the asymptotic phase predicted by (3.1.8). As

we will see, the incorporation of such a space-time dependent modulation function is key to our

analysis and is precisely what allows us to obtain such uniform decay rates.

The key observation is that the bounds on the evolution semigroups and the linear rates of

decay obtained in Theorem 3.1.3 on subharmonic perturbations are uniform in # . It turns out
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that these uniform decay rates are precisely the linear decay rates one obtains by considering the

semigroup 4A[q]C as acting on !2(R), i.e., they agree exactly with the linear rates of decay for

localized perturbations. That the decay rate to localized perturbations should uniformly control

all subharmonic perturbations may be formally motivated by observing that, up to appropriate

translations, a sequence of #)-periodic functions may converge as # →∞ to a function in !2(R)

locally in space.

Based on the above comments, it shouldn’t be surprising that the general methodology used for

the proof of Theorem 3.1.3 ismodeled off of the associated linear analysis to localized perturbations.

The localized analysis, in turn, is largely based off the work [31] and, for completeness and to

motivate the approach towards the proof of Theorem 3.1.3, we review the localized analysis in

Section 3.3 below. In particular, we obtain the following result.

Theorem 3.1.5 (Localized Linear Asymptotic Stability). Suppose q ∈ �1
loc(R) is a )-periodic

standing wave solution of (3.1.1) that is diffusively spectrally stable, in the sense of Definition

1.3.1. Then there exists a constant � > 0 such that for any 5 ∈ !1(R) ∩ !2(R) we have

4A[q]C 5 
!2 (R)

≤ � (1 + C)−1/4‖ 5 ‖!1 (R)∩!2 (R) , (3.1.11)

for all C > 0. Furthermore, there exists a constant � > 0 such that for each 5 ∈ !1(R) ∩ !2(R)

there exists a function W(·, C) = W(·, C; 5 ) such that

‖W(·, C)‖!2 (R) ≤ � (1 + C)−1/4‖ 5 ‖!1 (R)∩!2 (R)

and 4A[q]C 5 − q′W(·, C)
!2 (R)

≤ � (1 + C)−3/4‖ 5 ‖!1 (R)∩!2 (R) , (3.1.12)

for all C > 0.

The proofs of both Theorem 3.1.3 and Theorem 3.1.5 rely on a delicate decomposition of the

semigroup 4A[q]C acting on the appropriate underlying space (!2
per(0, #)) and !2(R), respectively).
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While the decomposition is similar in the two cases, the subharmonic result in Theorem 3.1.3

requires an additional level of decomposition which is not needed in the localized case. As we

will see in Section 3.4 below, our proof of Theorem 3.1.3 connects to both the exponential decay

result in Theorem 3.1.2 as well as the localized result in Theorem 3.1.5. Indeed, we will see that if

one fixes # ∈ N then the (linear) exponential decay of #)-periodic perturbations follows naturally

from our methodology. Further, by formally taking # →∞ we see that the result in Theorem 3.1.3

recovers the localized result in Theorem 3.1.5. For instance, we will see that, formally at least, the

#)-periodic modulation function W# in Theorem 3.1.3 satisfies

lim
#→∞

W# (G, C) = W(G, C),

where here W is the localized modulation function from Theorem 3.1.5. In this way, our work both

expands and unifies several previous works in the literature.

Remark 3.1.6. During our proof of Theorem 3.1.3, we will also see how the techniques presented

provide exponential decay results of the form (3.1.7) with a constant � > 0 which is uniform in # .

This extends the key linear estimate (3.1.7) used in [67] to establish Theorem 3.1.2.

We also emphasize that our methodology used in the proofs of Theorem 3.1.3 and Theorem

3.1.5 is quite general and applies more broadly than for the LLE (3.1.1). As mentioned previously,

our arguments are motivated by the recent work [31] which, in turn, was based on a sequence of

previous works [34, 39, 37, 36, 29, 30, 2] by the same authors, all of which were eventually based

on the seminal work of Schneider [59, 60]. In fact, our work relies on only a few key features of the

linearized operator A[q]. Namely, Theorems 3.1.3 and Theorem 3.1.5 continue to hold provided

the following properties are satisfied:

(i) The wave q is diffusively spectrally stable, as defined in Definition 1.3.1.

(ii) The operator A[q] generates �0-semigroups on !2(R) and !2
per(0, #)), and for each b ∈

[−c/), c/)) the Bloch operators Ab [q] generate �0-semigroups on !2
per(0, )).
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(iii) There exist positive constants `0 and�0 such that for each b ∈ [−c/), c/)) the Bloch resolvent

operators satisfy

‖(8` − Ab [q])−1‖L(!2
per (0,))) ≤ �0, for all |` | > `0. (3.1.13)

Consequently, our work sets forth a general methodology for establishing analogous (linear) results

to Theorem 3.1.3 and Theorem 3.1.5 in more general contexts. Further, note that the conditions

(i)-(iii) above are slightly more general than the corresponding assumptions used in [31]. For our

analysis of the LLE (3.1.1), the first property above is the main assumption, that we know it holds

at least for the periodic waves q` given by (3.1.5), and the other two properties are proved in

Section 3.2.

Of course, it is natural to ask if our linear results can be extended to a result pertaining to the

nonlinear dynamics of the LLE (3.1.1). Although the linear estimate (3.1.11) suggests algebraic

decay of !2(R) perturbations, we will see in Remark 5.4.3 below that the (1 + C)−1/4 decay is

insufficient to close the corresponding nonlinear iteration scheme. The refined linear estimate

(3.1.12), however, suggests that the incorporation of a spatio-temporal phase modulation may

allow for sufficiently fast decay. Unfortunately, as we will see in Section 3.6 and the following

chapters, the incorporation of such a spatially-dependent modulation function introduces a loss of

derivatives in the nonlinear iteration scheme. Such a phenomena is well known in the context of

reaction diffusion equations and systems of conservation laws, where the loss of derivatives can

be compensated by a nonlinear damping effect which slaves high Sobolev norms to low Sobolev

norms – see, for example, Remark 3.6.1 and Chapter 4 below. However, such nonlinear damping

techniques rely heavily on the damping in the governing evolution equation to correspond to the

highest-order spatial derivative present. In the case of the LLE, unfortunately, damping appears

as the lowest-order derivative and hence one has no hope of regaining derivatives through such

nonlinear damping estimates. Circumventing this issue, in the case of localized perturbations, will

be taken up in Chapter 5.
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The outline for this chapter is as follows. In Section 3.2, we collect the properties of the Bloch

operators associated to A[q] required for our analysis. We describe their spectral properties,

then establish the existence and basic decay properties of the corresponding Bloch semigroups.

Section 3.3 is dedicated to the proof of the localized result Theorem 3.1.5, which in turn serves

as motivation for our proof of Theorem 3.1.3, which is presented in Section 3.4. In Section 3.5,

we present a technical bound which establishes that the decay rates for localized perturbations in

Theorem 3.1.5 in fact provide sharp uniform decay rates for subharmonic perturbations. The proof

of this key bound is given in Appendix 3.A. Finally, in Section 3.6 we describe the mathematical

challenges encountered in establishing the corresponding nonlinear stability of diffusively spectrally

stable periodic standing solutions of the LLE (3.1.1). Throughout our work, we aim to make clear

the ways in which our analysis unifies and expands previous works, as well as its ability to be

generalized to other contexts.

3.2 Spectral Preparation & Properties of Bloch Semigroups

In this section, we prove several preliminary results. In particular, we establish some spectral

properties and semigroup estimates for the Bloch operators obtained from the LLE (3.1.1).

Assuming that q ∈ �1
loc(R) is a diffusively spectrally stable )-periodic stationary solution of

the profile equation (3.1.2), we now consider the linear operatorsA[q] andAb [q] found from the

LLE (3.1.1). Recall that A[q] is given by (3.1.4) from which we find the Bloch operators

Ab [q] = −� + JLb [q], (3.2.1)

with

J =
©«

0 −1

1 0

ª®®¬ , Lb [q] =
©«
−V(mG + 8b)2 − U + 3q2

A + q2
8

2qAq8

2qAq8 −V(mG + 8b)2 − U + q2
A + 3q2

8

ª®®¬ .
Our first lemma summarizes the spectral properties of the Bloch operatorsAb [q] which directly
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follow from the definition of diffusive spectral stability.

Lemma 3.2.1 (Spectral Preparation). Suppose q ∈ �1
loc(R) is a diffusively spectrally stable )-

periodic stationary solution of the LLE (3.1.1). Then the following properties hold.

(i) For any fixed b0 ∈ (0, c/)), there exists a positive constant X0 such that

<f(Ab [q]) < −X0,

for all b ∈ [−c/), c/)) with |b | > b0.

(ii) There exist positive constants b1, X1, and 3 such that for any |b | < b1 the spectrum of Ab [q]

decomposes into two disjoint subsets

f(Ab [q]) = f−(Ab [q]) ∪ f0(Ab [q]),

with the following properties:

(a) <f−(Ab [q]) < −X1 and<f0(Ab [q]) > −X1;

(b) the set f0(Ab [q]) consists of a single negative eigenvalue _2 (b) which is analytic in b and

expands as

_2 (b) = 80b − 3b2 + O(b3),

for |b | � 1 for some 0 ∈ R and 3 > 0;

(c) the eigenfunction associated to _2 (b) is analytic near b = 0 and expands as

Φb (G) = q′(G) + O(b),

where q′ is the derivative of the )-periodic solution q.

Proof. The first part is an immediate consequence of the properties (i) and (ii) in theDefinition 1.3.1.

To prove the second part, observe that since _ = 0 is a simple, isolated eigenvalue of A0 [q], and
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sinceAb [q] depend continuously on b, standard spectral perturbation theory implies the continuous

dependence on b of the eigenvalue _2 (b) and of its associated eigenvector Φb (G). �

Remark 3.2.2. In the case where the background wave q is even (up to translation), a simple

symmetry argument implies that 0 = 0 in the expansion of _2 (b) above. Note that the diffusively

spectrally stable solutions (3.1.5) constructed and studied via bifurcation theory in [11, 12] are all

even. For more general waves, however, one may have 0 ≠ 0.

Our next result establishes that the linearized operatorA[q] and its associated Bloch operators

generate �0-semigroups. The proof is elementary and relies on a decomposition of these operators

into a constant coefficient operator plus a bounded perturbation. Specifically, we establish the

following result (see also [67, Lemma 1]).

Lemma 3.2.3. Assume that q ∈ �1
loc(R) is a )-periodic solution of the stationary LLE (3.1.2). The

linear operator A[q] acting in either !2(R) or !2
per(0, #)) generates a �0 semigroup. Similarly,

for each b ∈ [−c/), c/)) the Bloch operatorsAb [q] acting in !2
per(0, )) generate�0-semigroups.

Proof. The proofs being the same in the three cases, we only consider the Bloch operators Ab [q]

acting in !2
per(0, )). From (3.2.1) we see that Ab [q] is a bounded perturbation of the operator

A0
b = −V(mG + 8b)

2J .

Since bounded perturbations of generators of �0-semigroups also generate a �0-semigroups [54,

Theorem 1.1, Section 3.1], it remains to prove the result for the operator A0
b
. This operator is

closed on !2
per(0, )) with domain �2

per(0, )) and has constant coefficients. Using Fourier analysis,

it is then straightforward to check that its spectrum lies on the imaginary axis 8R and that for any

complex number _ in its resolvent set the norm of the resolvent operator is given by

‖(_ − A0
b )
−1‖L(!2

per (0,))) =
1

dist(_, f(A0
b
))
.
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Consequently, for any complex number _ with<_ > 0 we have

‖(_ − A0
b )
−1‖L(!2

per (0,))) =
1
<_ .

Together with the Hille-Yosida theorem (e.g., see [42, Chapter IX.2]) this implies thatA0
b
generates

a �0-semigroup which proves the lemma. �

The next step consists in proving the resolvent estimate (3.1.13) for the Bloch operatorsAb [q]

given by the LLE (3.1.1)4.

Lemma 3.2.4. Suppose q ∈ �1
loc(R) is a diffusively spectrally stable)-periodic stationary solution

of the LLE (3.1.1). There exist positive constants `0 and �0 such that for each b ∈ [−c/), c/))

the Bloch resolvent operators satisfy

‖(8` − Ab [q])−1‖L(!2
per (0,))) ≤ �0, for all |` | > `0. (3.2.2)

Proof. For b = 0 this result has been proved in [67, Proposition 1]. It can be easily extended to

b ∈ [−c/), c/)) by replacing the (spatial) Fourier frequency : in their expression of the linear

operator by : + b. �

Combining the result in this lemma with the spectral properties in Lemma 3.2.1, we obtain the

following estimates for the Bloch semigroups 4Ab [q]C .

Proposition 3.2.5. Suppose q ∈ �1
loc(R) is a diffusively spectrally stable )-periodic stationary

solution of the LLE (3.1.1). Then the following properties hold.

(i) For any fixed b0 ∈ (0, c/)), there exist positive constants �0 and [0 such that

4Ab [q]C

L(!2

per (0,)))
≤ �04

−[0C ,

for all C ≥ 0 and all b ∈ [−c/), c/)) with |b | > b0.

4For the periodic waves q` given by (3.1.5) this result can be easily proved using perturbation arguments, since the
operators are in this case small bounded perturbations of operators with constant coefficients.
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(ii) With b1 chosen as in Lemma 3.2.1 (ii), there exist positive constants�1 and [1 such that for any

|b | < b1, if Π(b) is the spectral projection onto the (one-dimensional) eigenspace associated

to the eigenvalue _2 (b) given by Lemma 3.2.1 (ii), then

4Ab [q]C (� − Π(b))

L(!2

per (0,)))
≤ �14

−[1C ,

for all C ≥ 0.

Proof. We use the Gearhart-Prüss theorem5 to prove the result. The absence of purely imaginary

spectrum for the Bloch operatorsAb [q] for b ≠ 0, implies that the resolvent estimate (3.2.2) holds

for any purely imaginary number 8`, uniformly for all b ∈ [−c/), c/)) with |b | > b0, for some

fixed b0 ∈ (0, c/)). The Gerhart-Prüss theorem then implies the result in the first part of the

lemma. The second part follows in the same way, noting that the operatorAb [q] (� −Π(b)) has no

purely imaginary spectrum for any b ∈ [−c/), c/)). �

Remark 3.2.6. (i) In the context of the LLE, the resolvent estimate (3.2.2) actually holds for any

complex number _ = X + 8` with X > −1 and |` | > `X, for some `X > 0, which is the analogue

for b ≠ 0 of the result obtained in [67, Proposition 1] for b = 0. As a consequence, one can

better characterize the exponential rates of decay in Proposition 2.6 by showing that

0 < [0 < −max
{
<f(Ab [q]); b ∈ [−c/), c/)), |b | > b0

}
,

and

0 < [1 < −max
{
<

(
f(Ab [q]) \ {_2 (b)}

)
; |b | < b1

}
.

For our purposes, however, we do not need this more precise characterization.

(ii) Together with the Floquet-Bloch theory for subharmonic perturbations from Section 1.3.4, the

result in Proposition 3.2.5 gives the following estimate for the �0-semigroup generated by

5Technically, we are using a slight extension of the Gearhart-Prüss theorem, requiring uniform boundedness of the
resolvent on the imaginary axis as opposed to a half plane. See [16, Corollary 2] for a proof of this extension.
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A[q] when acting in !2
per(0, #)),

4A[q]C (1 − P0,# ) 5

!2

per (0,#))
≤ �#4−3# C ,

for all C ≥ 0, where P0,# is the spectral projection of !2
per(0, #)) onto the #)-periodic kernel

of A[q] in Theorem 3.1.3. The above remark implies that 3# ∈ (0, X# ), where X# is given

by (3.1.6). This is the exponential decay rate for the semigroup generated byA[q] mentioned

in the introduction to this chapter and required to prove the result in Theorem 3.1.2.

3.3 Linear Asymptotic Modulational Stability to Localized Perturbations

Recall from the introduction to this chapter that our goal is to obtain uniform rates of decay for

subharmonic perturbations of a given )-periodic stationary solution of (3.1.1). Our argument,

which will be presented in Section 3.4 below, is largely motivated by and modeled after the stability

analysis to perturbations that are localized on R. As such, we first consider the case of localized

perturbations and present the proof of Theorem 3.1.5. We emphasize that the proof of Theorem

3.1.5 follows the general methodology introduced in [31] for the stability of periodic waves in

general conservation or balance laws to classes of both localized and non-localized6 perturbations.

Nevertheless, we briefly outline the argument, for motivational purposes, as it applies to (3.1.1).

Following [31], the general strategy of the proof of Theorem 3.1.5 is to use the Bloch transform

to obtain estimates on the semigroup 4A[q]C from estimates on the Bloch semigroups 4Ab [q]C in

Proposition 3.2.5. To this end, our goal is to decompose the semigroup 4A[q]C as

4A[q]C = “Critical Part” + “Exponentially Damped Part”,

where, owing to Lemma 3.2.1, the “critical part” should be dominated by the translation mode q′.

Note throughout this section, we adopt the notation � . � to mean there exists a constant � > 0

6In [31] the authors results cover the case when the perturbation slightly changes the phase at infinity of the
underlying wave. We do not consider such an extension here.
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such that � ≤ ��.

Let E ∈ !1(R) ∩ !2(R). We begin by decomposing 4A[q]C into low-frequency and high-

frequency components: with b1 defined as in Proposition 3.2.5, let d be a smooth cutoff function

with d(b) = 1 for |b | < b1/2 and d(b) = 0 for |b | > b1 and use (1.3.9) to write

4A[q]CE(G) = 1
2c

∫ c/)

−c/)
d(b)48bG4Ab [q]C Ě(b, G)3b + 1

2c

∫ c/)

−c/)
(1 − d(b))48bG4Ab [q]C Ě(b, G)3b

=: (; 5 (C)E(G) + (ℎ 5 (C)E(G),
(3.3.1)

where (; 5 and (ℎ 5 denote the low- and high-frequency components of the solution operator 4A[q]C ,

respectively. According to Lemma 3.2.1, the spectrum of the Bloch operatorsAb [q] have a uniform

spectral gap on the support of (1 − d(b)) and hence, by Parseval’s identity (1.3.8) and Proposition

3.2.5, there exists a constant [ > 0 such that

(ℎ 5 (C)E2
!2 (R) =

1
2c)

∫ c/)

−c/)

(1 − d(b))4Ab [q]C Ě(b, G)
2

!2 (0,))
3b . 4−[C ‖E‖!2 (R) (3.3.2)

valid for all E ∈ !2(R). It thus remains to study the low-frequency component of the solution

operator.

To this end, we further decompose (; 5 (C) into the contribution from the critical mode near

(_, b) = (0, 0) and the contribution from the low-frequency spectrum bounded away from _ = 0.

Accordingly, for each |b | < b1 let Π(b) be the spectral projection onto the critical mode of Ab [q]

as defined in Proposition 3.2.5, and note it is given explicitly via

Π(b)6(G) =
〈
Φ̃b , 6

〉
!2 (0,))

Φb (G), (3.3.3)

where Φ̃b is the element in the kernel of the adjointAb [q]∗−_2 (b)� satisfying
〈
Φ̃b ,Φb

〉
!2 (0,))

= 1.

We can thus decompose (; 5 (C) as

(; 5 (C)E(G) =
1

2c

∫ c/)

−c/)
d(b)48bG4Ab [q]CΠ(b)Ě(b, G)3b
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+ 1
2c

∫ c/)

−c/)
d(b)48bG4Ab [q]C (1 − Π(b))Ě(b, G)3b

=: (2 (C)E(G) + (̃; 5 (C)E(G). (3.3.4)

Using Parseval’s identity (1.3.8) and Proposition 3.2.5 again, it follows that, by possibly choosing

[ > 0 above smaller, (̃; 5 (C)E
!2 (R)

. 4−[C ‖E‖!2 (R) (3.3.5)

valid for all E ∈ !2(R).

For the critical component (2 (C) of the solution operator, note that for any E ∈ !2(R) we have

4Ab [q]CΠ(b)Ě(b, G) = 4_2 (b)CΦb (G)
〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

= 4_2 (b)C
(
q′ + 8b

(
Φb (G) − q′(G)

8b

)) 〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

,

where we note by Lemma 3.2.1 that

sup
G∈R

(
sup

b∈[−c/),c/))

����d(b) (Φb (G) − q′(G)8b

)����) . 1. (3.3.6)

We may thus decompose (2 further as

(2 (C)E(G) = q′(G)
1

2c

∫ c/)

−c/)
d(b)48bG+_2 (b)C

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

3b

+ 1
2c

∫ c/)

−c/)
d(b)48bG+_2 (b)C8b

(
Φb (G) − q′(G)

8b

) 〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

3b

= q′(G)B? (C)E(G) + (̃2 (C)E(G).

(3.3.7)

Now, observe that by definition (see (1.3.7)) we have

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

=

∫ )

0
Φ̃b (G)

∑
ℓ∈Z

42c8ℓG/) Ê(b + 2cℓ/)) 3G

=
∑
ℓ∈Z

Ê(b + 2cℓ/))
∫ )

0
Φ̃b (G)42c8ℓG/)3G
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=
∑
ℓ∈Z

Ê(b + 2cℓ/))̂̃Φb (2cℓ/))
and hence, since |Ê(I) | ≤ ‖E‖!1 (R) for all I ∈ R, we have

d(b)
����〈Φ̃b , Ě(b, ·)〉

!2 (0,))

����2 ≤ d(b) (∑
ℓ∈Z
|Ê(b + 2cℓ/)) |

���̂̃Φb (2cℓ/))���)2

≤ d(b)‖E‖2
!1 (R)

(∑
ℓ∈Z
(1 + |ℓ |2)1/2

���̂̃Φb (2cℓ/))��� (1 + |ℓ |2)−1/2
)2

(3.3.8)

. ‖E‖2
!1 (R) sup

b∈[−c/),c/))

(
d(b)

Φ̃b2

�1
per (0,))

)
,

where the final inequality follows by the Cauchy-Schwarz inequality. Using Parseval’s identity

(1.3.8) it follows that the phase shift component of (2 satisfies

B? (C)E!2 (R) =

(
1

2c)

∫ c/)

−c/)

d(b)4_2 (b)C 〈Φ̃b , Ě(b, ·)〉
!2 (0,))

2

!2 (0,))
3b

)1/2

. ‖4−3b2C ‖!2
b
(R) ‖E‖!1 (R)

. (1 + C)−1/4‖E‖!1 (R)

(3.3.9)

and, similarly,

(̃2 (C)E
!2 (R)

. ‖b4−3b2C ‖!2
b
(R) ‖E‖!1 (R) . (1 + C)−3/4‖E‖!1 (R) , (3.3.10)

where the bounds on ‖4−3b2C ‖!2
b
(R) and ‖b4−3b

2C ‖!2
b
(R) follow from an elementary scaling analysis.

In summary, for each E ∈ !1(R) ∩ !2(R) we have the decomposition

4A[q]CE(G) = q′(G)B? (C)E(G) + (̃2 (C)E(G) + (̃; 5 (C)E(G) + (ℎ 5 (C)E(G), (3.3.11)

where the operators B? (C) and (̃2 (C) are defined in (3.3.7), and where the operators (̃; 5 (C) and

(ℎ 5 (C) are defined in (3.3.4) and (3.3.1), respectively. Recalling the estimates (3.3.9)-(3.3.10),
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valid for all C ≥ 0, as well as the exponential decay estimates (3.3.5) and (3.3.2) on (̃; 5 (C) and

(ℎ 5 (C), respectively, the proof of Theorem 3.1.5 follows by setting W(G, C) :=
(
B? (C)E

)
(G).

Remark 3.3.1. Note that to obtain !2 → !2 bounds on B? and (̃2 above, one would use in place

of (3.3.8) the slightly sharper estimate

d(b)
����〈Φ̃b , Ě(b, ·)〉

!2 (0,))

����2 ≤ d(b) Φ̃b2

!2 (0,))
‖Ě(b, ·)‖2

!2 (0,))

which, by Parseval, would then lead to the bounds

‖B? (C)E‖!2 (R) . ‖4−3b
2C ‖!∞

b
(R) ‖E‖!2 (R) . ‖E‖!2 (R)

and

‖(̃2 (C)E‖!2 (R) . ‖b4−3b
2C ‖!∞

b
(R) ‖E‖!2 (R) . (1 + C)−1/2‖E‖!2 (R)

In particular, since B? (C) does not exhibit decay from !2 to !2, the final decomposition (3.3.11)

implies only a bounded linear stability from !2 to !2. The faster polynomial rates of decay in

(3.3.9)-(3.3.10) rely on being able to control the initial perturbation in !1 as well, and introduces

diffusive rates of decay of perturbations.

Finally, we end our study of the localized analysis by describing at a finer level the long-time

dynamics of the modulation function W in Theorem 3.1.5. Note that from the explicit form of the

phase operator B? (C) defined in (3.3.7) it is natural to expect that for a given E ∈ !2(R) the function

B? (C)E should be well approximated (for at least large time) by the function

(F(C)E) (G) :=
1

2c

∫ c/)

−c/)
d(b)48bG+(80b−3b2)C

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

3b. (3.3.12)

Precisely, following the techniques from above we have the bound

B? (C)E − F(C)E!2 (R) =

 1
2c

∫ c/)

−c/)
48bGd(b)

(
4_2 (b)C − 4(80b−3b2)C

) 〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

3b


!2 (R)
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.
4−3b2C

(
4(_2 (b)−(80b−3b

2))C − 1
)
!2
b
(R)
‖E‖!1 (R)

.
4−3b2Cb3C


!2
b
(R)
‖E‖!1 (R)

. (1 + C)−3/4‖E‖!1 (R) .

Noting that the above F(G, C) := (F(C)E) (G) defined in (3.3.12) is the unique solution of the linear

diffusion IVP


FC = 0FG + 3FGG

F(G, 0) = B? (0)E(G) =
1

2c

∫ c/)

−c/)
d(b)48bG

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

3b.

(3.3.13)

posed on !2(R), this establishes the following result concerning the behavior of the modulation

function W(G, C) from Theorem 3.1.5.

Corollary 3.3.2 (Asymptotic Modulational Behavior). Under the hypotheses of Theorem 3.1.5, for

each E ∈ !1(R) ∩ !2(R) the modulation function W satisfies the estimate

‖W(·, C) − F(·, C)‖!2 (R) . (1 + C)−3/4‖E‖!1 (R)∩!2 (R)

valid or all C > 0, where here F is the solution to the linear heat equation

FC = −8_′2 (0)FG −
1
2
_′′2 (0)FGG , G ∈ R, C > 0

with initial data prescribed as in (3.3.13).

Remark 3.3.3. To place the final calculations above in a broader context, we note that the PDE

in (3.3.13) corresponds to the Whitham modulation equation associated to (3.1.1). Following the

work in [31, Appendix B] it is possible to show through a formal multiple scales analysis that an
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approximate solution to the profile equation (3.1.2) is given by

k(G, C) ≈ k̃ (Ψ(G, C))

where the wave number : := ΨG satisfies the Whitham equation

:C = −8_′2 (0):G −
1
2
_′′2 (0):GG .

This suggests that the large time modulational behavior should be governed by a solutions of

the heat equation, which is precisely what is made rigorous through Corollary 3.3.2. For more

information on dynamical predictions of Whitham modulation equations, see [13, 31].

3.4 Linear Asymptotic Modulational Stability to Subharmonic Perturba-

tions

Motivated by the analysis in Section 3.3, we now strive to obtain decay rates on the semigroup

4A[q]C acting on classes of subharmonic perturbations which are uniform in # . As we will see,

the analysis is based on a decomposition of the solution operator 4A[q]C which is largely motivated

by the analysis in Section 3.3. One key difference, however, is that in the subharmonic case, the

eigenvalue _ = 0 is isolated from the remaining #)-periodic eigenvalues of A[q], which leads to

a slightly different decomposition of the solution operator near (_, b) = (0, 0) than used in Section

3.3 above.

For each # ∈ N and each ? ≥ 1, we set, for notational convenience,

!
?

#
:= !?per(0, #)).

Further, throughout the remainder of this chapter, we will use the previously introduced notation

� . � to indicate there exists a constant � > 0 which is independent of # such that � ≤ ��. Now,
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for fixed # ∈ N, let 5 ∈ !2
#
and recall from (1.3.16) that the action of the semigroup 4A[q]C on 5

can be represented through the use of the Bloch transform as7

4A[q]C 5 (G) = 1
#)

∑
b∈Ω#

48bG4Ab [q]CB) ( 5 ) (b, G),

where Ω# ⊂ [−c/), c/)) is defined in (1.3.10) as the set of Bloch frequencies corresponding to

#)-periodic perturbations and B) ( 5 ), defined in (1.3.13), denotes the )-periodic Bloch transform

of the #)-periodic function 5 .

Following the general procedure in Section 3.3, we begin by decomposing the subharmonic

solution operator into low-frequency and high-frequency parts. Letting d be a smooth cut-off

function as in Section 3.3, note for all 5 ∈ !2
#
we have

4A[q]C 5 (G) = 1
#)

∑
b∈Ω#

d(b)48bG4Ab [q]CB) ( 5 ) (b, G) +
1
#)

∑
b∈Ω#

(1 − d(b)) 48bG4Ab [q]CB) ( 5 ) (b, G)

=: (; 5 ,# (C) 5 (G) + (ℎ 5 ,# (C) 5 (G). (3.4.1)

To estimate the high-frequency component, we use the discrete Parseval identity (1.3.15) to get

‖(ℎ 5 ,# (C) 5 ‖2!2
#

=
1
#)2

∑
b∈Ω#

‖(1 − d(b))4Ab [q]CB) ( 5 ) (b, ·)‖2!2 (0,))

≤ 1
#)2

∑
b∈Ω#
(1 − d(b))2‖4Ab [q]C ‖2L(!2

per (0,)))
‖B) ( 5 ) (b, ·)‖2!2 (0,)) .

From Proposition 3.2.5, it follows from Lemma 3.2.1 and Proposition 3.2.5 that there exists a

constant [ > 0 such that

max
b∈Ω#
(1 − d(b))2‖4Ab [q]C ‖L(!2

per (0,))) . 4
−[C

7This representation formula is the analogue of (1.3.9) used in Section 3.3.
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yielding the exponential decay estimate

‖(ℎ 5 ,# (C) 5 ‖!2
#
. 4−[C

©« 1
#)2

∑
b∈Ω#

‖B) ( 5 ) (b, ·)‖2!2 (0,))
ª®¬

1/2

= 4−[C ‖ 5 ‖!2
#
, (3.4.2)

where the last equality again follows by Parseval’s identity (1.3.15).

Continuing on, to study the low-frequency component, let Π(b) be the rank-one spectral pro-

jection onto the critical mode ofAb [q] from Proposition 3.2.5 and note that (; 5 ,# (C) can be further

decomposed into the contribution from the critical mode near (_, b) = (0, 0) and the contribution

from the low-frequency spectrum bounded away from _ = 0 via

(; 5 ,# (C) 5 (G) =
1
#)

∑
b∈Ω#

d(b)48bG4Ab [q]CΠ(b)B) ( 5 ) (b, G)

+ 1
#)

∑
b∈Ω#

d(b)48bG4Ab [q]C (1 − Π(b))B) ( 5 ) (b, G)

=: (2,# (C) 5 (G) + (̃; 5 ,# (C) 5 (G).

(3.4.3)

Using Parseval’s identity (1.3.15) and Proposition 3.2.5 we know by possibly choosing [ > 0 above

even smaller, that

‖(̃; 5 ,# (C) 5 ‖!2
#
. 4−[C ‖ 5 ‖!2

#
. (3.4.4)

For the critical component of (2,# (C), note that by Lemma 1.3.5 the b = 0 term8 can be identified

as
1
#)

Π(0)B) ( 5 ) (0, G) =
1
#)

q′(G)
〈
Φ̃0,B) ( 5 ) (0, ·)

〉
!2 (0,))

=
1
#
q′(G)

〈
Φ̃0, 5

〉
!2
#

.

Since (3.3.3) and Lemma 3.2.1 imply the projection of !2
#
onto the #)-periodic kernel of A0 [q]

is given explicitly by9

P0,# 5 (G) =
1
#
q′(G)

〈
Φ̃0, 5

〉
!2
#

, (3.4.5)

8Observe the b = 0 term, corresponding to the projection onto the kernel ofA0 [q] does not experience any type of
temporal decay. Consequently, we factor it out of the remaining sums which, as we will see, do decay in time.

9Recall the left )-periodic eigenfunction Φ̃0 is normalized so that
〈
Φ̃0, q

′
〉
!2 (0,) )

= 1, and hence
〈
Φ̃0, q

′
〉
!2
#

= # .
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it follows from above that (2,# decomposes further as

(2,# 5 (G) = 4A0 [q]CP0,# 5 (G) +
1
#)

∑
b∈Ω# \{0}

d(b)48bG4_2 (b)CΦb (G)
〈
Φ̃b ,B) ( 5 ) (b, ·)

〉
!2 (0,))

= 4A[q]CP0,# 5 (G) + q′(G)
1
#)

∑
b∈Ω# \{0}

d(b)48bG4_2 (b)C
〈
Φ̃b ,B) ( 5 ) (b, ·)

〉
!2 (0,))

+ 1
#)

∑
b∈Ω# \{0}

d(b)48bG8b
(
Φb (G) − q′(G)

8b

)
4_2 (b)C

〈
Φ̃b ,B) ( 5 ) (b, ·)

〉
!2 (0,))

=: 4A[q]CP0,# 5 (G) + q′(G)B?,# (C) 5 (G) + (̃2,# (C) 5 (G).
(3.4.6)

Now, arguing as in (3.3.8) we find that

d(b)
����〈Φ̃b ,B) ( 5 ) (b, ·)〉

!2 (0,))

����2 . ‖ 5 ‖2!1
#

sup
b∈[−c/),c/))

(
d(b)

Φ̃b2

�1
per (0,))

)
,

and hence, recalling the bound (3.3.6) and that

���d(b)1/24_2 (b)C ��� . 4−3b2C

for some constant 3 > 0, it follows by Parseval’s identity (1.3.15) that

‖(̃2,# (C) 5 ‖2!2
#

=
1
#)2

∑
b∈Ω#

d(b)8b (
Φb (G) − q′(G)

8b

)
4_2 (b)C

〈
Φ̃b ,B) ( 5 ) (b, ·)

〉
!2 (0,))

2

!2
G (0,))

.
©« 1
#

∑
b∈Ω#

b24−23b2Cª®¬ ‖ 5 ‖2!1
#

. (3.4.7)

Furthermore, following similar steps as above we have the bound

B?,# (C) 5 2
!2
#

.
©« 1
#

∑
b∈Ω# \{0}

4−23b2Cª®¬ ‖ 5 ‖2!1
#

. (3.4.8)
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To complete the proof of Theorem 3.1.3, it remains to study the finite sums

1
#

∑
b 9∈Ω# \{0}

4
−23b2

9
C and

1
#

∑
b 9∈Ω#

b2
9 4
−23b2

9
C
. (3.4.9)

To obtain uniform (in #) rates of decay, note that both of the sums in (3.4.9) correspond to Riemann

sum approximations to the integrals10

∫ c/)

−c/)
4−23b2C3b and

∫ c/)

−c/)
b24−23b2C3b, (3.4.10)

which, through elementary scaling analysis (as in the previous section), decay like (1 + C)−1/2 and

(1+ C)−3/2, respectively. The next result uses this observation to obtain analogous decay bounds on

the discrete sums in (3.4.9).

Proposition 3.4.1. There exists a constant � > 0 such that for all # ∈ N and C > 0 we have

2c
#)

∑
b 9∈Ω# \{0}

4
−23b2

9
C ≤ � (1 + C)−1/2 (3.4.11)

and
2c
#)

∑
b 9∈Ω#

b2
9 4
−23b2

9
C ≤ � (1 + C)−3/2. (3.4.12)

Remark 3.4.2. The above bounds show that the polynomial decay rates on localized perturbations

obtained in Theorem 3.1.5 provide uniform (in #) upper bounds on the decay rates associated

to subharmonic perturbations, i.e. to perturbations with period #) for some # ∈ N. In the

next section, we sharpen these estimates and provide associated lower bounds on the subharmonic

decay rates, showing that, in fact, the localized decay rates provide sharp uniform bounds on

subharmonic perturbations. The proof of the upper bounds in Proposition 3.4.1, however, is based

on a substantially simpler monotonicity argument, which we now provide.

Proof of Proposition 3.4.1. We compare the sums in (3.4.11) and (3.4.12) with the integrals in

10Recalling from Remark 1.3.4 that Δb 9 = 2c/#) , we see that we technically need to multiply and divide by a
harmless factor of 2c/) .
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R-R

(2 dte)-1

f(ξ, t)

0 ξ

Figure 3.1: A schematic drawing of the function b ↦→ b24−23b2C used in the proof of Proposition
3.4.1. Note that the area under the supremumbetween−' ≤ b ≤ ' is 2'(23C4)−1 = 24−1(23C)−3/2.

(3.4.10). For (3.4.11), notice that, for each C > 0, the function b ↦→ 4−23b2C is monotonically

decreasing for b > 0 and monotonically increasing for b < 0. Together with the equality (b 9 −

b 9−1) = 2c/#) these monotonicity property imply that

2c
#)

∑
b 9∈Ω# \{0}

4
−23b2

9
C
=

∑
b 9∈Ω#
b 9<0

4
−23b2

9
C (b 9+1 − b 9 ) +

∑
b 9∈Ω#
b 9>0

4
−23b2

9
C (b 9 − b 9−1)

≤
∑
b 9∈Ω#
b 9<0

∫ b 9+1

b 9

4−23b2C3b +
∑
b 9∈Ω#
b 9>0

∫ b 9

b 9−1

4−23b2C3b

≤
∫ c/)

−c/)
4−23b2C3b,

(3.4.13)

which proves the inequality (3.4.11).

For (3.4.12), we have to slightly modify this argument because the function b ↦→ b24−23b2C does

not have the same monotonicity properties. Indeed, it has a global minimum at b = 0 and two

global maxima at b = ±' where

' = (23C)−1/2 and '24−23'2C = (23C4)−1;

see Figure 3.1. Then for 0 < C ≤ )2/23c2, the values ±' do not belong to the interval (−c/), c/))
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and we can easily estimate the sum in (3.4.12),

2c
#)

∑
b 9∈Ω#

b2
9 4
−23b2

9
C ≤ 2c

#)

∑
b 9∈Ω#

c2

)2 ≤
2c3

)3 . (3.4.14)

For C > )2/23c2, we consider the function

� C (b) :=


(23C4)−1, |b | ≤ '

b24−23b2C , ' < |b | ≤ c/)

which is nonincreasing for b > 0 and nondecreasing for b < 0. Then by arguing as for (3.4.13), we

find

2c
#)

∑
b 9∈Ω# \{0}

b2
9 4
−23b2

9
C
=

∑
b 9∈Ω#
b 9<0

b2
9 4
−23b2

9
C (b 9+1 − b 9 ) +

∑
b 9∈Ω#
b 9>0

b2
9 4
−23b2

9
C (b 9 − b 9−1)

≤
∑
b 9∈Ω#
b 9<0

∫ b 9+1

b 9

� C (b)3b +
∑
b 9∈Ω#
b 9>0

∫ b 9

b 9−1

� C (b)3b

≤
∫ c/)

−c/)
� C (b)3b ≤ 24−1(23C)−3/2 +

∫ c/)

−c/)
b24−23b2C3b.

Together with (3.4.14) this proves the inequality (3.4.12) and completes the proof of the proposition.

�

In summary, for each 5 ∈ !2
#
we have the decomposition

4A[q]C 5 (G) = 4A[q]CP0,# 5 (G) + q′(G)B?,# (C) 5 (G)

+ (̃2,# (C) 5 (G) + (̃; 5 ,# (C) 5 (G) + (ℎ 5 ,# (C) 5 (G),

where P0,# is the projection of !2
#
onto the #)-periodic kernel of A[q] defined in (3.4.5), the

operators B?,# (C) and (̃; 5 ,# (C) are defined as in (3.4.6), and the operators (̃2,# (C) and (ℎ 5 ,# (C) are

defined as in (3.4.3) and (3.4.1), respectively. Recalling the estimates (3.4.7)-(3.4.8), Proposition
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3.4.1 implies that for all # ∈ N we have

B?,# (C) 5 !2
#

. (1 + C)−1/4‖ 5 ‖!1
#
, and

(̃2,# (C) 5 
!2
#

. (1 + C)−3/4‖ 5 ‖!1
#
,

valid for all C ≥ 0. Together with the exponential decay estimates (3.4.4) and (3.4.2) on (̃; 5 ,# (C)

and (ℎ 5 ,# (C), respectively, and defining for each 5 ∈ !2
#
the function11

W# (G, C) :=
1
#

〈
Φ̃0, 5

〉
!2
#

+ B?,# (C) 5 (G)

and noting that
1
#

〈
Φ̃0, 5

〉
!2
#

=

〈
q′,P0,# 5

〉
!2 (0,))

‖q′‖2
!2 (0,))

this completes the proof of Theorem 3.1.3.

Remark 3.4.3. As mentioned near the end of the introduction of this chapter, the methodology

used in the above proof is very general and applies more generally to linear operators A[q] with

)-periodic coefficients that satisfy conditions (i)-(iii) listed in the discussion after Theorem 3.1.5.

The resolvent bound in (iii) implies exponential decay of high-frequency modes, while the diffusive

spectral stability condition yields polynomial decay rates on the critical modes corresponding to

spectrum near (_, b) = (0, 0). This work thus sets forth a general methodology for establishing

uniform decay rates on subharmonic perturbations of diffusively spectrally stable periodic waves

in a large class of evolution equations.

Finally, we note that exponential decay rates on the semigroup 4A[q]C acting on !2
#
may also be

obtained from the above analysis. Indeed, note that for each fixed # ≥ 2 we have the bounds12

1
#

∑
b∈Ω# \{0}

4−23b2C ≤
(
1 − 1

#

)
4−23 (Δb)2C

11Clearly W# is an #)-periodic function of G.
12Note that since Ω1 = {0}, in the case # = 1 we clearly have

∑
b ∈Ω1\{0} 4

−23b 2C = 0 and
∑
b ∈Ω1 b

24−23b 2C = 0 for
all C ≥ 0.
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and, similarly,
1
#

∑
b∈Ω#

b24−23b2C ≤
(
1 − 1

#

) ( c
)

)2
4−23 (Δb)2C ,

where here13

Δb =
2c
#)

.

In particular, from (3.4.6)-(3.4.8) and the decompositions (3.4.1)-(3.4.4) it immediately follows

that there exists a constant � > 0 such that for each # ∈ N and 5 ∈ !2
#
we have the exponential

decay bound14

4A[q]C (1 − P0,#
)
5


!2
#

≤ �4−XC ‖ 5 ‖!1
#
∩!2

#
, X := min{[, 3 (Δb)2}, (3.4.15)

with [ > 0 as in (3.4.4), recovering, at the linear level, the exponential stability result from [67]:

see Theorem 3.1.2 in the introduction to this chapter. In fact, the above observation extends the

exponential bound result used in [67] since the constant � > 0 above does not depend on #: see

also Remark 3.2.6(ii) where the constant depends on # . Observe, however, that the exponential

rate of decay exhibited above still tends to zero as # →∞.

3.5 Sharpness of Localized Theory

While the polynomial decay rates established in Proposition 3.4.1 provide upper bounds on the

uniform decay rates of subharmonic perturbations of a given diffusively spectrally stable,)-periodic

standing wave solution of the LLE (3.1.1), it is not a-priori clear that such decay rates are sharp,

i.e., if it is possible that subharmonic perturbations actually experience even faster uniform rates

of decay. After all, for each fixed # ∈ N we already know such perturbations exhibit exponential

decay (up to a null translational mode). The next result shows that, in fact, the localized decay rates

provided in Theorem 3.1.5 provide sharp uniform decay rates for subharmonic perturbations.

13Note for large # that the size of the spectral gap maxb ∈Ω# \{0}<(_2 (b)) is O((Δb)2).
14In fact, we can improve (3.4.15) so that it is a bound from !2

#
→ !2

#
.
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Proposition 3.5.1. There exists a constant � > 0 such that for all # ∈ N and C > 0 we have������ 2c
#)

∑
b 9∈Ω# \{0}

4
−23b2

9
C −

∫ c/)

−c/)
4−23b2C3b

������ ≤ �# (3.5.1)

and ������ 2c
#)

∑
b 9∈Ω#

b2
9 4
−23b2

9
C −

∫ c/)

−c/)
b24−23b2C3b

������ ≤ �

# (1 + C) . (3.5.2)

Remark 3.5.2. Note that since the terms 4−23b2C are exponentially small outside a small ball near

b = 0 for large enough time, the domain of integration above could be replaced with (−∞,∞),

giving an even more direct connection to the bounds (3.4.7)-(3.4.8) in the subharmonic case and

the bounds (3.3.10) and (3.3.9) in the localized case.

The proof of Proposition 3.5.1 is based on a careful rescaling and Riemann sum argument and

is included in Appendix 3.A. As a consequence we see convergence, say in !∞C (0,∞), as # →∞ of

the discrete sum to the integral associated to the localized theory. This proves that the uniform (in

#) bounds on the operators B?,# (C) and (̃2,# (C) provided in Theorem 3.1.3 are sharp. Of course, as

mentioned above and several times in the manuscript, while each subharmonic perturbation exhibits

exponential decay in time, it follows that the localized theory precisely describes subharmonic decay

rates which are uniform in # . Furthermore, as shown in the proof, the estimates (3.5.1)-(3.5.2)

show explicitly that for a fixed # the sums are good approximations of the associated integral on

time scales at most15 C = O(#2). For even larger times, the exponential nature of the summands

dominate and the sum decays monotonically to zero at an exponential rate.

Naturally, it is interesting to try to recover the localized theory from the subharmonic theory in

the limit as # → ∞. For example, using the boundedness of Φ̃0 we note there exists a constant

15This behavior on times scales at most O(#2), as well as the exponential behavior for larger times, is readily
observed numerically.
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� > 0 independent of # ∈ N such that16����〈Φ̃0, 5
〉
!2
#

���� ≤ �‖ 5 ‖!1
#
. (3.5.3)

and hence the triangle inequality implies that

4A[q]C 5 
!2
#

≤ �
(

1
√
#
+ (1 + C)−1/4

)
‖ 5 ‖!1

#
∩!2

#
.

Consequently, if { 5# }∞#=1 is a sequence of functions with 5# ∈ !2
#
∩ !1

#
for each # and if there

exists a E ∈ !2(R)∩!1(R) such that 5# → E, say in !1
loc(R), then formally taking # →∞ allows us

to (again formally) recover the stability result to the localized perturbation E established in Theorem

3.1.5. Furthermore, the estimate (3.5.3) suggests that we should have (in some appropriate sense)

lim
#→∞

W# (G, C; 5# ) = W(G, C; E),

where W is the modulation function associated to E ∈ !1(R) ∩ !2(R); that is, we should have

convergence of the associated subharmonic and localized modulation functions. Of course, to

make rigorous sense of these (and other) limiting results one must deal with the fact that a sequence

of #)-periodic functions can only converge to a function in !2(R) at best locally in space.

Establishing such a convergence results rigorously is left as an open problem.

3.6 Towards Nonlinear Stability

Our main results, Theorem 3.1.3, Theorem 3.1.5, and Corollary 3.3.2 give insight into the asymp-

totic stability and long-time modulational dynamics near a diffusively spectrally stable periodic

stationary solution of the Lugiato-Lefever equation (3.1.1) to both subharmonic and localized per-

turbations. Specifically, we note all these results are established at the linear level. Our ultimate

16Note if we use the Cauchy-Schwartz inequality to control the quantity (3.5.3) by !2
#
, decay in # is not observed

due to the )-periodicity of Φ̃0.
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goal, however, is to extend these results to the nonlinear level. In this section, we describe an

approach to this problem which has been useful in the related context of dissipative conservation

or balance laws [31], as well as the difficulties that must be overcome for the LLE.

To begin, suppose q is a )-periodic, diffusively spectrally stable stationary periodic solution of

(3.1.1) and consider (3.1.1) equipped with the initial condition

D(G, 0) = q(G) + E0(G) (3.6.1)

for some sufficiently smooth and small initial perturbation E0. For the sake of clarity, let us assume

the initial perturbation is localized, i.e., that E0 ∈ !2(R). So long as it exists, Theorem 3.1.5

suggests decomposing the solution D(G, C) of (3.6.1) as

D(G, C) = q(G + W(G, C)) + E(G, C)

where here W is some appropriate spatial modulation to be specified17 as needed in the analysis.

Substituting this ansatz into (3.6.1) implies the perturbation E satisfies an evolution equation of the

form

(mC − A[q]) (E − Wq′) = N(E, EG , EGG , WC , WG , WGG), (3.6.2)

where N consists of nonlinear terms in its arguments and their derivatives. Using Duhamel, the

above nonlinear evolution equation is equivalent to the following (implicit) integral equation

E(G, C) − W(G, C)q′(G) = 4A[q]CE(G, 0) +
∫ C

0
4A[q] (C−B)N(E, EG , EGG , WC , WG , WGG) (G, B)3B. (3.6.3)

Since the linear estimates in Theorem 3.1.5 imply the linearized solution operator can be decom-

posed as

4A[q]C 5 (G) = q′(G)
(
B? (C) 5

)
(G) + (̃(C) 5 (G)

17Thanks to the invariance of (3.1.1) with respect to spatial translations, we may assume that W(G, 0) = 0.
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where B? is defined as in (3.3.7) and ‖(̃(C) 5 ‖!2 (R) . (1 + C)−3/4‖ 5 ‖!1 (R)∩!2 (R) , it is natural to

choose the modulation W above to exactly cancel all the B? contributions on the right hand side of

(3.6.3), thus leaving a coupled set of integral equations for E and W that one might hope to solve

and study via contraction.

At this point in the argument, things begin to break down. In particular, observe that control over

the source term in (3.6.3) in !2(R) would require control over (at least) E in �2(R), corresponding

to a loss of derivatives in E and a-priori leaving little hope of studying (3.6.3) via iteration. In some

cases, however, such a loss of derivatives at the linear level can be compensated by appropriately

strong damping effects of the governing evolution equation: see, for example, [31]. However,

in the case of the LLE (3.1.1) the damping actually corresponds to the lowest-order derivative18

which elementary calculations show negates the “nonlinear damping” technique leveraged in [31]

to regain derivatives at the nonlinear level. More explicitly, this can be seen in the following remark.

Remark 3.6.1. Note that for the classical linear heat equation

DC = DGG

posed on !2(R) an elementary calculation (multiplying the linear heat equation by D − DGG and

integrating over R), shows that

1
2
3

3C
‖D(C)‖2

�1 = −‖DG ‖2�1 ≤ −‖D(C)‖2�1 + ‖D(C)‖2!2 .

By Gronwall’s inequality, this in turn implies that

‖D(C)‖2
�1 ≤ 4−2C ‖D(0)‖2

�1 + 2
∫ C

0
4−2(C−B) ‖D(B)‖2

!23B,

showing that the �1-norm of solutions, for so long as they exist, are slaved to the !2-norm. The

key to the above calculuation is that the damping occurred (trivially) in the highest order derivative

18In fact, a zeroth order term.
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of the equation. In the case of the LLE equation (5.1.1), however, the damping more resembles the

linear equation

FC = −F

which, by similar calculations as above, implies solutions satisfy the estimate

‖F(C)‖2
�1 = 4

−2C ‖F(0)‖2
�1 ,

which does not yield the desired control over �1. Consequently, the low order damping of the LLE

equation (5.1.1) precludes the use of nonlinear damping estimates in the present case.

In summary, when attempting to upgrade our linear results (either in the localized or subhar-

monic setting) to a nonlinear theory one is confronted with an iteration scheme which a-priori loses

regularity. However, we know that in cases where the dissipation is sufficiently strong, we can use

the nonlinear damping technique outlined in Remark 3.6.1 to regain this lost regularity, at least in

the case of localized perturbations. Consequently, this motivates the structure for the rest of the

dissertation. Recalling that the localized case served as motivation for the uniform study of sub-

harmonic perturbations, we first seek to understand if it is possible – in the presence of sufficiently

strong damping, allowing one to circumvent the loss of regularity via a nonlinear damping result –

to establish a nonlinear stability result to subharmonic perturbations that is uniform in the period of

the perturbations, which is the focus of Chapter 4. Once we confirm that this is, in fact, possible, we

turn our attention back to the LLE in Chapter 5 and seek to develop a new methodology that allows

us to circumvent the loss of regularity in the case of localized perturbations and in the presence

of weak damping, i.e., in the absence of a nonlinear damping estimate. With this methodology in

hand, along with the intuition provided from Chapter 4, we are currently studying the ability to use

this to establish the desired uniform subharmonic stability result for the Lugiato-Lefever equation

[23].
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Appendix

3.A Proof of Proposition 3.5.1

In the appendix to this chapter, we present a proof of Proposition 3.5.1, which establishes that

the localized rates of decay in Theorem 3.1.5 provide sharp uniform bounds on subharmonic

perturbations of diffusively spectrally stable periodic standing waves of the LLE (3.1.1).

Proof of Proposition 3.5.1. As in the proof of Proposition 3.4.1, it is sufficient to establish the

bounds (3.5.1)-(3.5.2) for # ≥ 2 and C ≥ 1. Since the proof of the estimates (3.5.1) and (3.5.2) for

# ≥ 2 and C ≥ 1 follow the same basic structure, we present a detailed proof of (3.5.2) and then

describe the modifications needed to establish (3.5.1).

To begin our proof of (3.5.2), fix # ∈ N with # ≥ 2 and define the function

�# (C) := C3/2
∑
b 9∈Ω#

b2
9 4
−23b2

9
C
Δb 9 , C ≥ 1, (3.A.1)

where here for each 9 ∈ N we set Δb 9 = 2c
#)

. We now fix C > 0 and use a discrete change of

variables by setting, for each b 9 ∈ Ω# ,

I 9 = b 9
√
C (3.A.2)

noting that, in particular, the set Ω#,C := {I 9 } is a discretization of [−c
√
C/), c

√
C/)] with

ΔI 9 = Δb 9
√
C = 2c

√
C/(#)).

Further, in terms of the new variables we have

�# (C) =
∑

I 9∈Ω# ,C
I2
94
−23I2

9ΔI 9 ,
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and hence �# is a Riemann sum approximation for the integral

∫ c
√
C/)

−c
√
C/)

� (I)3I, where � (I) := I24−23I2
.

Our strategy is to treat �# as either a left or right endpoint Riemann sum approximation of the

integral, and our choice will be dictated by the intervals where � is increasing or decreasing. From

this, we will establish the bound19������# (C) − ∫ c
√
C/)

−c
√
C/)

� (I)3I
����� ≤ �√C# , (3.A.3)

which (by undoing the above rescaling), is clearly equivalent to the bound (3.5.2).

Now, to establish (3.A.3) we first note by symmetry of the function � that it suffices to study

the sum defining �# over only the non-negative I 9 , i.e. to study the function

ℎ# (C) :=
<∑
9=0

I2
94
−23I2

9ΔI 9 =

<∑
9=0

� (I 9 )ΔI 9 , < := max{ 9 | I 9 ∈ Ω#,C} =


#
2 − 1, # even

#−1
2 , # odd

Observe that � is monotonically increasing for I ∈ (0, '), where ' = (23)−1/2, and is mono-

tonically decreasing for I ∈ (',∞). In particular, for each fixed C > 0, we have that either

I< = I< (C) < ' or there exists ℓ = ℓ(C) ∈ {0, . . . , <−1} such that ' ∈ (Iℓ, Iℓ+1]: see Figure 3.A.1.

Note that if ℓ = 0 then I 9 > ' for each 9 ∈ {1, 2, . . . , <}, implying that each such I 9 lies in

the monotonically decreasing tail of �. This case happens when I1 > ', i.e. when C > �0#
2

where �0 = )
2/(83c2). Noting, as in Figure 3.A.1, that the Iℓ and Iℓ+1 terms need to be handled

differently, we decompose ℎ# as

ℎ# (C) =
1∑
9=0

� (I 9 )ΔI 9 +
<∑
9=2

� (I 9 )ΔI 9 .

19Note this clearly shows that the finite sum is a good approximation of the associated integral on time scales at most
C = O(#2).
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(a) 0 Rz1 ... zℓ zℓ+1 ... zm z

y = H(z)

(b) 0 Rz1 ... zℓ zℓ+1 ... zm z

y = H(z)

Figure 3.A.1: (a) Treating ℎ# as an over approximation of the area under �. (b) Treating ℎ# as
an under approximation. Notice that (a) misses the interval [Iℓ, Iℓ+1]. Similarly (b) has a node,
in this case Iℓ+1, that cannot produce an under approximation on the interval from [Iℓ, Iℓ+1]. This
indicates that this interval must be treated with some care.

On the opposite of this extreme, observe that if ℓ = < − 1 then I 9 < ' for all 9 ∈ {0, 1, . . . , < − 1},

implying that each such I 9 lies in the monotonically increasing portion of �, while I< ≥ ', leading

to a similar decomposition to that above. Further, we only treat I< differently when I< < ', which

occurs for some (fixed) bounded interval of time. (Although, we note that, strictly speaking, I<

does not have to be treated differently when I< + ΔI< < '.)

In our analysis below, we will only consider the case when there are some I 9 in both the

monotonically increasing and the monotonically decreasing components of �. That is, we restrict

to the case when

' ∈ (Iℓ, Iℓ+1], for some ℓ ∈ {1, . . . , < − 2}, (3.A.4)

noting the other more extreme cases described above will follow in a more straightforward way. In

the case when (3.A.4) holds, we decompose ℎ# into thee components via

ℎ# (C) =
ℓ−1∑
9=0

� (I 9 )ΔI 9 +
ℓ+1∑
9=ℓ

� (I 9 )ΔI 9 +
<∑

9=ℓ+2
� (I 9 )ΔI 9 .

Note the first and last terms represent the sums over the 9 where I 9+1 < ' and where I 9−1 > ',

respectively, while the middle term represents the sum over the I 9 nearest to the absolute maximum

of �.
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Because � is increasing on (0, ') it follows that

� (I 9 )ΔI 9 ≤
∫ I 9+1

I 9

� (I)3I ≤ � (I 9+1)ΔI 9+1 for 9 = 0, 1, . . . , ℓ − 1,

and hence, recalling that � (I0) = 0, we have20

∫ Iℓ−1

0
� (I)3I ≤

ℓ−1∑
9=0

� (I 9 )ΔI 9 ≤
∫ Iℓ

0
� (I)3I.

Similarly, since � is decreasing on (',∞) it follows that

� (I 9 )ΔI 9 ≤
∫ I 9

I 9−1

� (I)3I ≤ � (I 9−1)ΔI 9−1 for 9 = ℓ + 2, . . . , <

which, as above, yields

∫ I<+ΔI<

Iℓ+2

� (I)3I ≤
<∑

9=ℓ+2
� (I 9 )ΔI 9 ≤

∫ I<

Iℓ+1

� (I)3I.

Together, this gives

∫ I<+ΔI<

0
� (I)3I −

∫ Iℓ+2

Iℓ−1

� (I)3I ≤ ℎ# (C) −
ℓ+1∑
9=ℓ

� (I 9 )ΔI 9 ≤
∫ I<

0
� (I)3I −

∫ Iℓ+1

Iℓ

� (I)3I.

(3.A.5)

It now remains to bound the sum
∑ℓ+1
9=ℓ � (I 9 )ΔI 9 . To this end, recall that � has exactly one

critical point (a global maximum at I = ') on (Iℓ, Iℓ+1]. Consequently, since the minimum of �

on [Iℓ, Iℓ+1] must occur at one of the endpoints, we have

min
9=ℓ,ℓ+1

� (I 9 )ΔI 9 ≤
∫ Iℓ+1

Iℓ

� (I)3I.

20Technically, the above bound gives
∫ Iℓ−1

0 � (I)3I ≤ ∑ℓ−1
9=1 � (I 9 )ΔI 9 ,. Since � (I0) = 0, however, this is equivalent

to the stated lower estimate.
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while the other endpoint is at worst the supremum of �, yielding

max
9=ℓ,ℓ+1

� (I 9 )ΔI 9 ≤ � (')
(
2c
√
C/(#))

)
= �
√
C/#,

where � = c/(3)4). The previous two bounds together yield

ℓ+1∑
9=ℓ

� (I 9 )ΔI 9 ≤
∫ Iℓ+1

Iℓ

� (I)3I + �
√
C/#.

On the other hand, recalling that � is increasing on (Iℓ−1, Iℓ) and is decreasing on (Iℓ+1, Iℓ+2) gives

the lower bound

� (Iℓ)ΔIℓ ≥
∫ Iℓ

Iℓ−1

� (I)3I, and � (Iℓ+1)ΔIℓ+1 ≥
∫ Iℓ+2

Iℓ+1

� (I)3I.

Together with the estimate (3.A.5), it follows that

∫ I<+ΔI<

0
� (I)3I −

∫ Iℓ+1

Iℓ

� (I)3I ≤ ℎ# (C) ≤
∫ I<

0
� (I)3I + �

√
C/#. (3.A.6)

Recalling again that � attains its global maximum at I = ' ∈ [Iℓ, Iℓ+1], we clearly have∫ Iℓ+1

Iℓ

� (I)3I ≤ � (')
(
2c
√
C/(#))

)
= �
√
C/#.

and hence, from (3.A.6), we obtain

∫ I<+ΔI<

0
� (I)3I − �

√
C/# ≤ ℎ# (C) ≤

∫ I<

0
� (I)3I + �

√
C/#. (3.A.7)

By the even symmetry of � and the structure of the sets Ω# , we find that

∫ 0

I−<̃−ΔI−<̃
� (I)3I − �

√
C/# ≤

−1∑
9=−<̃

� (I 9 )ΔI 9 ≤
∫ 0

I−<̃

� (I)3I + �
√
C/#, (3.A.8)
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where

<̃ := |min{ 9 | I 9 ∈ Ω#,C}| =


#
2 , # even

#−1
2 , # odd

.

Therefore, combining (3.A.7) and (3.A.8) we obtain the bound

∫ I<+ΔI<

I−<̃−ΔI−<̃
� (I)3I − 2�

√
C/# ≤ �# (C) ≤

∫ I<

I−<̃

� (I)3I + 2�
√
C/#.

Noting that ∫ I<

I−<̃

� (I)3I ≤
∫ c

√
C/)

−c
√
C/)

� (I)3I ≤
∫ I<+ΔI<

I−<̃−ΔI−<̃
� (I)3I,

we obtain the bound (3.A.3), as desired. By undoing the rescaling (3.A.2), this establishes the

estimate (3.5.2) in Proposition 3.5.1.

Finally, the proof of the estimate (3.5.1) follows by a similar, yet simpler, analysis. Indeed, for

all # ≥ 2 and C ≥ 1 we define

�̃# (C) := C1/2
∑

b 9∈Ω# \{0}
4
−23b2

9
C
Δb 9

and note by performing the same discrete change of variables in (3.A.2) as before we have

�̃# (C) =
∑

I 9∈Ω# ,C\{0}
4
−23I2

9ΔI 9 .

Since the function �̃ (I) = 4−23I2 is even and strictly decreasing for I > 0, carrying out the same

monotonicity argument as above we find that

∫ I<+ΔI<

I−<̃−ΔI−<̃
�̃ (I)3I −

∫ I1

I−1

�̃ (I)3I ≤ �̃# (C) ≤
∫ I<

I−<̃

�̃ (I)3I.
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In particular, using the elementary bound

∫ I1

I−1

�̃ (I)3I ≤ �̃ (0) (I1 − I−1) =
4c
√
C

#)

and noting that ∫ I<

I−<̃

�̃ (I)3I ≤
∫ c

√
C/)

−c
√
C/)

�̃ (I)3I ≤
∫ I<+ΔI<

I−<̃−ΔI−<̃
�̃ (I)3I,

we obtain the estimate ������̃# (C) − ∫ c
√
C/)

−c
√
C/)

4−23I2
3I

����� ≤ 4c
√
C

#)
(3.A.9)

valid for all # ≥ 2 and C ≥ 1. Undoing the rescaling (3.A.2), this completes the proof of

(3.4.11). �

Remark 3.A.1. The reader may wonder why we used a rescaling and monotonicity argument above

to establish (3.A.3) and (3.A.9), as opposed to a more direct Mean Value Theorem argument.

Essentially, this is because the Mean Value Theorem gives us the cruder bound������# (C) − ∫ c
√
C/)

−c
√
C/)

� (I)3I
����� ≤ "C

#
.

Finally we note that the uniform bounds in Proposition 3.4.1 may be recovered from the above

analysis. For example, note that the function �# defined in (3.A.1) satisfies the differential inequality

�′# (C) ≤ C1/2
(
3
2
− 83c2C

#2)2

) ∑
b 9∈Ω#

b2
9 4
−23b2

9
C
Δb 9 = C

−1
(
3
2
− 83c2C

#2)2

)
�# (C)

and hence exhibits exponential decay to zero for time scales larger than O(#2). Since (3.A.3)

shows that �# is uniformly bounded on time scales up to O(#2) it follows that �# (C) is uniformly

bounded (in #) for all C ≥ 1, which establishes (3.4.12) in Proposition 3.4.1. A similar differential

inequality argument applied to �̃# (C) establishes the uniform estimate (3.4.11).
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Chapter 4

Nonlinear Subharmonic Dynamics of Spectrally Stable Periodic

Waves in Reaction Diffusion Systems

Abstract

In this chapter, we investigate the stability and nonlinear local dynamics of spectrally stable

wave trains in reaction-diffusion systems. For each# ∈ N, such)-periodic travelingwaves are

easily seen to be nonlinearly asymptotically stable (with asymptotic phase) with exponential

rates of decay when subject to #)-periodic, i.e., subharmonic, perturbations. However, both

the allowable size of perturbations and the exponential rates of decay depend on # , and, in

particular, they tend to zero as # → ∞, leading to a lack of uniformity in such subharmonic

stability results. In this work, we build on recent work by the authors and introduce a

methodology that allows us to achieve a stability result for subharmonic perturbations which

is uniform in # . Our work is motivated by the dynamics of such waves when subject to

perturbations which are localized (i.e. integrable on the line), which has recently received

considerable attention by many authors.

In the broader goal of this thesis, this chapter serves as a proof of concept. Namely, we aim

to verify if the presence of sufficiently strong damping, i.e., if the presence of a “nonlinear

damping” estimate, allows us to upgrade the linear uniform subharmonic stability result

attained in the previous chapter to an appropriate nonlinear stability result. This chapter is

representative of [33], which was a joint work with Mathew Johnson.
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4.1 Introduction

In this work, we consider the local dynamics of periodic traveling wave solutions, i.e., wave trains,

in reaction diffusion systems of the form

DC = DGG + 5 (D), G ∈ R, C ≥ 0, D ∈ R= (4.1.1)

where = ∈ N and 5 : R= → R= is a � -smooth nonlinearity for some  ≥ 3. Such systems arise

naturally in many areas of applied mathematics, and the behavior of such wave train solutions when

subject to a variety of classes of perturbations has been studied intensively over the last decade.

Most commonly in the literature, one studies the stability and instability of such periodic traveling

waves to perturbations which are localized, i.e. integrable on the line, or which are nonlocalized,

accounting for asymptotic phase differences at infinity. See, for example, [13, 29, 30, 37, 56, 57]

and references therein.

Here, we consider the stability and long-time dynamics of )-periodic traveling wave solutions

of (4.1.1) when subjected to #)-periodic, i.e. subharmonic, perturbations for some # ∈ N. More

precisely, suppose that D(G, C) = q(: (G − 2C)) is a periodic traveling wave solution of (4.1.1) with

period ) = 1/: , where we choose : ∈ R so that the profile q ∈ �1
loc(R) is a 1-periodic stationary

solution of

:DC − :2DG = :2DGG + 5 (D), (4.1.2)

i.e. it satisfies the profile equation

:2q′′ + :2q′ + 5 (q) = 0. (4.1.3)

Given such a solution, note that a function of the form D(G, C) = q(G) + E(G, C) is a solution of

(4.1.2) provided it satisfies a system of the form

:EC = :L[q]E + N(E), (4.1.4)
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where here N(E) is at least quadratic in E and L[q] is the linear differential operator

:L[q] := :2m2
G + :2mG + � 5 (q).

Naturally, the domain of the operator L[q] is determined by the chosen class of perturbations E

of the underlying standing wave q and, as mentioned above, several choices are available in the

literature. As we are interested in subharmonic perturbations, i.e., perturbations with period # ∈ N,

we consider L[q] as a closed, densely defined linear operator acting on !2
per(0, #) with 1-periodic

coefficients.

The stability analysis of periodic waves to such subharmonic perturbations naturally relies on a

detailed understanding of the spectrum of L[q] acting on !2
per(0, #). To describe the #-periodic

spectrum of L[q], we begin by recalling the notion of spectral stability given in Definition 1.3.1

that has been used throughout this dissertation.

Definition 4.1.1. A 1-periodic stationary solution q ∈ �1
loc(R) of (4.1.2) is said to be diffusively

spectrally stable provided the following conditions hold:

(i) The spectrum of the linear operator L[q] acting on !2(R) satisfies

f!2 (R) (L[q]) ⊂ {_ ∈ C : <(_) < 0} ∪ {0};

(ii) There exists a \ > 0 such that for any b ∈ [−c, c) the real part of the spectrum of the Bloch

operator Lb [q] := 4−8bGL[q]48bG acting on !2
per(0, 1) satisfies

<
(
f!2

per (0,1)
(
Lb [q]

) )
≤ −\b2;

(iii) _ = 0 is a simple eigenvalue of L0 [q] with associated eigenfunction q′.

As mentioned in Section 1.3.2, the above notion of spectral stability has been taken as the

standard spectral assumption in nonlinear stability results for periodic traveling/standing waves in
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reaction diffusion systems since the pioneering work of Schnieder [58, 59]. Specifically, the above

notion of spectral stability is sufficiently strong to allow one to immediately conclude important

details regarding the nonlinear dynamics of q under localized, or general bounded, perturbations,

including long-time asymptotics of the associated modulation functions. For more information,

see [13, 29, 30, 56, 57] and references therein.

Remark 4.1.2. Note the assumption on simplicity of the eigenvalue _ = 0 is natural since such

periodic standing waves typically appear as one-parameter families parametrized only by transla-

tional invariance. Indeed, solutions of (4.1.3) are readily seen to rely (up to translation invariance)

on the = + 2 parameters (q(0), :, 2), while periodicity requires the enforcement of = constraints,

leaving in general a two-parameter family of 1-periodic solutions

D(G − 2C − G0; 2, G0)

which satisfy (4.1.3) with : = : (2). Due to the secular dependence of the frequency : on the wave

speed 2, variations in 2 do not preserve periodicity and hence, generically, it follows one should

expect the kernel of L[q] to be one-dimensional, which leads to (iii) in Definition (1.3.1) above.

Given a diffusively spectrally stable 1-periodic traveling wave solution q of (4.1.1), one can

now easily characterize the spectrum of L[q] acting on !2
per(0, #). Indeed, as described in Section

1.3.4, the spectrum of L[q] acting on !2
per(0, #) is equal to the union of the necessarily discrete1

spectrum of the corresponding Bloch operators Lb [q] acting on !2
per(0, 1) for b ∈ Ω# , which is

defined in (1.3.10) as the discrete (finite) subset of b ∈ [−c, c) such that 48b# = 1. As discussed

in Remark 1.3.3, it follows that diffusively spectrally stable periodic traveling waves of (4.1.1) are

necessarily spectrally stable to all subharmonic perturbations. In particular, for each # ∈ N the

non-zero #-periodic eigenvalues of L[q] satisfy the spectral gap condition

<
(
f!2

per (0,#) (L[q]) \ {0}
)
≤ −X#

1Note since the domains of the operators Lb [q] are compactly contained in !2
per (0, 1), it follows that their

!2
per (0, 1)-spectrum is comprised entirely of isolated eigenvalues with finite multiplicities.
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for some constant X# > 0. From here, using that L[q] is sectorial, it is easy to show that for each

X ∈ (0, X# ) there exists a constant �X > 0 such that

4L[q]C (1 − P1) 5

!2

per (0,#)
≤ �X4−XC ‖ 5 ‖!2

per (0,#) . (4.1.5)

for all 5 ∈ !2
per(0, #), where here P1 denotes the projection of !2

per(0, #) onto the #-periodic

kernel of L[q] spanned by q′. Equipped with this linear estimate, one can now establish the

following nonlinear stability result.

Proposition 4.1.3. Let q ∈ �1
loc be a 1-periodic stationary solution of (4.1.2) and fix # ∈ N.

Assume that q is diffusively spectrally stable, in the sense of Definition 1.3.1 above and, for each

# ∈ N, take X# > 0 such that

max<
(
f!2

per (0,#) (L[q]) \ {0}
)
= −X# (4.1.6)

holds. Then for each # ∈ N, q is asymptotically stable to subharmonic #-periodic perturbations.

More precisely, for every X ∈ (0, X# ) there exists an Y = YX > 0 and a constant � = �X > 0 such

that whenever D0 ∈ �1
per(0, #) and ‖D0 − q‖�1 (0,#) < Y, then the solution D of (4.1.2) with initial

data D(0) = D0 exists globally in time and satisfies

‖D(·, C) − q(· + f∞)‖�1 (0,#) ≤ �4−XC ‖D0 − q‖�1 (0,#)

for all C > 0, where here f∞ = f∞(#) is some constant.

The proof of Proposition 4.1.3 is by now standard, and can be completed by following appro-

priate texts: see, for example, [40, Chapter 4]. The main idea is that the linear estimate (4.1.5)

suggests that if D(G, C) is a solution of (4.1.2) which is initially close to q in !2
per(0, #), then there

exists a (small) time-dependent modulation function f(C) such that D(G, C) essentially behaves for

large time as

D(G, C) ≈ q(G) + f(C)q′(G) ≈ q(G + f(C)),

121



corresponding to standard asymptotic (orbital) stability of q. With this insight gained from (4.1.5),

a straightforward nonlinear iteration scheme completes the proof of Proposition 4.1.3.

While Proposition 4.1.3 establishes nonlinear stability of q in !2
per(0, #) for each fixed # ∈ N,

it lacks uniformity in # in two important (and related) aspects. Indeed, note that the exponential

rate of decay X and the allowable size of initial perturbations Y = YX are both controlled completely

in terms of the size of the spectral gap X# > 0. Since X# → 0 as # →∞, it follows that both X and

Y chosen in Proposition 4.1.3 necessarily tend to zero2 as # →∞. With this observation in mind,

it is natural to ask if one can obtain a stability result to #-periodic perturbations which is uniform

in # . In such a result, one should naturally require that both the rate of decay and and the size of

initial perturbations be independent of # , thus depending only on the background wave q. This is

precisely achieved in our main result.

Theorem 4.1.4 (Uniform Subharmonic Asymptotic Stability). Fix3  ≥ 3. Suppose q ∈ �1
loc(R)

is a 1-periodic stationary solution of (4.1.2) that is diffusively spectrally stable, in the sense of

Definition 1.3.1. There exists an Y > 0 and a constant � > 0 such that, for each # ∈ N, whenever

D0 ∈ !1
per(0, #) ∩ � 

per(0, #) and

�0 := ‖D0 − q‖!1
per (0,#)∩� per (0,#) < Y,

there exists a function k̃(G, C) satisfying k̃(·, 0) ≡ 0 such that the solution of (4.1.2) with initial

data D(0) = D0 exists globally in time and satisfies

D (
· − k̃(·, C), C

)
− q


� per (0,#)

,
∇G,Ck̃(·, C)� per (0,#)

≤ ��0(1 + C)−3/4 (4.1.7)

for all C ≥ 0. Further, there exists constants W∞ ∈ R and � > 0 such that for each # ∈ N we havek̃(·, C) − 1
#
W∞


� per (0,#)

≤ ��0(1 + C)−1/4 (4.1.8)

2Additionally, this degeneracy can be seen in the linear estimate (4.1.5) since both X→ 0+ and�X →∞ as # →∞.
3Here and throughout,  encodes the regularity of the nonlinearity 5 in (4.1.1).
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for all C ≥ 0.

Remark 4.1.5. Using the methods in [29, 37], the results in Theorem 4.1.4 can easily be extended

to establish uniform (in #) decay rates of perturbations in !?per(0, #) for any 2 ≤ ? ≤ ∞ provided

the initial perturbations are again sufficiently small in !1
per(0, #) ∩ � 

per(0, #). For simplicity,

however, and to establish proof of concept, in this work we concentrate on the !2-based theory

only.

The key idea to the proof of Theorem 4.1.4 is to use the stability theory of periodic waves

of reaction diffusion equations to localized perturbations, specifically those techniques developed

in [29, 37], as a guide for how to uniformly control the dynamics of subharmonic perturbations

for large # . Indeed, observe the decay rates guaranteed in Theorem 4.1.4 are precisely those

predicted by considering the dynamics of such periodic wave trains to localized perturbations: see

[31, 29, 30, 37], for example. Formally, this should not be too surprising since, up to appropriate

translations, a sequence of #-periodic functions may converge (locally) as # →∞ to functions in

!2(R).

We make the above intuition precise by first following the methodology recently developed

in [21] (see also Chapter 3) in order to provide a delicate decomposition of the semigroup 4L[q]C

acting on the the space !2
per(0, #) with # ∈ N. This decomposition is accomplished by adapting the

linear theory for localized perturbations developed in [29, 37] to the subharmonic context in order to

uniformly handle the accumulation of Bloch eigenvalues near the origin as # →∞. Furthermore,

our linear decomposition, which will be reviewed in Section 4.3 below, not only recovers the

exponential decay rates exhibited in Proposition 4.1.3, but they also provide the uniform (in #)

rates of decay in Theorem 4.1.4. As we will see, this linear analysis predicts that if D(G, C) is a

solution of (4.1.2) which is initially close to q in !2
per(0, #) then there exists a (small) space-time

dependent, #-periodic (in G) modulation function k̃(G, C) such that D(G, C) essentially behaves for

large time like

D(G, C) ≈ q(G) + k̃(G, C)q′(G) ≈ q
(
G + k̃(G, C)

)
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giving a refined insight into the long-time local dynamics near q beyond the more standard asymp-

totic stability (with asymptotic phase) as in Proposition 4.1.3. Motivated by this initial linear

analysis, we then build a nonlinear iteration scheme for subharmonic perturbations which incorpo-

rates phase modulation functions which depend on both space and time in order to complete the

proof of Theorem 4.1.4. The requirement that the modulation functions are spatially dependent is

necessary for our method, and is fundamentally different than the methodology used in the proof of

Proposition 4.1.3. In particular, to the authors’ knowledge, this work is the first to consider spatially

dependent modulation functions in the context of periodic perturbations. Furthermore, Theorem

4.1.4 is the first result to obtain stability results for periodic waves to subharmonic perturbations

that are uniform in the period of the perturbation.

Remark 4.1.6. As indicated above, the strategy for proving our subharmonic results follows the

stability analyses [29, 37] for localized perturbations of periodic wave trains in reaction diffusion

systems. In the localized case, the origin is always a part of the essential spectrum of the linearized

operator, leading one to introduce space-time dependent modulation functions. In the subharmonic

case, however, the origin is an isolated simple eigenvalue for each fixed # ∈ N, and using time-

dependent modulations only leads to results such as Proposition 4.1.3. In order to achieve the

proof of Theorem 4.1.4, we will rely on a combination of these approaches, using an #-dependent

time-modulation function to account for the isolated eigenvalue at the origin, while simultaneously

using a space-time modulation to account for the accumulation of spectrum near the origin as

# →∞.

Next, we point out an important corollary of Theorem 4.1.4. Particularly, since the decay rates

in Theorem 4.1.4 are sufficiently fast we can obtain the following result accounting for only time-

dependent modulations yet offering slower uniform decay rates. Note that while the result uses

only time-dependent modulations, the proof requires the use of space-time dependent modulation

functions.

Corollary 4.1.7. Under the hypotheses of Theorem 4.1.4, there exists an Y > 0 and a constant

� > 0 such that, for each # ∈ N, whenever D0 ∈ !1
per(0, #) ∩ � 

per(0, #) and �0 < Y, there exists
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a function W(C) satisfying W(0) = 0 such that the solution D of (4.1.2) with initial data D(0) = D0

exists globally in time and satisfiesD (
· − 1

#
W(C), C

)
− q


� per (0,#)

≤ ��0(1 + C)−1/4. (4.1.9)

for all C > 0. Further, the time-dependent modulation function W(C) satisfies

|WC (C) | ≤ ��0(1 + C)−3/2

and hence, in particular, there exists a W∞ ∈ R

|W(C) − W∞ | ≤ ��0(1 + C)−1/2

for all C > 0. In particular,D (·, C) − q (
· + 1

#
W∞

)
� per (0,#)

≤ ��0(1 + C)−1/4.

for all C > 0.

Remark 4.1.8. Comparing Corollary 4.1.7 with Proposition 4.1.3, we see that one necessarily has

the relationship f∞(#) = 1
#
W∞, establishing a direct correspondence between the (#-dependent)

asymptotic phase shifts. Further, we note the W∞ is the same in both Theorem 4.1.4 and Corollary

4.1.7.

Our last result combines the results of Corollary 4.1.7 with Proposition 4.1.3 in order to obtain

a nonlinear stability result allowing a uniform (in #) size of initial perturbations with (eventual)

exponential rates of decay.

Corollary 4.1.9. Under the hypotheses of Theorem 4.1.4, there exists an Y > 0 and a constant

� > 0 such that, for each # ∈ N and X ∈ (0, X# ), with X# as in (4.1.6), whenever D0 ∈
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!1
per(0, #) ∩ � 

per(0, #) with �0 < Y there exists a )X > 0 and a constant "X > 0 such that

D(·, C) − q (
· + 1

#
W∞

)
�1

per (0,#)
≤


��0(1 + C)−1/4, for 0 < C ≤ )X

"X�04
−XC , for C > )X .

The above corollary has a few important features to highlight. First, we emphasize that Y, the size

of the initial perturbation above, is independent of both # and the choice X ∈ (0, X# ). In particular,

this establishes a uniform size on the domain of attraction for perturbations to (eventually) exhibit

exponential decay. This is in stark contrast to Proposition 4.1.3 which requires YX → 0 as X → 0.

Secondly, we note that the length of time one must wait to observe exponential decay, quantified

by )X above, necessarily satisfies )X → ∞ as X → 0; hence, it is not uniform in # . Nevertheless,

Corollary 4.1.9 upgrades the long-time behavior of Proposition 4.1.3 allowing for a uniform size

of initial perturbations. Interestingly, Corollary 4.1.9 can be easily seen, at least at the linear level,

directly from our forthcoming decomposition of the semigroup 4L[q]C : see Remark 4.3.3 in Section

4.3 below.

The online of the chapter is as follows. In Section 4.2, we collect several properties of the

Bloch operators and their associated semigroups. In particular, we establish basic decay properties

of the Bloch semigroups arising as a result of the diffusive spectral stability assumption. In Section

4.3, we review and expand upon our key linear estimates from Section 3.4 by providing a delicate

decomposition of the semigroup 4L[q]C acting on !2
per(0, #), which allows us to identify polynomial

decay rates on the linear evolution which are uniform in #: see Proposition 4.3.1. These linear

estimates form the backbone for our nonlinear analysis, which is detailed in Section 4.4. In Section

4.4.1, we use intuition gained from the linear estimates of Section 4.3 to introduce an appropriate

nonlinear decomposition of a small !2
per(0, #) neighborhood of the underlying diffusively stable 1-

periodic wave q, and we develop appropriate perturbation equations satisfied by the corresponding

perturbation and modulation functions. In Section 4.4.2, we apply a nonlinear iteration scheme to

the system of perturbation equations obtained in Section 4.4.1 and present the proofs of Theorem
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4.1.4 and its corollaries stated above. Finally, a proof of some technical results from Section 4.3

are provided in Appendix 4.A.

4.2 Spectral Preparation & Properties of Bloch Semigroups

In this section, we prove several preliminary results. In particular, we establish some elementary

semigroup estimates for the associated Bloch operators. Throughout the remainder of the chapter,

for notational convenience, we set for each # ∈ N and ? ≥ 1

!
?

#
:= !?per(0, #).

With the characterization of the !2
#
-spectrum of the linearized operatorL[q] about a 1-periodic

stationary solution q of (4.1.2) provided in Section 1.3.4, we can now provide some immediate

consequences of the diffusive spectral stability assumption in Definition 1.3.1. Specifically, in our

present subharmonic context we recall from Remark 1.3.3 that if q is such a diffusively spectrally

stable standing solution of (4.1.2), then for each # ∈ N there exists a X# > 0 such that

<
(
f!2

#
(L[q]) \ {0}

)
≤ −X# ,

i.e., the non-zero #-periodic eigenvalues of L[q] are uniformly bounded away from the imaginary

axis. In particular, by standard spectral perturbation theory, we immediately have that the following

spectral properties hold.

Lemma 4.2.1 (Spectral Preparation). Suppose that q is a 1-periodic stationary solution of (4.1.2)

which is diffusively spectrally stable. Then the following properties hold.

(i) For any fixed b0 ∈ (0, c), there exists a constant X0 > 0 such that

<
(
f

(
Lb [q]

) )
< −X0
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for all b ∈ [−c, c) with |b | > b0.

(ii) There exist positive constants b1 and X1 such that for any |b | < b1, the spectrum of Lb [q]

decomposes into two disjoint subsets

f
(
Lb [q]

)
= f−

(
Lb [q]

) ⋃
f0

(
Lb [q]

)
with the following properties:

(a) < f−
(
Lb [q]

)
< −X1 and< f0

(
Lb [q]

)
> −X1;

(b) the set f0
(
Lb [q]

)
consists of a single eigenvalue _2 (b) which is analytic in b and expands as

_2 (b) = 80b − 3b2 + O(b3)

for |b | � 1 and some constants 0 ∈ R and 3 > 0;

(c) the eigenfunction associated to _2 (b) is analytic near b = 0 and expands as

Φb (G) = q′(G) + O(b)

for |b | � 1.

The proof of (i) follows immediately from the properties (i) and (ii) in Definition 1.3.1, while

the second part follows since _ = 0 is a simple eigenvalue of the co-periodic operator L0 [q] and

that the coefficients of Lb [q] clearly vary analytically on b.

With the above spectral preparation result in hand, we now record some key induced features

of the associated semigroups. These estimates are immediate consequences of Lemma 4.2.1 and

the fact that the Bloch operators are clearly sectorial when acting on !2
per(0, 1).

Proposition 4.2.2. Suppose that q is a 1-periodic stationary solution of (4.1.2) which is diffusively

spectrally stable. Then the following properties hold.
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(i) For any fixed b0 ∈ (0, c), there exist positive constants �0 and 30 such that

4Lb [q]C 5 
�(!2

per (0,1))
≤ �04

−30C

valid for all C ≥ 0 and all b ∈ [−c, c) with |b | > b0.

(ii) With b1 chosen as in Lemma 4.2.1, there exist positive constants �1 and 31 such that for any

|b | < b1, if Π(b) denotes the (rank-one) spectral projection onto the eigenspace associated to

_2 (b) given by Lemma 4.2.1(ii), then

4Lb [q]C (1 − Π(b))
�(!2

per (0,1))
≤ �14

−31C

for all C ≥ 0.

Coupled with an appropriate decomposition of 4L[q]C , the above linear estimates form the core

of our forthcoming linear analysis (which, in turn, forms the backbone of our nonlinear iteration

scheme).

4.3 Uniform Subharmonic Linear Estimates

We begin our analysis by obtaining decay rates on the semigroup 4L[q]C acting on classes of

subharmonic perturbations in !2
#
which are uniform in # . This analysis is based on a delicate

decomposition of the semigroup. In particular, we use (1.3.16) to study the action of 4L[q]C on !2
#

in terms of associated Bloch operators, which is accomplished by separating the semigroup into

appropriate critical frequency and non-critical frequency components. Note that, due to Lemma

4.2.1 we expect the “critical frequency” component to be dominated by the translational mode q′.

This decomposition was recently carried out in detail (in a related context) in [21] (see also Chapter

3),and for completeness we review it here. Note the decomposition is heavily motivated by the

corresponding decomposition used in the case of localized perturbations: see [31, 29].

To begin, let b1 ∈ (0, c) be defined as in Lemma 4.2.1 and let d be a smooth cutoff function
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satisfying d(b) = 1 for |b | < b1
2 and d(b) = 0 for |b | > b1. For a given E ∈ !2

#
, we use (1.3.16) to

decompose 4L[q]C into low-frequency and high-frequency components as

4L[q]CE(G) = 1
#

∑
b∈Ω#

d(b)48bG4Lb [q]CB1(E) (b, G)

+ 1
#

∑
b∈Ω#

(1 − d(b)) 48bG4Lb [q]CB1(E) (b, G)

= (; 5 ,# (C)E(G) + (ℎ 5 ,#E(G).

(4.3.1)

Using Proposition 4.2.2 and the subharmonic Parseval identity 1.3.15, it follows that there exist

constants �, [ > 0, both independent of # , such that

(ℎ 5 ,# (C)E2
!2
#

=
1
#

∑
b∈Ω#

(1 − d(b))4Lb [q]CB1(E) (b, ·)
2

!2 (0,1)

≤ 1
#

∑
b∈Ω#
(1 − d(b))2

4Lb [q]C2

�(!2 (0,1))
‖B1(E) (b, ·)‖2!2 (0,1)

≤ �4−2[C ©« 1
#

∑
b∈Ω#

‖B1(E) (b, ·)‖2!2 (0,1)
ª®¬ ,

which, again using Parseval’s identity (1.3.15), yields the exponential decay estimate

(ℎ 5 ,# (C)E!2
#

≤ �4−[C ‖E‖!2
#
. (4.3.2)

For the low-frequency component, for each |b | < b1 define the rank-one spectral projection onto

the critical mode of Lb [q] by


Π(b) : !2

per(0, 1) → ker
(
Lb [q] − _2 (b)�

)
Π(b)6(G) =

〈
Φ̃b , 6

〉
!2 (0,1)

Φb (G)

where here Φ̃b denotes the element of the kernel of the adjoint Lb [q]† − _2 (b)� satisfying the

normalization condition
〈
Φ̃b ,Φb

〉
!2 (0,1)

= 1. The low-frequency operator (; 5 ,# can thus be further
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decomposed into the contribution from the critical mode and the contribution from low-frequency

spectrum bounded away from _ = 0 via

(; 5 ,# (C)E(G) =
1
#

∑
b∈Ω#

d(b)48bG4Lb [q]CΠ(b)B1(E) (b, G)

+ 1
#

∑
b∈Ω#

d(b)48bG4Lb [q]C (1 − Π(b)) B1(E) (b, G)

=: (2,#E(G) + (̃; 5 ,# (C)E(G).

(4.3.3)

As with the exponential estimate (4.3.2), Proposition 4.2.2 implies, by possibly choosing [ > 0

smaller, that there exists a constant � > 0 independent of # such that

(̃; 5 ,# (C)E
!2
#

≤ �4−[C ‖E‖!2
#
. (4.3.4)

For the critical component (2,# , note by Lemma 4.2.1(ii) that we can write

(2,# (C)E(G) =
1
#
4L0 [q]CΠ(0)B1(E) (0, G)

+ 1
#

∑
b∈Ω# \{0}

d(b)48bG4Lb [q]CΠ(b)B1(E) (b, G)

=
1
#
q′(G)

〈
Φ̃0,B1(E) (0, ·)

〉
!2 (0,1)

+ 1
#

∑
b∈Ω# \{0}

d(b)48bG4_2 (b)CΦb (G)
〈
Φ̃b ,B1(E) (b, ·)

〉
!2 (0,1)

.

and hence, recalling Lemma 1.3.5 and expanding Φb ,

(2,# (C)E(G) =
1
#
q′(G)

〈
Φ̃0, E

〉
!2
#

+ q′(G) 1
#

∑
b∈Ω# \{0}

d(b)48bG4_2 (b)C
〈
Φ̃b ,B1(E) (b, ·)

〉
!2 (0,1)

+ 1
#

∑
b∈Ω# \{0}

d(b)48bG (8b)4_2 (b)C
(
Φ̃b (G) − q′(G)

8b

) 〈
Φ̃b ,B1(E) (b, ·)

〉
!2 (0,1)

=:
1
#
q′(G)

〈
Φ̃0, E

〉
!2
#

+ q′(G)B?,# (C)E(G) + (̃2,# (C)E(G).
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Taken together, it follows that the linear solution operator 4L[q]C can be decomposed as

4L[q]CE(G) = 1
#
q′(G)

〈
Φ̃0, E

〉
!2
#

+ q′(G)B?,# (C)E(G) + (̃# (C)E(G) (4.3.5)

where

B?,# (C)E(G) =
1
#

∑
b∈Ω# \{0}

d(b)48bG4_2 (b)C
〈
Φ̃b ,B1(E) (b, ·)

〉
!2 (0,1)

and

(̃# (C)E(G) = (ℎ 5 ,# (C)E(G) + (̃; 5 ,# (C)E(G) + (̃2,# (C)E(G).

Equipped with the above, we can establish our main set of linear estimates.

Proposition 4.3.1 (Linear Estimates). Suppose that q is a 1-periodic stationary solution of (4.1.2)

which is diffusively spectrally stable. Given any " ∈ N, there exists a constant � > 0 such that for

all C ≥ 0, # ∈ N and all 0 ≤ ;, < ≤ " we have

m;Gm<C B?,# (C)E!2
#

≤ � (1 + C)−1/4−(;+<)/2‖E‖!1
#

Furthermore, there exists constants �, [ > 0 such that for all C ≥ 0 and # ∈ N we have

(̃# (C)E
!2
#

≤ �
(
(1 + C)−3/4‖E‖!1

#
+ 4−[C ‖E‖!2

#

)
.

Remark 4.3.2. While the bounds above on the derivatives of B?,# (C) are largely unmotivated by

our linear analysis, they will be essential in our forthcoming nonlinear theory.

Proof. First observe that, by definition of B1, we have

〈
Φ̃b ,B1(E) (b, ·)

〉
!2 (0,1)

=

∫ 1

0
Φ̃b (G)

∑
ℓ∈Z

42c8ℓG Ê(b + 2cℓ)3G

=
∑
ℓ∈Z

Ê(b + 2cℓ)
∫ 1

0
Φ̃b (G)42c8ℓG3G
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=
∑
ℓ∈Z

Ê(b + 2cℓ)̂̃Φb (2cℓ)
and hence, using the fact that (1.3.12) implies ‖Ê‖!∞ (R) ≤ ‖E‖!1

#
along with Cauchy-Schwartz, it

follows that

d(b)
����〈Φ̃b ,B1(E) (b, ·)

〉
!2 (0,1)

����2 ≤ d(b)‖E‖2!1
#

(∑
ℓ∈Z
(1 + |ℓ |2)1/2

����̂̃Φb (2cℓ)���� (1 + |ℓ |2)−1/2
)2

≤ �‖E‖2
!1
#

sup
b∈[−c,c)

(
d(b)

Φ̃b2

�1
per (0,1)

)
.

valid for all b ∈ Ω# . Using Lemma 4.2.1, it follows by Parseval’s identity (1.3.15) that there exists

constants �, 3 > 0, independent of # , such that

m;Gm<C B?,# (C)E2
!2
#

=
1
#

∑
b∈Ω#

d(b) (8b); (_2 (b))< 4_2 (b)C 〈Φ̃b ,B1(E) (b, ·)
〉
!2 (0,1)

2

!2 (0,1)

≤ �‖E‖2
!1
#

©« 1
#

∑
b∈Ω#

|b |2(;+<)4−23b2Cª®¬ .
(4.3.6)

By similar considerations, we find that

(̃# (C)E2

!2
#

≤ �4−2[C ‖E‖2
!2
#

+ �‖E‖2
!1
#

©« 1
#

∑
b∈Ω#

|b |24−23b2Cª®¬ . (4.3.7)

It remains to provide uniform in # decay rates on the finite sums

1
#

∑
b∈Ω#

|b |2(;+<)4−23b2C and
1
#

∑
b∈Ω#

|b |24−23b2C . (4.3.8)

To gain some intuition on how to uniformly bound these sums, notice that they can be interpreted

as Riemann sum approximations (up to a harmless rescaling) of the integrals

∫ c

−c
b2(ℓ+<)4−23b2C3b,

∫ c

−c
b24−23b2C3b, (4.3.9)
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which, through an elementary scaling argument, exhibit (1 + C)−1/2−(ℓ+<) and (1 + C)−3/2 decay for

large time, respectively. The proof that the Riemann sums are uniformly controlled by these decay

rates is provided in Lemma 4.A.1 in Appendix 4.A, which completes the proof. �

Remark 4.3.3. The result of Corollary 4.1.9 can be seen from the above analysis, at least at the

linear level. Indeed, following the methods in [21, Section 5] (see also Chapter 3) one sees that,

for large # , the sums in (4.3.8) are good approximations of the respective integrals in (4.3.9) for

times up to C = O(#2), corresponding to an observed polynomial decay of perturbations on such

a timescale. For larger times, however, the exponential nature of the summands dominate and the

sums decay monotonically to zero at exponential rates, corresponding to an exponential decay of

perturbations on these longer timescales.

Before continuing to our nonlinear analysis, we pause to interpret the above results. Suppose

that q is a 1-periodic diffusively spectrally stable stationary solution of (4.1.2), and let D(G, C) be

a solution of (4.1.2) with initial data D(G, 0) = q(G) + YE(G) with Y � 1 and E ∈ !1
#
∩ !2

#
. From

Proposition 4.3.1, it follows that one may expect that the solution D behaves for large time like

D(G, C) ≈ q(G) + Y4L[q]CE(G)

≈ q(G) + Yq′(G)
(

1
#

〈
Φ̃0, E

〉
!2
#

+ B?,# (C)E(G)
)

≈ q
(
G + Y

(
1
#

〈
Φ̃0, E

〉
!2
#

+ B?,# (C)E(G)
))
,

(4.3.10)

which is a space-time dependent phase modulation of the underlying periodic wave q. More

precisely, note the phase modulation naturally decomposes into two parts: a spatially independent

component coming from the projection of the perturbation onto the translational eigenvalue at

the origin, and a space-time dependent component accounting for the dynamics associated to the

accumulation of Bloch eigenvalues near the origin for large # . In the next section, we use this

linear intuition to develop a nonlinear iteration scheme and complete the proof of Theorem 4.1.4

and its corollaries.
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4.4 Uniform Nonlinear Asymptotic Stability

In this section, we use the decomposition of the linearized solution operator 4L[q]C and the associated

linear estimates in Proposition 4.3.1 to develop a nonlinear iteration scheme to complete the proof

of Theorem 4.1.4. As discussed at the end of Section 4.3, the linear estimates in Proposition 4.3.1

suggest that if q is a 1-periodic diffusively spectrally stable stationary solution of (4.1.2), then

#-periodic perturbations of q should, for large time, behave essentially like space-time modulated

version of q. This suggests a nonlinear decomposition of #-periodic perturbations of q, which we

develop in Section 4.4.1 below. With this decomposition in hand, the proof of Theorem 4.1.4 will

be completed in Section 4.4.2 through an appropriate nonlinear iteration scheme.

4.4.1 Nonlinear Decomposition and Perturbation Equations

Suppose q is a 1-periodic diffusively spectrally stable stationary solution of (4.1.2). Motivated by

the work in the previous section, we introduce a decomposition of nonlinear perturbations of the

background wave q which accounts for the critical phase-shift contribution B?,# (C) of the linear

operator.

Motivated by (4.3.10), we begin by letting D̃(G, C) be a solution of (4.1.2) and define a spatially

modulated function

D(G, C) := D̃
(
G − 1

#
W(C) − k(G, C), C

)
(4.4.1)

where both W : R+ → R and k : R × R+ → R are functions to be determined later. Taking D̃ to be

initially close to q in some sense, we attempt to decompose D as

D(G, C) = q(G) + E(G, C), (4.4.2)

where here E denotes a nonlinear perturbation. Note that the form of the modulation in (4.4.1) is a

combination of (i) a time-dependent modulation, as one would utilize in the proof of Proposition

4.1.3, and (ii) a space-time dependent modulation, as is used in the study of localized perturbations
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of periodic waves [29, 37]. Consequently, the forthcoming nonlinear analysis is essentially a

mixture of these two approaches.

As a preliminary step, we derive equations that must be satisfied by the perturbation E and the

modulation functions W and k. To this end, we note that in [29, 37] it is shown through elementary,

but tedious, manipulations that if D(G, C) is as above then the triple (E, W, k) satisfies

(:mC − :L[q])
(
E + 1

#
q′W + q′k

)
= :Ñ , where :Ñ := Q̃ + :R̃G + :S̃C + T̃ , (4.4.3)

with

Q̃ := 5 (q + E) − 5 (q) − � 5 (q)E, R̃ := −kCE −
1
#
WCE + :

(
kG

1 − kG
EG

)
+ :

(
k2
G

1 − kG
q′

)
,

and

S̃ := kGE, T̃ := −kG [ 5 (q + E) − 5 (q)] .

Rearranging slightly as in [10] to remove temporal derivatives of the perturbation E in present in

Ñ in (4.4.3) yields the following.

Lemma 4.4.1. The nonlinear residual E defined in (4.4.2) and modulation functions W and k in

(4.4.1) satisfy

(:mC − :L[q])
(
(1 − kG)E +

1
#
q′W + q′k

)
= :N , where :N = Q + :RG , (4.4.4)

where here

Q = (1 − kG) [ 5 (q + E) − 5 (q) − � 5 (q)E] , (4.4.5)

and

R = −kCE −
1
#
WCE + 2kGE + : (kGE)G + :

(
kG

1 − kG
EG

)
+ :

(
k2
G

1 − kG
q′

)
. (4.4.6)

Our goal is to now obtain a closed nonlinear iteration scheme by integrating (4.4.4) and

exploiting the decomposition of the linear solution operator 4L[q]C provided in (4.3.5). To motivate
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this, we first provide an informal description of how to determine the modulation functions W and

k to separate out the principle nonlinear behavior. Using Duhamel’s formula, we can write (4.4.4)

as the implicit integral equation

(1 − kG (G, C))E(G, C) +
1
#
q′(G)W(C) + q′(G)k(G, C) = 4L[q]CE(G, 0) +

∫ C

0
4L[q] (C−B)N(G, B)3B.

with initial data W(0) = 0, k(·, 0) = 0 and E(·, 0) = D̃(·, 0) − q(·). Recalling that (4.3.5) implies the

linear solution operator can be decomposed as

4L[q]C 5 (G) = q′(G)
(

1
#

〈
Φ̃0, 5

〉
!2
#

+ B?,# (C) 5 (G)
)

︸                                  ︷︷                                  ︸
phase modulation

+ (̃(C) 5 (G)︸    ︷︷    ︸
faster decaying residual

(4.4.7)

it follows that we can remove the principle (i.e., slowest decaying) part of the nonlinear perturbation

by implicitly defining


W(C) ∼

〈
Φ̃0, E(0)

〉
!2
#

+
∫ C

0

〈
Φ̃0,N(B)

〉
!2
#

3B

k(G, C) ∼ B?,# (C)E(0) +
∫ C

0
B?,# (C − B)N (B)3B,

(4.4.8)

where here ∼ indicates equality for C ≥ 1. This choice then yields the implicit description

E(G, C) ∼ kG (G, C)E(G, C) + (̃(C)E(0) +
∫ C

0
(̃(C − B)N (B)3B (4.4.9)

involving only the faster decaying residual component of the linear solution operator.

Note the above choices clearly cannot extend all the way to C = 0 due to an incompatibility of

these choices with the initial data on (E, W, k). Here, we choose to keep the above choices for all

C ≥ 1 while interpolating between the initial data and the right hand sides of (4.4.8)-(4.4.9) on the

initial layer 0 ≤ C ≤ 1. Specifically, we let j(C) be a smooth cutoff function that is zero for C ≤ 1/2
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and one for C ≥ 1, and define the modulation functions W and k implicitly for all C ≥ 0 as


W(C) = j(C)

[〈
Φ̃0, E(0)

〉
!2
#

+
∫ C

0

〈
Φ̃0,N(B)

〉
!2
#

3B

]
k(G, C) = j(C)

[
B?,# (C)E(0) +

∫ C

0
B?,# (C − B)N (B)3B

]
,

(4.4.10)

leaving the system

E(G, C) = (1 − j(C))
[
4L[q]CE(G, 0) +

∫ C

0
4L[q] (C−B)N(B)3B

]
+ j(C)

(
kG (G, C)E(G, C) + (̃(C)E(0) +

∫ C

0
(̃(C − B)N (B)3B

)
.

(4.4.11)

We note that from the differential equation (4.4.4), along with the system of integral equations

(4.4.10)-(4.4.11), we readily obtain short-time existence and continuity with respect to C of a

solution (E, kC , kG) ∈ � 
#

and W ∈ ,1,∞(0,∞) by a standard contraction mapping argument,

treating (4.4.4) as a forced heat equation: see, for example, [27]. Associated with this solution, we

now aim to obtain !2 estimates on (E, WC , kG , kC) and some of their derivatives.

Noting that the nonlinear residual N in (4.4.4) involves only derivatives of the modulation

functions W and k, we may then expect to extract a closed system in (E, WC , kG , kC), and some of

their derivatives, and then recover W and k through the slaved system (4.4.10). In particular, observe

that using (4.4.11) we see that control of E in, say, !2
#
requires (in part) control E in �2

#
. This loss

of derivatives is compensated by the following result, established by energy estimates in [29, 37],

which uses the dissipative nature of the governing evolution equation to control higher derivatives

of E by lower ones, enabling us to close our nonlinear iteration.

Proposition 4.4.2 (Nonlinear Damping). Suppose the nonlinear perturbation E defined in (4.4.2)

satisfies E(·, 0) ∈ � 
#
, and suppose that for some ) > 0 the � 

#
norm of E and kC , the � +1

#
norm of

kG , and the !∞ norms of W and WC remain bounded by a sufficiently small constant for all 0 ≤ C ≤ ) .
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Then there exist positive constants \, � > 0, both independent of # and ) , such that

‖E(C)‖2
� 
#

. 4−\C ‖E(0)‖2
� 
#

+
∫ C

0
4−\ (C−B)

(
‖E(B)‖2

!2
#

+ ‖kG (B)‖2� +1
#

+ ‖kC (B)‖2� 
#

+ |WC (B) |2
)
3B

for all 0 ≤ C ≤ ) .

Proof. The proof strategy is by now standard, and can be found, or example, in [29, 37]. For

completeness, here we simply outline the main details. First, one rewrites (4.4.4) as the forced heat

equation

(1 − kG)
(
:EC − :2EGG

)
= −:

(
kC +

1
#
WC

)
q′ + :2

(
kG

1 − kG
q′

)
G

− kG 5 (q + E) + 5 (q + E) − 5 (q)

+ :EG
(
2 − kC −

WC

#

)
+ :2

[(
1

1 − kG
+ 1

)
kGEG

]
G

.

Multiplying by
∑ 
9=0(−1) 9 m

2 9
G E

1−kG , integrating over [0, #], using integration by parts and rearranging

yields a bound of the form4

mC ‖E‖2� 
#

+ 2: ‖E‖2
� +1
#

. Y‖E‖2
� +1
#

+ ‖E‖2
!2
#

+ 1
Y

 kC

1 − kG
q′

2

� −1
#

+ |WC |
2

#2Y

 1
1 − kG

q′
2

� −1
#

+ 1
Y

 1
1 − kG

mG

(
kG

1 − kG
q′

)2

� −1
#

+ 1
Y

 kG

1 − kG
5 (q + E)

2

� −1
#

+ 1
Y

 1
1 − kG

( 5 (q + E) − 5 (q))
2

� −1
#

+ 1
Y

 EG

1 − kG

2

� −1
#

+ 1
Y

 kCEG

1 − kG

2

� −1
#

+ |WC |
2

#2Y

 EG

1 − kG

2

� −1
#

+ 1
Y

 1
1 − kG

mG

[(
1

1 − kG
+ 1

)
kGEG

]2

� −1
#

,

where here Y > 0 is an arbitrary constant5 independent of # . Using the Sobolev interpolation

‖6‖2
� 
#

≤ �̃−1‖m +1G 6‖2
!2
#

+ �̃‖6‖2
!2
#

,

4Below, the symbol � . � implies there exists a constant � > 0, independent of # , such that � ≤ ��.
5Introduced by the application of the Cauchy inequality with Y throughout.
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valid for some constant �̃ > 0 independent of # , now gives

3

3C
‖E‖2

� 
#

(C) ≤ −\‖E(C)‖2
� 
#

+ �
(
‖E(C)‖2

!2
#

+ ‖kG ‖2� +1
#

+ ‖kC ‖2� 
#

+ |WC (C) |2
)
.

The proof is now complete by an application of Gronwall’s inequality. �

4.4.2 Nonlinear Iteration

To complete the proof of Theorem 4.1.4, associated to the solution (E, WC , WC , WG) of of (4.4.10)-

(4.4.11) we define, so long as it is finite, the function

Z (C) := sup
0≤B≤C

(
‖E(B)‖2

� 
#

+ ‖kG (B)‖2� +1
#

+ ‖kC (B)‖2� 
#

+ |WC (B) |
)1/2
(1 + B)3/4.

Combining the linear estimates in Proposition 4.3.1 with the damping estimate in Proposition

4.4.2, we now establish a key inequality for Z which will yield global existence and stability of our

solutions.

Proposition 4.4.3. Under the assumptions of Theorem 4.1.4, there exist positive constants�, Y > 0,

both independent of # , such that if E(·, 0) is such that

�0 := ‖E(·, 0)‖!1
#
∩� 

#
≤ Y and Z ()) ≤ Y

for some ) > 0, then we have

Z (C) ≤ �
(
�0 + Z2(C)

)
valid for all 0 ≤ C ≤ ) .

Proof. Recalling Lemma 4.4.1 we readily see that there exists a constant � > 0, independent of # ,

such that

‖Q(C)‖!1
#
∩�1

#
≤ �

(
1 + ‖kG (C)‖�1

#

)
‖E(C)‖2

�1
#
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and

‖R(C)‖!1
#
∩�1

#
≤ �

(
‖(E, EG , kG , kGG , kC) (C)‖2�1

#

+ |WC (C) |2
)

so that, using the linear estimates in Proposition 4.3.1, we have for so long as Z (C) remains small

that

‖Q(C)‖!1
#
∩�1

#
, ‖R(C)‖!1

#
∩�1

#
≤ �Z2(C) (1 + C)−3/2

for some constant � > 0 which is independent of # . Since :N = Q + :RG , it follows there exists a

constant � > 0 independent of # such that

‖N (C)‖!1
#
∩�1

#
≤ �‖(E, EG , EGG , kG , kGG , kGGG , kC , kCG) (C)‖2�1

#

+ |WC (C) |2 ≤ �Z2(C) (1 + C)−3/2.

(4.4.12)

for so long as Z (C) remains small. Applying the bounds in Proposition 4.3.1 to the implicit equation

(4.4.11), it immediately follows that

‖E(C)‖!2
#
≤ ‖E(·, C)kG (C)‖!2

#
+ ��0(1 + C)−3/4 + �

∫ C

0
(1 + C − B)−3/4 ‖N (B)‖!1

#
∩!2

#
3B

≤ Z (C)2(1 + C)−3/2 + ��0(1 + C)−3/4 + �Z (C)2
∫ C

0
(1 + C − B)−3/4(1 + B)−3/23B

≤ �
(
�0 + Z (C)2

)
(1 + C)−3/4

for some constant � > 0 independent of # . In particular, observe the loss of derivatives in the

above estimate: control of the !2
#
norm of E(C) requires control of the � 

#
norm of E(C). This

loss of derivatives may be compensated by the nonlinear damping estimate in Proposition 4.4.2,

assuming we can obtain appropriate estimates on the modulation functions and their derivatives.

To this end, we observe that by using (4.4.10) for 0 ≤ ℓ ≤  + 1 we have that

mℓGkG (G, C) = j(C)
(
mℓ+1G B?,# (C)E(0) +

∫ C

0
mℓ+1G B?,# (C − B)N (B)3B

)
,
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and for 0 ≤ ℓ ≤  

mℓGkC (G, C) = j(C)
(
mℓG mC [B?,# ] (C)E(0) + mℓG B?,# (0)N (C) +

∫ C

0
mℓG mC [B?,# ] (C − B)N (B)3B

)
+ j′(C)

(
mℓG B?,# (C)E(0) +

∫ C

0
mℓG B?,# (C − B)N (B)3B

)
,

and hence that

‖kG ‖� +1
#
, ‖kC ‖� 

#
≤ �

(
�0 + Z (C)2

)
(1 + C)−3/4.

Similarly, using (4.4.10)(i) we find6

|WC (C) | =
����〈Φ̃0,N(C)

〉
!2
#

���� ≤ �‖N (C)‖!1
#
≤ �

(
�0 + Z2(C)

)
(1 + C)−3/2.

Using the damping result in Proposition 4.4.2, we conclude that

‖E(C)‖2
� 
#

≤ ��2
04
−\C + �

(
�0 + Z2(C)

)2 ∫ C

0
4−\ (C−B) (1 + B)−3/23B

≤ ��2
04
−\C + �

(
�0 + Z2(C)

)2
(1 + C)−3/2

≤ �
(
�0 + Z2(C)

)2
(1 + C)−3/2.

(4.4.13)

Since Z (C) is a non-decreasing function, it follows that for a given C ∈ (0, )) we have

(
‖E(B)‖2

� 
#

+ ‖kG (B)‖2� +1
#

+ ‖kC (B)‖2� 
#

+ |WC (B) |2
)1/2
(1 + B)3/4 ≤ �

(
�0 + Z2(C)

)2

valid for all B ∈ (0, C). Taking the supremum over B ∈ (0, C) completes the proof. �

The proof of Theorem 4.1.4 now follows by continuous induction. Indeed, Z (C) is continuous

so long as it remains small, Proposition 4.4.3 implies that if �0 <
1

4� then Z (C) ≤ 2��0 for all

C ≥ 0. Noting that � > 0 is independent of # , this establishes the stability estimates (4.1.7) from

6Note here we use an !∞-!1 bound to control the inner product. This is opposed to using Cauchy-Schwartz, which
would contribute the growing factor ‖Φ̃0‖!2

#
= O(#).
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Theorem 4.1.4 by taking

k̃(G, C) :=
1
#
W(C) + k(G, C).

Further, the stability estimate (4.1.9) inCorollary 4.1.7 follows by (4.4.13) and the triangle inequality

since D (
· − 1

#
W(C), C

)
− q


!2
#

≤ ‖DG ‖!∞ ‖k(G, C)‖!2
#
+ ��0(1 + C)−3/4

≤ ��0 (1 + C)−1/4 ,

as claimed. Further, note that since for 0 < C < B we have

|W(C) − W(B) | ≤
∫ B

C

|WC (I) |3I ≤ ��0(1 + C)−1/2

it follows that W(C) converges to some7 W∞ ∈ R as C →∞ with rate

|W(C) − W∞ | ≤
∫ ∞

C

|WC (I) |3I ≤ ��0(1 + C)−1/2,

which, by the triangle inequality, establishes (4.1.8), thus completing the proof of Theorem 4.1.4,

as well as completes the proof of Corollary 4.1.7. In fact, notice that from (4.4.12) we have����∫ C

0

〈
Φ̃0,N(B)

〉
!2
#

3B

���� ≤ � Φ̃0


!∞ (R)

Z2(C)
∫ C

0
(1 + B)−3/23B,

which, since the above work shows that Z (C) ≤ �Y for some constant � > 0, implies from (4.4.10)

that

W∞ =
〈
Φ̃0, E(0)

〉
!2
#

+ O(Y2).

That is, the asymptotic phase shift in Theorem 4.1.4 is O(Y2) close to that suggested by the linear

theory in Section 4.3.

7Note since the modulation function W depends on # , so does the limiting phase shift W∞.
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Finally, we combine Corollary 4.1.7 with Proposition 4.1.3 to establish Corollary 4.1.9. To this

end, let Y > 0 and � > 0 be as in Corollary 4.1.7. Fix # ∈ N and X ∈ (0, X# ), with X# as in

(4.1.6), and let YX > 0 be as in Proposition 4.1.3. If D0 ∈ !1
per(0, #) ∩� 

per(0, #) with �0 < Y, then

Corollary 4.1.7 implies thatD (·, C) − q (
· + 1

#
W∞

)
�1

per (0,#)
≤ ��0(1 + C)−1/4

for all C > 0. In particular, there exists a time )X > 0 such thatD (·, C) − q (
· + 1

#
W∞

)
�1

per (0,#)
< YX

for all C ≥ )X. By the translational invariance of (4.1.2) it is clear that q(· + 1
#
W∞) is a diffusively

spectrally stable 1-periodic solution of (4.1.1), and hence Proposition 4.1.3 implies8 there exists a

constant �X > 0 such that D (·, C) − q (
· + 1

#
W∞

)
�1

per (0,#)
≤ �XYX4−XC

for all C > )X. Taking "X =
�XYX
�0

completes the proof.

Remark 4.4.4. It is expected that the analysis for the nonlinear iteration scheme in this section can

be replicated with the sharper linear bounds (4.3.6) and (4.3.7), which would allow us to attain a

stability result with the appropriate Riemann sum estimates at the nonlinear level. Such a result

would allow us to explicitly show both the expected exponential decay for a fixed # and the uniform

polynomial decay presented in our main theorem. Further, the Riemann sum bounds make explicit

the expectation that we see polynomial decay for short time and exponential decay for large time.

We leave the proof of such a result for future work.

8Here, we are applying Proposition 4.1.3 with initial data D(·, )X).
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Appendix

4.A Bounds on Discrete Sums

In order to establish the uniform linear bounds in Proposition 4.3.1, we need to establish uniform-

in-# bounds on finite sums of the form

1
#

∑
b∈Ω# \{0}

b2A4−23b2C

where # ∈ N. Following the ideas in [21] (see also Chapter 3), we note that the above finite sum

is, up to a simple rescaling, a Riemann sum approximation for the integral

∫ c

−c
b2A4−23b2C3b

which, through an elementary scaling argument, exhibits (1 + C)−A−1/2 decay for large time. Using

this as motivation, we now establish the following key estimate.

Lemma 4.A.1. Let 3 > 0 and A ∈ N∪{0} be given. Then there exists a constant� > 0, independent

of # , such that for every # ∈ N we have

1
#

∑
b∈Ω# \{0}

b2A4−23b2C ≤ � (1 + C)−A−1/2,

valid for all C ≥ 0.

Proof. First, consider the case when A = 0 and note that, for each C > 0, the function b ↦→ 4−23b2C

is even and monotonically decreasing for b > 0. Together with the equality b 9 − b 9−1 = 2c/# ,

monotonicity allows us to treat the sum over b ∈ Ω# , b > 0 as a right-endpoint Riemann sum

(i.e. an under-approximation). Parity then tells us the sum over b ∈ Ω# , b < 0 is also an
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under-approximation, yielding

1
#

∑
b∈Ω# \{0}

4−23b2C ≤ 1
2c

∫ c

−c
4−23b2C3b . (1 + C)−1/2.

For A ≥ 1, the analysis is complicated by the fact that the function

5 (b, C) := b2A4−23b2C ,

defined for b ∈ R and C > 0, is not monotonically decreasing for b > 0. However, we may use

similar analysis via the following procedure.

First, observe that, for fixed C > 0, 5 (·, C) has a global minimum at 0 and global maxima at

±' := ±
( A
23

)1/2
C−1/2, with 5 (±', C) =

( A

234

)A
C−A .

If 0 < C ≤ A/(23c2), then ' ≥ c so that ±' ∉ (−c, c). We can then easily estimate the sum

1
#

∑
b∈Ω# \{0}

b2A4−23b2C ≤ 1
#

∑
b∈Ω# \{0}

c2A ≤ c2A . (4.A.1)

For C > A/(23c2), we define the auxiliary function

� (b, C) :=


5 (', C), |b | ≤ '

5 (b, C), |b | > '
.

Notice that � (·, C) is even and monotonically decreasing for b > 0. Furthermore, notice that

∫ c

−c
� (b, C) 3b ≤ 241/2

( A

234

)A+1/2
C−A−1/2 +

∫ c

−c
5 (b, C) 3b . (1 + C)−A−1/2,

where the last inequality follows from (4.A.1). Consequently, we may modify the monotonicity

146



trick from the A = 0 case to obtain

1
#

∑
b∈Ω# \{0}

b2A4−23b2C ≤ 1
2c

∫ c

−c
� (b, C) 3b . (1 + C)−A−1/2.

�

In [21] (see also Chapter 3), the authors further established that, in the cases A = 0 and

A = 1, the decay rate in Lemma 4.A.1 is indeed sharp, providing also a uniform lower bound for

the corresponding finite sums. A similar analysis applied to the present situation establishes the

sharpness of these bounds for all A ≥ 0. While not necessary in the present analysis, it provides yet

a deeper connection between the current uniform analysis of subharmonic perturbations and the

“limiting” localized theory.
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Chapter 5

Nonlinear Modulational Dynamics of Spectrally Stable Periodic

Waves in the Lugiato-Lefever Equation

Abstract

We consider the nonlinear stability of spectrally stable periodic stationary solutions of the

Lugiato-Lefever equation (LLE), a damped nonlinear Schrödinger equation with forcing that

arises in nonlinear optics. Recently there have been several works addressing the nonlinear

stability of such solutions to #)-periodic, i.e., subharmonic, perturbations. In these works,

the existence of a spectral gap yields exponential decay of sufficiently small subharmonic

perturbations to a spatial shift of the underlying wave. As we have seen in the past two

chapters, this result is degenerate in the limit # = ∞, and a stability result that is uniform in #

is motivated by the localized theory. Consequently, in this chapter we consider perturbations

which are localized, i.e., integrable on the line, by which standard Floquet-Bloch theory

implies the absence of such a spectral gap.

In Chapter 3, we used a delicate decomposition of the associated linearized solution operator

to obtain linear stability results to localized perturbations with polynomial rates of decay to

a spatio-temporal phase modulation of the underlying wave. However, due to the low-order

damping associated to the LLE, an inherent loss of derivatives in the associated nonlinear

iteration scheme prevented us from extending their linear stability result to the nonlinear level.

In this chapter, we present a new nonlinear iteration scheme in which the loss of derivatives

is compensated through a coupling to a separate “unmodulated” iteration scheme in which
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derivatives are not lost, yet where perturbations decay too slow to close an independent

iteration scheme. Our work establishes the nonlinear stability of spectrally stable periodic

stationary solutions of the LLE to localized perturbations with precisely the same polynomial

decay rates predicted from the linear theory. This chapter is representative of a forthcoming

joint work with Mariana Haragus, Mathew Johnson, and Björn de Rĳk [22].

5.1 Introduction

The main goal of this chapter is to return to our study of the Lugiato-Lefever equation and establish

the nonlinear stability of diffusively spectrally stable periodic wave solutions to the LLE when in

the presence of localized perturbations. We now summarize several important observations from

the past two chapters.

In Chapter 3, we began our study of the Lugiato-Lefever equation (3.1.1)

mCk = −iVkGG − (1 + iU)k + i|k |2k + �, (5.1.1)

an equation that has been intensely studied in he physics literature in the context of nonlinear

optics; see, for example, [9] and references therein. We saw that some of the main mathematical

questions raised by the physical problem concern the existence, dynamics, and stability of periodic

stationary solutions. Several recentworks have established the existence of periodic steady solutions

k(G, C) = q(G) of (5.1.1), which correspond to )-periodic solutions of the profile equation

8Vq′′ = −(1 + 8U)q + 8 |q |2q + �. (5.1.2)

The existence of periodic solutions of (5.1.2) has been established using a variety of methods,

including local bifurcation theory [11, 12, 18, 51], global bifurcation theory [49], and perturbative

arguments [19].

We considered both small localized and small subharmonic perturbations of these periodic

149



waves. As such, we let q be a )-periodic steady solution1 of (5.1.1) and decomposed q = qA + iq8

into its real and imaginary parts. We saw that a function of the form k(G, C) = q(G) + E(G, C), with

E = EA + iE8, was a solution of (5.1.1) provided that the real functions EA and E8 were solutions of

the real system

mC
©«
EA

E8

ª®®¬ = A[q]
©«
EA

E8

ª®®¬ + N(E), (5.1.3)

where here N(E) is at least quadratic in E and A[q] is the real matrix differential operator

A[q] = −� + JL[q], (5.1.4)

with

J =
©«

0 −1

1 0

ª®®¬ , L[q] =
©«
−Vm2

G − U + 3q2
A + q2

8
2qAq8

2qAq8 −Vm2
G − U + q2

A + 3q2
8

ª®®¬ .
We consideredA[q] as a linear operator with periodic coefficients acting on2 !2(R) with densely

defined domain �2(R) or as an operator acting on !2
per(0, #)) with densely defined domain

�2
per(0, #)), depending on if we were considering localized or subharmonic perturbations, respec-

tively.

In Chapter 3, we ignored the nonlinear terms and considered linear dynamics of the LLE under

both subharmonic and localized perturbations. Naturally, the local dynamics about q to both classes

of perturbations is heavily influenced by the spectrum of the linearized operatorA[q]. SinceA[q]

has periodic coefficients, standard Floquet-Bloch theory implies that its spectrum as an operator

acting on !2(R) is entirely essential and is comprised of a countable union of continuous curves

which, thanks to the spatial translation invariance of (5.1.1), necessarily touches the imaginary axis

at the origin. For subharmonic perturbations, the spectrum of the linear operatorA[q] consists only

of isolated eigenvalues with finite algebraic multiplicity. For spectrally stable waves, the spectrum

1A standard bootstrapping argument shows that stationary continuous solutions of the (5.1.1) are infinitely many
times continuously differentiable. We therefore assume that )-periodic stationary solutions q are smooth in this sense.

2Throughout, we will slightly abuse notation and write !2 (R) rather than the more appropriate !2 (R) × !2 (R), and
similarly for all other Lebesgue and Sobolev spaces. Further, when the meaning is clear from context we will write
functions ( 51, 52) ∈ !2 (R) × !2 (R) as simply 5 ∈ !2 (R).
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is located in the open left half complex plane, except for _ = 0, which is an eigenvalue due to the

translation invariance of (5.1.1). The presence of a spectral gap between _ = 0 and the rest of

the spectrum allows in these cases to conclude on orbital nonlinear stability by standard methods.

For the LLE, such a stability result has been recently obtained in [67], under the assumption that

_ = 0 is a simple eigenvalue3; see also [51, 52, 11] for other (in)stability results. We recall that the

standard orbital stability result is empty in the limit # = ∞ since the exponential decay rate and

the allowable size of initial perturbations are both controlled by the size of the spectral gap which

tends to zero as # → ∞. The starting point of our analysis was the standard assumption that the

)-periodic steady wave q is spectrally stable in the sense of Definition 1.3.1, which we recall here

for completeness.4

Definition 5.1.1. Let ) > 0. A smooth )-periodic stationary solution q of (5.1.1) is said to be

diffusively spectrally stable provided the following conditions hold:

(i) the spectrum of the linear operator A[q] given by (5.1.4) and acting in !2(R) satisfies

f(A[q]) ⊂ {_ ∈ C : <(_) < 0} ∪ {0};

(ii) there exists \ > 0 such that for any b ∈ [−c/), c/)) the real part of the spectrum of the Bloch

operator Ab [q] := e−ibGA[q]eibG acting in !2
per(0, )) satisfies

<f(Ab [q]) ≤ −\b2;

(iii) _ = 0 is a simple )-periodic eigenvalue of A0 [q], and the derivative q′ of the periodic wave is

an associated eigenvector.

In the context of the LLE (5.1.1), the existence of diffusively spectrally stable periodic steady

waves was recently established in [12]. In particular, this allows us to conclude that the set of

3Technically, the authors in [67] established this result only for co-periodic perturbations, # = 1. The extension to
subharmonic perturbations with arbitrary but fixed # > 1, however, is straightforward.

4See Section 1.3.2 for further discussion of this assumption.
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diffusively spectrally stable periodic steady waves of the LLE is non-empty. Relying upon a delicate

decomposition of the associated linear solution operator 4A[q]C , we established the linear stability

result to localized perturbations given in Theorem 3.1.5, which we recall here for convenience.

Theorem 5.1.2 (Localized Linear Stability, [21]). Let ) > 0 and suppose q is a smooth )-periodic

steady solution of (5.1.1) that is diffusively spectrally stable in the sense of Definition 1.3.1. Then,

there exists a constant � > 0 such that for any 5 ∈ !1(R) ∩ !2(R) we have5

e�[q]C 5

!2
≤ � (1 + C)− 1

4 ‖ 5 ‖!1∩!2 ,

for all C > 0. Furthermore, for each 5 ∈ !1(R) ∩ !2(R) there exists a smooth function W :

R × [0,∞) → R such that

‖W(·, C)‖!2 ≤ � (1 + C)−
1
4 ‖ 5 ‖!1∩!2 ,

and e�[q]C 5 − q′W(·, C)

!2
≤ � (1 + C)− 3

4 ‖ 5 ‖!1∩!2 ,

for all C > 0.

Remark 5.1.3. We note that the polynomial decay rates in Theorem 5.1.2 are sharp. Further, the

formula for the linear phase shift W is completely explicit and hence the smoothness is immediatley

observed; see [21] for further details. This key linear analysis will be reviewed and extended to

estimates in �< in Section 5.3 below.

The linear result Theorem 5.1.2 suggests that if k is a solution of (5.1.1) which is initially close

in !1(R) ∩ !2(R) to q, then for large time k should behave approximately like

k(G, C) ≈ q(G) + W(G, C)q′(G) ≈ q(G + W(G, C)), C � 1, (5.1.5)

i.e. k should asymptotically behave like a spatio-temporal phase modulation of the underlying

5Here and throughout the remainder of the chapter, we use the abbreviated notation !2 for !2 (R), and similarly for
all other Lebesgue and Sobolev spaces.
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periodic wave q. We point out that this is in stark contrast to the standard subharmonic theory,

as it follows from the stability result in [67], where the presence of a spectral gap allowed the

consideration of only temporal phase modulation functions. However, we also proved the linear

stability result to subharmonic perturbations that is uniform in the period of the perturbations given

in Theorem 3.1.3, which similarly motivated a spatio-temporal phase modulation of the underlying

periodic wave q.

As we saw in Section 3.6, the introduction of spatio-temporal modulation functions leads to

an inherent loss of derivatives in the nonlinear iteration scheme, and we saw that the standard

way of overcoming this obstacle fails for the LLE. In Chapter 4, we saw that a uniform nonlinear

subharmonic stability result can be derived by following the appropriate localized nonlinear iteration

scheme. Consequently, the goal of this chapter is to present a new methodology to establish

nonlinear staility to localized perturbations that is applicable to the LLE. The hope is that this will

allow us to establish a nonlinear stability result to subharmonic perturbations which is uniform in

the period of perturbation, as seen in Chapter 4.6

As motivated above, the main goal of this work is to upgrade the linear stability bounds in

Theorem 5.1.2 to obtain a nonlinear stability result. Specifically, we establish the following main

result.

Theorem 5.1.4 (Localized Nonlinear Stability). Let ) > 0 and suppose q is a smooth )-periodic

steady solution of (5.1.1) that is diffusively spectrally stable in the sense of Definition 1.3.1.7 Then,

there exist constants n, " > 0 such that, whenever E0 ∈ !1(R) ∩ �4(R) satisfies

�0 := ‖E0‖!1∩�4 < n,

there exist functions

Ẽ ∈ �
(
[0,∞), �4(R)

)
∩ �1 ([0,∞), �2(R)

)
, Ẽ(0) = E0,

6This result is currently under investigation [23].
7This hypothesis is made throughout the whole chapter.
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and

W ∈ �
(
[0,∞), �4(R)

)
∩ �1 ([0,∞), �2(R)

)
, W(0) = 0,

such that k = q + Ẽ is the unique global solution of (5.1.1) with initial condition k(0) = q + E0,

and the inequalities

max {‖k(·, C) − q‖!2 , ‖W(·, C)‖!2} ≤ "�0(1 + C)−
1
4 ,

and

max {‖k (· − W(·, C), C) − q‖!2 , ‖mGW(·, C)‖�3 , ‖mCW(·, C)‖�2} ≤ "�0(1 + C)−
3
4 ,

hold for all C ≥ 0.

Remark 5.1.5. Note that the above decay rates on the nonlinear perturbations are precisely as

expected from the linear theorm in Theorem 5.1.2 above and, furthermore, this provides a rigorous

verification of the spatio-temporal modulated behavior (5.1.5) predicted from the linear theory.

While the bounds stated in Theorem 5.1.4 are sharp, interestingly the proof of our main result yields

additional !2 bounds on ẼG and ẼGG which are not expected to be sharp. This is expected to be an

artifact of our forthcoming iteration scheme. Furthermore, the need for the �4 regularity on the

initial perturbation is described in Remark 5.4.10 in Section 5.4 below. While we expect that it

is possible to allow for less regular initial data in Theorem 5.1.4, we emphasize the focus of this

chapter is not to obtain optimal regularity with respect to perturbations, but rather to introduce

a working methodology to establish nonlinear stability of steady )-periodic waves in the LLE.

Consequently, we refrain here from attempting such results.

The proof of Theorem 5.1.4 is primarily based on an extension of the methodologies developed

by Johnson et al. for the nonlinear stability analysis of periodic traveling waves in reaction diffusion

systems and systems of conservation laws; see [2, 29, 37, 36, 39, 34, 31]. Those works, however,

do not directly apply in this case due to a loss of derivatives in the associated nonlinear iteration

scheme. Indeed, as detailed in Section 3.6 above and Section 5.4.2 below, allowing (5.1.5) to
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motivate the introduction of a “modulated perturbation”

E(G, C) = k(G − W(G, C), C) − q(G), (5.1.6)

for some sufficiently regular function W we find that

(mC − A[q]) (E + Wq′) = � (E, EG , EGG , WC , WG , WGG , WGGG , WGC) , (5.1.7)

for some nonlinear function � so that, in particular, attempting to control the norm of the right-

hand-side of (5.1.7) in, for example, �1 would require control of the perturbation E in �3. In the

previous works by Johnson et al., this was compensated by appropriately strong damping effects

in the governing evolution equation, providing a so-called “nonlinear damping estimate” which

established that high Sobolev norms of solutions were exponentially slaved to low Sobolev norms,

thereby allowing one to regain the lost regularity and close the iteration scheme. Specifically, this

nonlinear damping technique requires that the damping effects correspond to the highest-order

spatial derivative in the equation. In the case of the LLE equation (5.1.1), however, the damping

actually corresponds to the lowest-order derivativewhich elementary calculations show negates the

nonlinear damping technique leveraged in previous works. Thus, the main challenge in our proof

is to replace these nonlinear damping estimates in this weakly dissipative context.

Remark 5.1.6. An important observation is that in (5.1.7) the coefficients of the derivatives EG

and EGG on the right hand side are multiples of WG and its spatial derivatives. In particular, if one

considered only time-dependent modulation functions, as is done in the case of the co-periodic

perturbations [67], the equation (5.1.7) reduces to

(mC − A[q]) (E + Wq′) = �̃ (E, WC) := � (E, 0, 0, WC , 0, 0, 0, 0). (5.1.8)

In this case, using Duhamel’s principle we see that controlling the right hand side of (5.1.8) in �1

requires control of E in �1, and hence the associated nonlinear iteration scheme does not exhibit a
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loss of regularity in this co-periodic case, and the same holds for subharmonic perturbations.

To circumvent this issue, we combine the strategies in the works by Johnson et al. with

a recent approach developed by Sandstede & de Rĳk in [10] for the study of the stability of

periodic traveling wave solutions in multi-dimensional reaction diffusion systems to perturbations

which are not localized in the transverse directions to the underlying propagating wave. Their

nonlinear analysis, which is based on first establishing sufficiently strong pointwise estimates on

the associated linearized semigroups, relies on tracking the perturbed solution in two different

coordiante systems: one of which incorporates spatio-temporal phase modulation of the underlying

wave (as recommended from the linear theory), and one that does not incorporate any sort of phase

modulation. Specifically, following their general approach we couple the iteration scheme for the

modulated perturbation E in (5.1.6) with that associated to the un-modulated perturbation

Ẽ(G, C) = k(G, C) − q(G).

As we will see, while the Duhamel’s principle based iteration scheme associated to Ẽ does not

experience a loss of regularity, the associated decay rates of Ẽ are too slow to close an independent

iteration scheme. Nevertheless, our work shows that the proof of Theorem 5.1.4 follows by coupling

the iteration schemes for the modulated, E, and unmodulated, Ẽ, perturbations, as well as using some

judicious integration by parts to move derivatives off factors that may lead to a loss of derivatives

whenever possible.

The outline for this chapter is as follows. In Section 5.2, we describe the spectral properties of

the Bloch operators associated to A[q] and establish the existence and basic decay properties of

the corresponding Bloch semigroups 4Ab [q]C . In Section 5.3, we derive estimates on the evolution

semigroup 4A[q]C . Specifically, we first review the decomposition of the linear solution operator

4A[q]C acting on !2(R) that was used in the corresponding linear analysis in [21], and also extend

the linear estimates obtained there from !2 to �<. In Section 5.3.2 we additionally provide new
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integration by parts formulas allowing one to move spatial derivatives between factors under the

action of components of the semigroup 4A[q]C , which provides a critical component of our strategy to

avoid a loss of regularity in the nonlinaer iteration scheme. In Section 5.4, we detail the construction

of our coupled iteration scheme, as well as explain our general strategy for compensating for the

resulting loss of derivatives. Finally, Section 5.5 is devoted to the proof of Theorem 5.1.4, and we

include in Appendix 5.A some details of the local existence and regularity theory utilized in our

nonlinear analysis.

5.2 Spectral Preparation & Properties of Bloch Semigroups

We begin by recording spectral and semigroup properties of Bloch operators under the diffusive

spectral stability assumption. In Section 3.2, we established spectral properties and semigroup

estimates for the Bloch operators acting in !2(R). Here we extend these results to higher-regularity

Sobolev spaces. This extension is necessary for the nonlinear theory.

First we note that, for functions 6 ∈ �< (R), we have an analogue of Parseval’s equality (1.3.8)

for the �<-norm,8

‖6‖2
�< (R) '

∫ c/)

−c/)
‖6̌(b, ·)‖2

�<per (0,))db = ‖6̌‖
2
!2( [−c/),c/));�<per (0,))) . (5.2.1)

Also note the identity

mGB(6) (b, G) = B (mG6) (b, G) − ib6̌(b, G), (5.2.2)

which holds for 6 ∈ �1(R).

Recall from (3.2.1) that the Bloch operators associated with the linear operator A[q] given

by (5.1.4) are defined for b ∈ [−c/), c/)) by the formula

Ab [q] = −� + JLb [q], (5.2.3)

8Throughout the paper, the notation � . � means that there exists a constant � > 0, independent of � and �, such
that � ≤ ��, and we write � ' � if � . � and � . �.
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where

J =
©«

0 −1

1 0

ª®®¬ , Lb [q] =
©«
−V(mG + 8b)2 − U + 3q2

A + q2
8

2qAq8

2qAq8 −V(mG + 8b)2 − U + q2
A + 3q2

8

ª®®¬ .
The )-periodic solution q being smooth, the operators Ab [q] are closed in !2

per(0, )) and

�<
per(0, )), for any < ∈ N, with compactly embedded domains �2

per(0, )) and �<+2
per (0, )), respec-

tively. A bootstrapping argument, just as for stationary solutions of (5.1.1), shows that eigenvectors

and generalized eigenvectors of Ab [q] are smooth functions. As a consequence, the operators

Ab [q] have the same spectral properties when acting in !2
per(0, )) or �<

per(0, )), and the following

lemma proved in [21], see Section 3.2, for !2
per(0, )) remains valid for �<

per(0, )).

Lemma 5.2.1 (Spectral Preparation). The Bloch operators Ab [q] acting in �<
per(0, )), for some

< ∈ N0, have the following properties.

(i) For any fixed b0 ∈ (0, c/)), there exists a positive constant X0 such that

<f(Ab [q]) < −X0,

for all b ∈ [−c/), c/)) with |b | > b0.

(ii) There exist constants b1 ∈ (0, c/)) and X1 > 0 such that for any |b | < b1 the spectrum ofAb [q]

decomposes into two disjoint subsets

f(Ab [q]) = f−(Ab [q]) ∪ f0(Ab [q]),

with the following properties:

(a) <f−(Ab [q]) < −X1 and<f0(Ab [q]) > −X1;

(b) the set f0(Ab [q]) consists of a single eigenvalue _2 (b) which is simple, analytic in b, and

expands as

_2 (b) = i0b − 3b2 + O(|b |3), (5.2.4)
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for some 0 ∈ R and 3 > 0;

(c) the eigenfunction Φb associated with _2 (b) is a smooth function, depends analytically on b,

and there exists a constant � such that

Φb − q′�<per (0,))
≤ � |b |,

where q′ is the derivative of the )-periodic solution q;

We point out that the expansion (5.2.4) of the simple eigenvalue _2 (b) is a consequence of the

property

Ab [q] = A−b [q],

which holds in general for Bloch operators Ab associated to real differential operators A. The

eigenvalue _2 (b) being the only eigenvalue of Ab [q] with real part larger than −X1, for all |b | <

b1, this implies that _2 (b) = _2 (−b) and then gives the expansion (5.2.4). In addition, if the

periodic solution q is an even function, which is the case for the spectrally stable periodic solutions

constructed in [12], then the operatorA[q] is invariant under the reflection G ↦→ −G, and the Bloch

operators satisfy

'Ab [q] = A−b [q]', ('E) (G) = E(−G).

This implies that _2 (b) = _2 (−b), which gives 0 = 0 in the expansion (5.2.4) in this case.

Finally, notice that the adjoint operatorA∗
b
[q] has similar spectral properties, its spectrum being

equal to the complex conjugated spectrum ofAb [q]. In particular, _2 (b) is a simple eigenvalue of

A∗
b
[q] with smooth associated eigenfunction Φ̃b depending analytically on b.

Just as for the spectral properties above, the semigroup properties of the operators Ab [q] are

the same when acting in !2
per(0, )) or �<

per(0, )), for any < ∈ N. The following result proved in

[21], see Section 3.2, for !2
per(0, )) remains valid in �<

per(0, )).

Lemma 5.2.2 (Bloch semigroups). The Bloch operators Ab [q] acting in �<
per(0, )), for some

< ∈ N0, generate �0-semigroups with the following properties.
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(i) For any fixed b0 ∈ (0, c/)), there exist positive constants �0 and `0 such that

eAb [q]C

L(�<per)

≤ �0e−`0C ,

for all C ≥ 0 and all b ∈ [−c/), c/)) with |b | > b0.

(ii) With b1 chosen as in Lemma 5.2.1 (ii), there exist positive constants �1 and `1 such that for any

|b | < b1, if Π(b) is the spectral projection onto the (one-dimensional) eigenspace associated to

the eigenvalue _2 (b) given by Lemma 5.2.1 (ii), then

eAb [q]C (� − Π(b))

L(�<per)

≤ �1e−`1C ,

for all C ≥ 0.

We refer to Section 3.2, see also [21, Section 2.3], for the proof of this result in !2
per(0, )),

which can be easily transposed to �<
per(0, )), with < ∈ N.

5.3 Linear Estimates

In this section, we review the decomposition of the evolution semigroup 4A[q]C from Section

3.3. We then derive the estimates on the evolution semigroup eA[q]C needed in our subsequent

nonlinear stability analysis. Note that part of the estimates established here are �<-versions of the

!2-estimates from Section 3.3, see also [21].

5.3.1 Decomposition of the Evolution Semigroup

Following Section 3.3, we decompose the �0-semigroup eA[q]C in an exponentially decaying part

and a critical part with slowest decay. In particular, recalling (3.3.1) and (3.3.4), we can decompose

the �0-semigroup eA[q]C as

eA[q]CE(G) = 1
2c

∫ c/)

−c/)
eibGeAb [q]C Ě(b, G)db = (2 (C)E(G) + (4 (C)E(G), (5.3.1)
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for C ≥ 0 and G ∈ R, with

(2 (C)E(G) :=
1

2c

∫ c/)

−c/)
d(b)eibGeAb [q]CΠ(b)Ě(b, G)db,

and

(4 (C)E(G) :=
1

2c

∫ c/)

−c/)
(1 − d(b)) eibGeAb [q]C Ě(b, G)db

+ 1
2c

∫ c/)

−c/)
d(b)eibGeAb [q]C (1 − Π(b)) Ě(b, G)db.

(5.3.2)

Recall that we take b1 ∈ (0, c/)) as in Lemma 5.2.2 and define a smooth nonnegative cutoff

function d satisfying d(b) = 1 for |b | < b1/2 and d(b) = 0 for |b | > b1. For each |b | < b1, consider

the spectral projection Π(b) onto the one-dimensional eigenspace of Ab [q] associated with the

eigenvalue _2 (b), given explicitly by

Π(b)6 =
〈
Φ̃b , 6

〉
!2 (0,))

Φb ,

for any 6 ∈ !2(0, )), where Φ̃b is the smooth eigenfunction of the adjoint operatorA∗
b
[q] associated

with the eigenvalue _2 (b) satisfying 〈Φ̃b ,Φb〉!2 (0,)) = 1.

The component (4 (C) from (5.3.1) is the exponentially decaying part of the evolution semigroup

eA[q]C as the following result shows.

Lemma 5.3.1 (Exponential decay). For any integer < ≥ 0, there exist constants `, � > 0 such that

the inequality

‖(4 (C)E‖L(�<) ≤ �e−`C ,

holds for any C ≥ 0.

Proof. This estimate has been established in the case < = 0 in [21], cf. the exponential decay

estimates (3.3.2) and (3.3.5) from Section 3.3 above. The proof relies upon Parseval’s equality for

!2-functions (1.3.8) and the !2-estimates for the Bloch semigroups in Lemma 5.2.2. It is easily

transferred to < ∈ N using Parseval’s equality for �<-functions (5.2.1) and the �<-estimates for
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the Bloch semigroups in Lemma 5.2.2. �

To continue, we further decompose the critical component (2 (C) of the semigroup in order to

identify its slowest decaying component. We introduce a smooth cutoff function j : [0,∞) → R,

which vanishes on [0, 1] and equals 1 on [2,∞).9 Using the explicit formula for the spectral

projector Π(b) and Lemma 5.2.1 we write

(2 (C)E(G) = j(C)(2 (C)E(G) + (1 − j(C))(2 (C)E(G)

=
j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

Φb (G)db + (1 − j(C))(2 (C)E(G)

= q′(G)
(
j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

db
)
+ (1 − j(C))(2 (C)E(G)

+ j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C8b

(
Φb (G) − q′(G)

8b

) 〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

db

=: q′(G)B? (C)E(G) + (̃2 (C)E(G), (5.3.3)

with

B? (C)E(G) =
j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

db,

for C ≥ 0 and G ∈ R. The motivation behind the decomposition (5.3.3) is that the B? (C)-contribution

corresponds precisely to the lowest (1 + C)−1/4-decay exhibited by (2 (C), whereas the remaining

part (̃2 (C) has faster (1 + C)−3/4-decay. The decay properties needed later in our analysis are proved

in the following lemma.

Lemma 5.3.2 (Critical Component). For all integers ℓ, 9 , < ≥ 0 there exist constants �ℓ, 9 , �< > 0

9The introduction of the smooth cutoff function j at this point in the analysis differs from the analysis we saw in both
Chapter 3 and 4. As we saw in Section 4.4.1, the reason for introducing the cutoff function j becomes apparent only
in the forthcoming nonlinear stability analysis since j allows us to interpolate between the necessary initial conditions
of the nonlinear perturbations with their necessary longtime behavior. We refer to Remark 5.4.7 for further details.
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such that

mℓG m 9C B? (C)E
!2
≤ �ℓ, 9 (1 + C)−

ℓ+ 9
2 ‖E‖!2 , E ∈ !2(R),mℓG m 9C B? (C)E

!2
≤ �ℓ, 9 (1 + C)−

1
4−

ℓ+ 9
2 ‖E‖!1 , E ∈ !1(R),

and

m<G (̃2 (C)E
!2
≤ � (1 + C)− 3

4 ‖E‖!1∩!2 , E ∈ !1(R) ∩ !2(R),

for all C ≥ 0.

Proof. First, from Section 3.3, i.e., [21, Section 3], we have the estimates����〈Φ̃b , Ě(b, ·)〉
!2 (0,))

���� . ‖Ě(b, ·)‖!2 (0,)) ,

����〈Φ̃b , Ě(b, ·)〉
!2 (0,))

���� . ‖E‖!1 , (5.3.4)

Next, take C ≥ 2, so that j(C) = 1. Then

mℓG m
9
C B? (C)E(G) =

1
2c

∫ c/)

−c/)
eibGd(b) (8b)ℓ (_2 (b)) 9 e_2 (b)C

〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

db,

and Parseval’s equality (1.3.8) implies that

mℓG m 9C B? (C)E2

!2
=

1
2c)

∫ c/)

−c/)

∫ )

0

����d(b) (ib)ℓ (_2 (b)) 9 e_2 (b)C
〈
Φ̃b , Ě(b, ·)

〉
!2 (0,))

����2 dG db.

Using (5.2.4) and (5.3.4) we find

mℓG m 9C B? (C)E
!2
.

bℓ+ 9e−db2C

!∞
b
(R)
‖E‖!2 . (1 + C)−

ℓ+ 9
2 ‖E‖!2 , E ∈ !2(R),mℓG m 9C B? (C)E

!2
.

bℓ+ 9e−db2C

!2
b
(R)
‖E‖!1 . (1 + C)−

1
4−

ℓ+ 9
2 ‖E‖!1 , E ∈ !1(R),

which prove the first two inequalities for C ≥ 2. Similarly, for (̃2 (C), using in addition that the
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quantity

sup
b∈[−c/),c/))

m<G (
Φb − q′

8b

)
!∞
,

is finite by Lemma 5.2.1, we find

m<G (̃2 (C)E
!2
.

(b<+1e−db2C

!2
b
(R)
+ · · · +

be−db2C

!2
b
(R)

)
‖E‖!1 . (1 + C)−3/4‖E‖!1 ,

which proves the third inequality for C ≥ 2.

The corresponding short-time bounds for C ∈ [0, 2] on B? (C) and (̃2 (C) follow similarly using

that j(C), and thus B? (C), vanishes on [0, 1], and that j(C) and its derivatives are bounded on

[1, 2]. �

5.3.2 Integration by Parts Properties

In addition to the above linear estimates, our forthcoming nonlinear iteration scheme requires the

following integration-by-parts type identities.

Proposition 5.3.3 (Integration by Parts). Given 5 , 6 ∈ �1(R), we have the following identities for

all C ≥ 0 and G ∈ R:

B? (C) ( 5 · mG6) (G) = −B? (C) (mG 5 · 6) + mGB? (C) ( 5 6) (G)

− j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C

〈
mGΦ̃b ,B( 5 6) (b, ·)

〉
!2 (0,))

db,

and

(̃2 (C) ( 5 · mG6) (G) = −(̃2 (C) (mG 5 · 6)

+ (1 − j(C))
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C8bΦb (G)

〈
Φ̃b ,B( 5 6) (b, ·)

〉
!2 (0,))

db

− (1 − j(C))
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)CΦb (G)

〈
mGΦ̃b ,B( 5 6) (b, ·)

〉
!2 (0,))

db
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+ j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C (8b)2

(
Φb (G) − q′(G)

8b

) 〈
Φ̃b ,B( 5 6) (b, ·)

〉
!2 (0,))

db

− j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C8b

(
Φb (G) − q′(G)

8b

) 〈
mGΦ̃b ,B( 5 6) (b, ·)

〉
!2 (0,))

db.

Proof. The proofs of the above identities are essentially the same, so we will just prove the identity

for B?. Using the identity (5.2.2), integration by parts gives

〈
mGΦ̃b ,B ( 5 · 6) (b, ·)

〉
!2 (0,))

= −
〈
Φ̃b ,B (mG 5 · 6 + 5 · mG6) (b, ·)

〉
!2 (0,))

+ ib
〈
Φ̃b ,B ( 5 · 6) (b, ·)

〉
!2 (0,))

.

Multiplying this equality by d(b)eibG+_2 (b)C , integrating and rearranging terms yields the desired

result. �

Combining the above identities with our previous linear estimates we obtain the following result.

Lemma 5.3.4. There exists a constant � > 0, and for all integers ℓ, 9 ≥ 0 a constant �ℓ, 9 > 0 such

that the following inequalities hold:

mℓG m 9C B? (C) ( 5 · mG6)
!2
≤ �ℓ, 9 (1 + C)−

1
4−

ℓ+ 9
2 (‖ 5 6‖!1 + ‖mG 5 · 6‖!1) ,(̃2 (C) ( 5 · mG6)

!2
≤ � (1 + C)− 3

4 (‖ 5 6‖!1 + ‖mG 5 · 6‖!1) ,

for all 5 , 6 ∈ �1(R) and C ≥ 0, and

mℓG m 9C B? (C) ( 5 · m2
G 6

)
!2
≤ �ℓ, 9 (1 + C)−

1
4−

ℓ+ 9
2

(
‖ 5 6‖!1 + ‖mG 5 · 6‖!1 + ‖m2

G 5 · 6‖!1

)
,(̃2 (C) ( 5 · m2

G 6

)
!2
≤ � (1 + C)− 3

4

(
‖ 5 6‖!1 + ‖mG 5 · 6‖!1 + ‖m2

G 5 · 6‖!1

)
,

for all 5 , 6 ∈ �2(R) and C ≥ 0.

Proof. The first two inequalities follow directly from the identities in Proposition 5.3.3 and the
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estimates in Lemma 5.3.2. For the latter ones, we use the identities

m2
GB( 5 ) (b, G) = B

(
m2
G 5

)
(b, G) − 28bmGB( 5 ) (b, G) + b2 5̌ (b, G)

= B
(
m2
G 5

)
(b, G) − 28bB(mG 5 ) (b, G) − b2 5̌ (b, G)

to derive second-order analogues of the identities in Proposition 5.3.3. For example, we obtain

j(C)
2c

∫ c/)

−c/)
d(b)eibG+_2 (b)C

〈
m2
G Φ̃b ,B( 5 6) (b, ·)

〉
!2 (0,))

db = B? (C)
(
m2
G 5 · 6 + 2mG 5 · mG6 + 5 · m2

G 6

)
− 2mGB? (C) (mG 5 · 6 + 5 · mG6) + m2

G B? (C) ( 5 6) .

Then using the estimates in Lemma 5.3.2, as well as Proposition 5.3.3 to eliminate first order

derivatives on 6, yields the estimate on B? (C)
(
5 · m2

G 6
)
and its derivatives. The estimate on (̃2 is

obtained in the same way. �

Remark 5.3.5. In our forthcoming analysis, we will see that Proposition 5.3.3 allows us to circum-

vent the loss of regularity that arises from the slowest decaying, critical part of our solution operator

4A[q]C . Indeed, circumventing this loss of regularity is most necessary on the critical part of our

solution operator owing to the sensitivity of the algebraic decay in the nonlinear iteration scheme.

However, it does not solve the loss of regularity for the exponentially decaying part of the solution

operator because such an integration-by-parts type identity cannot hold for this part of the solution

operator. Indeed, we can see this from the form of (5.3.2) and from Lemma 5.3.1. Consequently,

we still experience a loss of regularity on the exponentially decaying terms, even after integration

by parts. In the next section, we see that we can overcome this remaining loss of regularity after

coupling the evolution of modulated perturbation to the evolution of the unmodulated perturbation.

5.4 Nonlinear Iteration Scheme

The goal of this section is to introduce the nonlinear iteration scheme that will be employed in §5.5

to prove our nonlinear stability result, Theorem 5.1.4. Thus, we let q be a smooth )-periodic
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steady wave solution of the LLE (5.1.1), which is diffusively spectrally stable, and consider the

perturbed solution k(C) of (5.1.1) with initial condition k(0) = q + E0, where E0 ∈ !1(R) ∩�4(R)

is sufficiently small.

In Section 5.4.1 we study the nonlinear dynamics of the perturbation Ẽ(C) = k(C) − q, and

conclude that the associated linear and nonlinear estimates are tooweak to close a nonlinear iteration

scheme. Hence, to account for the most critical behavior (which originates from translational

invariance of the steady wave q), we introduce in Section 5.4.2 a spatio-temporal phase modulation

that tracks the shift of the perturbed solution in space relative to q. We establish a nonlinear

iteration scheme for the modulated perturbation and the phase modulation itself. However, this

scheme does not provide control over spatial derivatives of the perturbation, i.e. it exhibits a ‘loss’

of derivatives. We address this loss of derivative in Section 5.4.3 using integration by parts and by

appending equations for the unmodulated perturbation to the scheme.

5.4.1 The Unmodulated Perturbation

Setting

Ẽ(C) := k(C) − q, (5.4.1)

the unmodulated perturbation Ẽ satisfies

(mC − A[q]) Ẽ = Ñ (Ẽ), (5.4.2)

where A[q] is the linear operator from (5.1.3) and the nonlinearity Ñ is given by

Ñ (Ẽ) := �


©«

3Ẽ2
A + Ẽ2

8
2ẼA Ẽ8

2ẼA Ẽ8 Ẽ2
A + 3Ẽ2

8

ª®®¬ q + |Ẽ |2Ẽ
 .
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Using the embedding �1(R) ↩→ !∞(R) it is straightforward to check the following estimates on

the nonlinearity Ñ .

Lemma 5.4.1. For any constant � > 0, the inequalities

Ñ (Ẽ)
!1
. ‖Ẽ‖2

!2 , (5.4.3)Ñ (Ẽ)
�4
. ‖Ẽ‖�3 ‖Ẽ‖�2 + ‖Ẽ‖�4 ‖Ẽ‖�1 ,

hold for all Ẽ ∈ �4(R) with ‖Ẽ‖�2 ≤ �.

The local existence and uniqueness of the perturbation Ẽ(C) as a solution to (5.4.2) is an

immediate consequence of the existence of the semigroup eA[q]C , acting in �2(R), the estimates

above on the nonlinearity Ñ , and classical local existence theory for semilinear evolution problems;

see, for instance, [8, Proposition 4.3.9] and [54, Theorem 6.1.3]. For completeness, the proof is

contained in Appendix 5.A below.

Proposition 5.4.2 (Local Theory for the Unmodulated Perturbation). For any E0 ∈ !1(R) ∩�4(R),

there exists a maximal time )max ∈ (0,∞] such that (5.4.2) admits a unique solution

Ẽ ∈ �
(
[0, )max), �4(R)

)
∩ �1 ([0, )max), �2(R)

)
, (5.4.4)

with initial condition Ẽ(0) = E0. In addition, if )max < ∞, then

lim
C↑)max

‖Ẽ(C)‖�2 = ∞. (5.4.5)

Ideally, we would wish to control the perturbation Ẽ(C) over time, and prove that (5.4.5) cannot

occur, which implies that Ẽ(C), and thus k(C), are global solutions. Naively, one might expect this

to be accomplished by integrating (5.4.2) and attempting to bound the perturbation Ẽ(C) iteratively
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using the Duhamel formulation

Ẽ(C) = eA[q]CE0 +
∫ C

0
eA[q] (C−B)Ñ (Ẽ(B))dB, (5.4.6)

for C ∈ [0, )max). However, as outlined inRemark 5.4.3 below the temporal bounds on the semigroup

eA[q]C , established in Section 5.3, are too weak to close the resulting nonlinear iteration scheme.

Consequently, to utilize faster linear decay rates we introduce a spatio-temporal phase modulation

W(G, C) for the perturbed solution k in the next subsection, which accounts for the most critical

behavior of the linear solution operator.

Remark 5.4.3. The estimates on the critical component (2 (C) of the semigroup eA[q]C in Lemma

5.3.2 indicate that the perturbation Ẽ(C) decays in �1(R) at most with rate (1 + C)−1/4. Thus, in

an attempt to close a nonlinear iteration scheme, it makes sense to take C > 0 and assume that we

have indeed ‖Ẽ(B)‖�1 . (1+ B)−1/4 for B ∈ [0, C). To close the nonlinear iteration scheme, we need

to show that the right-hand side of (5.4.6) decays at least with rate (1 + C)−1/4. However, Lemma

5.3.2 and estimate (5.4.3) are insufficient to bound the contribution

∫ C

0
q′B? (C − B)Ñ (Ẽ(B))dB

occurring on the right-hand side of (5.4.6) from the decomposition (5.3.3) of critical component

(2 (C) of the semigroup. Indeed, one finds the latter to be bounded by∫ C

0
(1 + C − B)− 1

4 (1 + B)− 1
2 dB . (1 + C) 1

4 .

We conclude that the temporal bounds on the critical component (2 (C) of the semigroup eA[q]C ,

established in Lemmas 5.3.2 are too weak to close a nonlinear iteration scheme. This is no surprise

as the same bounds on the semigroup and nonlinearity can be obtained for the nonlinear heat

equation mCD = DGG + D2 in which all nonnegative, nontrivial initial data in �1(R) blow up in finite

time [15].
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5.4.2 The Modulated Perturbation

We now introduce the modulated perturbation by taking

E(G, C) = k(G − W(G, C), C) − q(G), (5.4.7)

in which the spatio-temporal modulation function W(G, C) satisfies W(·, 0) = 0, i.e., it vanishes at

C = 0. Substituting (5.4.7) into the LLE (5.1.1), we obtain the equation

(mC − A[q]) (E + Wq′) = N (E, W, mCW) + (mC − A[q]) (WGE) , (5.4.8)

where

N(E, W, WC) = Q(E, W) + mGR(E, W, WC), (5.4.9)

with

Q(E, W) = (1 − WG) �

©«

3E2
A + E2

8
2EAE8

2EAE8 E2
A + 3E2

8

ª®®¬ q + |E |2E
 ,

and

R(E, W, WC) = −WCE − V�
[
WGGE + 2WGEG +

W2
G

1 − WG
(q′ + EG)

]
.

Using the embedding �1(R) ↩→ !∞(R) it is straightforward to check the following estimates on

the nonlinearity N in (5.4.8).

Lemma 5.4.4. Fix a constant � > 0. The inequality

‖N (E, W, WC)‖!2 . ‖E‖!2 ‖E‖�1 + ‖(WG , WC)‖�2×!2 (‖E‖�2 + ‖WG ‖!2) ,

holds for E ∈ �2(R) and (W, WC) ∈ �4(R) × �2(R) satisfying ‖E‖�1 ≤ � and ‖W‖�2 ≤ 1
2 .
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Integrating (5.4.8) yields the Duhamel formulation

E(C) + W(C)q′ = eA[q]CE0 +
∫ C

0
eA[q] (C−B)N(E(B), W(B), mCW(B))dB + WG (C)E(C), (5.4.10)

for C ∈ [0, g), where we used the property that both W(·, 0) and WG (·, 0) are identically zero. We

grouped terms that are nonlinear in E, W and their derivatives on the right-hand side, whereas the

left-hand side contains all contributions that are linear in E, W and their derivatives. The key idea

is to make a judicious choice for W(C) such that the linear term W(C)q′ compensates for the most

critical nonlinear contributions in (5.4.10). For this, we recall from (5.3.1) and (5.3.3) that the

semigroup eA[q]C can be decomposed as

eA[q]C = q′B? (C) + (̃(C), (5.4.11)

with

(̃(C) := (̃2 (C) + (4 (C).

By Lemmas 5.3.1 and 5.3.2 the slowest temporal decay in (5.4.11) is exhibited by q′B? (C). This

recommends the (implicit) choice

W(C) = B? (C)E0 +
∫ C

0
B? (C − B)N (E(B), W(B), mCW(B))dB. (5.4.12)

We use this equality as a definition for W. Noting that the modulated perturbation E can be written

in terms of the unmodulated perturbation Ẽ as

E(G, C) = Ẽ(G − W(G, C), C) + q(G − W(G, C)) − q(G). (5.4.13)

the equality (5.4.12) defines (implicitly) W as a function of the unmodulated perturbation Ẽ. The

existence and uniqueness of a local solution W, for a given Ẽ, is established in the following result.

Proposition 5.4.5 (Local Theory for the Phase Modulation). For Ẽ given by Proposition 5.4.2,
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there exists a maximal time gmax ∈ (0, )max] such that (5.4.12) with E given by (5.4.13) has a unique

solution

W ∈ �
(
[0, gmax), �4(R)

)
∩ �1 ([0, gmax), �2(R)

)
,

with W(0) = 0. In addition, if gmax < )max, then

lim
C↑gmax

‖(W(C), mCW(C))‖�4×�2 = ∞.

We prove this proposition in Appendix 5.A. Given now the phase modulation W(C) in Proposi-

tion 5.4.5 and the unmodulated perturbation Ẽ(C) in Proposition 5.4.2, the modulated perturbation

E(C) is uniquely determined by (5.4.13). More precisely, we have the following result.

Corollary 5.4.6 (The Modulated Perturbation). For Ẽ given by Proposition 5.4.2 and W given by

Proposition 5.4.5, the modulated perturbation E in (5.4.13) satisfies E ∈ �
(
[0, gmax), �2(R)

)
.

Substracting (5.4.12) from (5.4.10) we obtain the equation for the modulated perturbation,

E(C) = (̃(C)E0 +
∫ C

0
(̃(C − B)N (E(B), W(B), mCW(B))dB + WG (C)E(C), (5.4.14)

which holds for C ∈ [0, gmax). Notice that those terms exhibiting the slowest temporal decay

in (5.4.10) are canceled out in (5.4.14) by our choice of W(C). Indeed, by Lemmas 5.3.1 and 5.3.2,

the component (̃(C) of the semigroup exhibits fast decay at rate (1+ C)−3/4 instead of the (1+ C)−1/4-

decay rate of the semigroup eA[q]C . Moreover, the nonlinear residual N depends on derivatives of

W only, which, exploiting that B? (0) = 0, satisfy

mℓG m
9
C W(C) = mℓG m

9
C B? (C)E0 +

∫ C

0
mℓG m

9
C B? (C − B)N (E(B), W(B), mCW(B))dB, (5.4.15)

for ℓ, 9 ∈ N0 and C ∈ [0, gmax). By Lemma 5.3.2 the operators mℓG m
9
C B? (C) also exhibit fast decay

at rate (1 + C)−3/4 for ℓ + 9 ≥ 1. Therefore, one could try to close a nonlinear iteration scheme
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consisting of (5.4.14) and (5.4.15). This requires control over the spatial derivatives of E appearing

in the nonlinearity N , which we establish in the upcoming subsection.

Remark 5.4.7. The above analysis stresses the importance of the temporal cutoff function j(C)

in the decomposition (5.3.3) of the critical, algebraically decaying, part (2 (C) of the semigroup

eA[q]C . Indeed, due to our choice of j(C), the function W(C) is identically zero on [0, 1] so that

the initial conditions of the modulated and unmodulated perturbation are compatible, cf. (5.4.6)

and (5.4.14). In addition, taking the temporal derivative of (5.4.12) yields the contribution

B? (0)N (E(C), W(C), mCW(C)), which vanishes due to our choice of j(C). This is crucial for ob-

taining sufficient regularity of mCW(C), cf. Proposition 5.A.2. We emphasize that the introduction

of the cutoff function j(C) in (5.3.3) does not influence the temporal decay rates established in

Lemma 5.3.2. Indeed, the decay rates of B? (C) and (̃2 (C) are determined by their behavior for large

C (for which j(C) equals 1).

5.4.3 Compensating the Loss of Derivatives

Our goal now is to close the nonlinear iteration scheme consisting of (5.4.14) and (5.4.15) by

exploiting the fast temporal decay exhibited by the operators (̃(C) and mℓG m
9
C B? (C) for ℓ + 9 ≥ 1. As

discussed in the introduction, the main obstruction to closing the scheme is the lack of control over

the spatial derivatives EG and EGG occurring in the nonlinearityN in (5.4.14) and (5.4.15). Naively,

one would hope to control EG and EGG through their respective integral equations. However, simply

differentiating (5.4.14), or (5.4.8), introduces third and fourth derivatives of E in the nonlinearities,

and thus does not resolve the issue. In addition, as mentioned in Remark 3.6.1, nonlinear damping

estimates, which provide control over higher-order derivatives in terms of lower-order derivatives,

are unavailable for the LLE. Instead, we address this ‘loss’ of derivatives by following the approach

developed in [10].

The approach in [10] relies on three crucial observations. The first is that no loss of derivatives

arises in the equations (5.4.2) and (5.4.6) for the unmodulated perturbation because Ñ (Ẽ) does not

contain any derivatives of Ẽ. The second is that, using the mean value theorem, the derivatives
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EG and EGG of the modulated perturbation can be bounded in terms of the modulation W, the

unmodulated perturbation Ẽ and their derivatives. Hence, by appending the equation (5.4.6) for

the unmodulated perturbation Ẽ to the nonlinear iteration scheme we can establish estimates on Ẽ

and its derivatives, and thus on EG and EGG , without ‘losing’ derivatives of E or Ẽ. However, the

most critical behavior of the semigroup eA[q]C is not factored out in (5.4.6). Consequently, the

estimates on EG and EGG will be tame. Therefore, it is important to avoid derivatives of E in the

nonlinearity at crucial points. Here, the third observation comes into play: all spatial derivatives of

E in the nonlinearity N are paired with a spatial or temporal derivative of W. Therefore, whenever

possible we use the properties in Section 5.3.2 to integrate by parts and get rid of derivatives of

E. As described in Remark 5.3.5 above, the integration by parts helps us to avoid derivatives of

E in the critical algebraically decaying parts of the solution operator but not in the exponentially

decaying parts of the solution operator. As described above, we handle the loss of derivatives in E

and Ẽ by appending the evolution of the unmodulated perturbation to the evolution of the modulated

perturbation.

5.4.3.1 Integration by Parts

As a first step, we integrate by parts to get rid of spatial derivatives of E in the algebraically decaying

contributions

(̃2 (C − B)N (E(B), W(B), mCW(B)) and mℓG m
9
C B? (C − B)N (E(B), W(B), mCW(B))

in (5.4.14) and (5.4.15), respectively. To this end, we decomposeN as in (5.4.9), where Q contains

no derivatives of E and mGR is linear in E, EG and EGG and can be written as

mGR(E, W, WC) = R1(W, WC)EGG + R2(W, WC)EG + R3(W, WC)E + R4(W).

Using the integration by parts formulas in Section 5.3.2, we establish the following estimates.
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Lemma 5.4.8. Fix a constant � > 0. For all integers ℓ, 9 with 0 ≤ ℓ, 9 ≤ 4, the inequalities

‖Q(E, W)‖!1 . ‖E‖2
!2 ,mℓG m 9C B? (C) (mGR(E, W, WC))

!2
. (1 + C)− 1

4−
ℓ+ 9

2 ‖(WG , WC)‖�3×�2 (‖E‖!2 + ‖WG ‖!2) ,(̃2 (C) (mGR(E, W, WC))
!2
. (1 + C)− 3

4 ‖(WG , WC)‖�3×�2 ‖E‖!2 ,

(5.4.16)

hold for C ≥ 0, E ∈ �2(R) and (W, WC) ∈ �4(R) × �2(R) satisfying ‖E‖�1 ≤ � and ‖W‖�3 ≤ 1
2 .

Proof. The first inequality in (5.4.16) is an immediate consequence of the embedding �1(R) ↩→

!∞(R). Moreover, the same embedding also yields

mℓGR: (W, WC)!2 , ‖R4(W)‖!2 . ‖(WG , WC)‖�3×�2 ,

for : = 1, 2, 3, nonnegative integers ℓ with : + ℓ ≤ 3, and any (W, WC) ∈ �4(R) × �2(R) satisfying

‖W‖�3 ≤ 1
2 . Then the last two inequalities in (5.4.16) follow from the integration by parts formulas

in Lemma 5.3.4. �

Our initial goal has now been reached, as the right-hand side of (5.4.16) does not depend on

any derivatives of the modulated perturbation E. Consequently, estimating the right hand side of,

for example, (5.4.14) in !2 now only requires control of the perturbation of E in !2, in addition to

some derivatives of WG , WC in !2 as well.

5.4.3.2 Mean Value Inequalities

In our forthcoming analysis, we need the following inequalities on the difference between the

modulated and unmodulated perturbations.

Lemma 5.4.9 (Mean Value Inequalities). For Ẽ and E given by Proposition 5.4.2 and Corol-
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lary 5.4.6, respectively, the inequalities

‖E(C) − Ẽ(C)‖!2 ≤ (‖q′‖!∞ + ‖Ẽ(C)‖�2) ‖W(C)‖!2 ,

‖EG (C) − ẼG (C)‖!2 ≤ (‖q′‖!∞ + ‖Ẽ(C)‖�2) ‖WG (C)‖!2 + (‖q′′‖!∞ + ‖Ẽ(C)‖�3) ‖W(C)‖!2 ,

‖EGG (C) − ẼGG (C)‖!2 ≤ (‖q′‖!∞ + ‖Ẽ(C)‖�2) ‖WGG (C)‖!2 + 2 (‖q′′‖!∞ + ‖Ẽ(C)‖�3) ‖WG (C)‖!2

+ (‖q′′′‖!∞ + ‖Ẽ(C)‖�4) ‖W(C)‖!2 ,

(5.4.17)

hold for all C ∈ [0, gmax).

Proof. Recall that by (5.4.7) we have

E(G, C) − Ẽ(G, C) = k(G − W(G, C), C) − k(G, C), (5.4.18)

for G ∈ R and C ∈ [0, gmax). By applying the mean value theorem to (5.4.18) we obtain the

inequalities

|E(G, C) − Ẽ(G, C) | ≤ ‖kG (C)‖!∞ |W(G, C) |,

|EG (G, C) − ẼG (G, C) | ≤ ‖kG (C)‖!∞ |WG (G, C) | + ‖kGG (C)‖!∞ |W(G, C) |,

|EGG (G, C) − ẼGG (G, C) | ≤ ‖kG (C)‖!∞ |WGG (G, C) | + 2‖kGG (C)‖!∞ |WG (G, C) |

+ ‖kGG (C)‖!∞ |WG (G, C) |2 + ‖kGGG (C)‖!∞ |W(G, C) |,

(5.4.19)

for G ∈ R and C ∈ [0, gmax). Substituting k(C) = q + Ẽ(C) in the above inequalities, using the

smoothness of the periodic solution q and the embedding �1(R) ↩→ !∞(R), yields the result. �

These mean value inequalities connecting the unmodulated perturbation Ẽ to the modulated

perturbation E allow us to append the equation (5.4.6) for Ẽ to the integral system consisting of the

equations (5.4.14) and (5.4.15) for E and W, and obtain a nonlinear iteration scheme in

m8GE(C), m
9
G mCW(C), mℓGW(C), m:G Ẽ(C), 0 ≤ 8, 9 ≤ 2, 0 ≤ :, ℓ ≤ 4.

176



We show in the next section that the nonlinear iteration scheme closes, which yields the proof of

Theorem 5.1.4.

Remark 5.4.10. The mean value inequalities (5.4.19) provide pointwise approximations of the

spatial derivatives of the modulated perturbation E by those of the unmodulated perturbation Ẽ.

Bounding the right-hand side of (5.4.19) requires !∞-estimates on the first, second and third

spatial derivatives of the perturbed solution k(C) = q + Ẽ(C). Hence, any nonlinear iteration

scheme exploiting the mean value inequalities (5.4.19) should provide control over the !∞-norm

of ẼG , ẼGG and ẼGGG . In a Hilbertian framework, as ours, such control is given by the �4-norm of Ẽ,

: = 4 being the smallest integer for which the embedding �: (R) ↩→ �3
1
(R) holds. This explains

the choice E0 ∈ �4(R) in Theorem 5.1.4. We expect that it is possible to allow for less regular

initial data in Theorem 5.1.4. However, the main purpose of this chapter is to introduce a working

methodology to establish nonlinear stability of steady )-periodic waves for the LLE rather than to

obtain optimal regularity with respect to perturbations.

5.5 Nonlinear Stability Analysis

In this section, we establish the proof of our main result, Theorem 5.1.4, by applying the lin-

ear estimates obtained in Section 5.3 to the nonlinear iteration scheme consisting of the equa-

tions (5.4.6), (5.4.14), (5.4.15) and the inequalities (5.4.17) relating Ẽ, E, W.

Proof of Theorem 5.1.4. We close a nonlinear iteration scheme, controlling the unmodulated per-

turbation Ẽ : [0, )max) → �4(R), the phase modulation W : [0, gmax) → �4(R) and the modulated

perturbation E : [0, gmax) → �2(R), all defined in Section 5.4. By Propositions 5.4.2 and 5.4.5 and

Corollary 5.4.6, the template function [ : [0, gmax) → R given by10

[(C) = sup
0≤B≤C

[
(1 + B) 3

4 (‖E(B)‖!2 + ‖mGW(B)‖�3 + ‖mCW(B)‖�2) + (1 + B)
1
4 (‖Ẽ(B)‖!2 + ‖W(B)‖!2)

10For the motivation behind the choice of temporal weights in the template function [(C), we refer to Remark 5.5.1
below.
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+ (1 + B) 1
8 (‖ẼG (B)‖!2 + ‖EG ‖!2) + ‖ẼGG (B)‖!2 + ‖EGG (B)‖!2

+ (1 + B)− 1
8 ‖ẼGGG (B)‖!2 + (1 + B)−

1
4 ‖ẼGGGG (B)‖!2

]
is continuous and clearly positive and monotonically increasing. Moreover, if gmax < ∞, then it

holds

lim
C↑gmax

[(C) = ∞. (5.5.1)

Our approach to closing the nonlinear iteration scheme is to prove that there exist constants � > 0

and � > 1 such that for all C ∈ [0, gmax) with [(C) ≤ � we have

[(C) ≤ �
(
�0 + [(C)2

)
, (5.5.2)

with �0 defined in Theorem 5.1.4. Since [ is continuous, we can apply continuous induction using

estimate (5.5.2). Thus, provided that �0 < min{ 1
4� ,

�
2� }, it follows [(C) ≤ 2��0 ≤ �, for all

C ∈ [0, gmax), which shows that (5.5.1) cannot occur. Consequently, gmax = ∞ and [(C) ≤ 2��0 for

all C ≥ 0. Upon taking n = min{ 1
4� ,

�
2� } > 0 and " = 2� this yields the result in the theorem.

It remains is to prove the key estimate (5.5.2). To this end, take � = 1
2 and assume C ∈ [0, gmax)

is such that [(C) ≤ �. We begin by bounding the phase modulation W(C) and the modulated

perturbation E(C) via the implicit integral equations (5.4.14) and (5.4.15), respectively. Recalling

from (5.4.11) that (̃(C) = (̃2 (C) + (4 (C), we control the contributions from the operators (̃2 (C)

and (4 (C) in (5.4.14) separately. To account for the (4 (C) contribution in the convolution term of

(5.4.14), note that Lemma 5.4.4 implies that

‖N (E(B), W(B), mCW(B))‖!2 . [(B)2(1 + B)−
3
4 ,

for B ∈ [0, C], where we use [(C) ≤ �, where here we are using that [(C) controls the �2 norm of
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E. Hence, applying Lemma 5.3.1 we arrive at∫ C

0
(4 (C − B)N (E(B), W(B), mCW(B)) dB


!2
.

∫ C

0

[(B)2e−`(C−B)

(1 + B) 3
4

dB .
[(C)2

(1 + C)
3
4
. (5.5.3)

To control the remaining terms in (5.4.14)-(5.4.15) we note that Lemma 5.4.8 implies that

‖Q (E(B), W(B))‖!1 . [(B)2(1 + B)−
3
2 ,mℓG m 9C B? (C − B) (mGR (E(B), W(B), mCW(B)))

!2
. [(B)2(1 + C − B)− 1

4−
ℓ+ 9

2 (1 + B)− 3
2 ,(̃2 (C − B) (mGR (E(B), W(B), mCW(B)))

!2
. [(B)2(1 + C − B)− 3

4 (1 + B)− 3
2 ,

for B ∈ [0, C] and ℓ, 9 ∈ N0 with ℓ, 9 ≤ 4, where we use [(C) ≤ �. So, applying Lemma 5.3.2 and

recalling (5.4.9) we establish that∫ C

0
B? (C − B)N (E(B), W(B), mCW(B)) dB


!2
.

∫ C

0

[(B)2

(1 + C − B) 1
4 (1 + B) 3

2
dB .

[(C)2

(1 + C)
1
4
,∫ C

0
mℓG m

9
C B? (C − B)N (E(B), W(B), mCW(B)) dB


!2
.

∫ C

0

[(B)2

(1 + C − B) 3
4 (1 + B) 3

2
dB .

[(C)2

(1 + C)
3
4
,∫ C

0
(̃2 (C − B)N (E(B), W(B), mCW(B)) dB


!2
.

∫ C

0

[(B)2

(1 + C − B) 3
4 (1 + B) 3

2
dB .

[(C)2

(1 + C)
3
4
,

(5.5.4)

for ℓ, 9 ∈ N0 with 1 ≤ ℓ + 2 9 ≤ 4. Thus, using Lemma 5.3.2, the decomposition (5.4.11) of (̃(C)

and estimates (5.5.3) and (5.5.4), we bound the right-hand sides of (5.4.12), (5.4.14) and (5.4.15)

and obtain

‖W(C)‖!2 .
�0 + [(C)2

(1 + C) 1
4
, ‖E(C)‖!2 , ‖mGW(C)‖�3 , ‖mCW(C)‖�2 .

�0 + [(C)2

(1 + C) 3
4
. (5.5.5)

It remains now to provide control over the !2 norms of EG and EGG . To this end, we proceed with

establishing estimates on the unmodulated perturbation Ẽ(C) and its derivativevs, with the goal of

then using the mean value inequalities in Lemma 5.4.9 to infer control on the derivatives of E. An
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estimate on the !2-norm of Ẽ(C) follows readily by the mean value inequalities. Indeed, combining

Lemma 5.4.9 with (5.5.5) yields

‖Ẽ(C)‖!2 . ‖E(C)‖!2 +
(
‖q‖�1

1
+ ‖Ẽ(C)‖�2

)
‖W(C)‖!2 .

�0 + [(C)2

(1 + C) 1
4

(5.5.6)

where we use [(C) ≤ �. Next, we establish a bound on the derivative ẼGGGG (C). To this end, note

that Lemma 5.4.1 implies that

Ñ (Ẽ(B))
!1
. [(B)2(1 + B)− 1

2 ,

Ñ (Ẽ(B))
�4
. [(B)2(1 + B) 1

8 , (5.5.7)

for B ∈ [0, C], where we use [(C) ≤ �. Thus, differentiating (5.4.6) four times with respect to G, and

using Lemma 5.3.1, the decomposition (5.3.1) of the semigroup eA[q]C , and the estimates (5.5.7)

obtain the bound

‖ẼGGGG (C)‖!2 .
(
e−`C + (1 + C)− 3

4

)
�0 +

∫ C

0

[(B)2(1 + B) 1
8

e`(C−B)
dB +

∫ C

0

[(B)2

(1 + C − B) 1
4 (1 + B) 1

2
dB

.
(
�0 + [(C)2

)
(1 + C) 1

4 .

(5.5.8)

Using the Gagliardo-Nirenberg interpolation inequality

m 9G Ẽ(C)
!2
≤ �

m4
G Ẽ(C)

 9/4
!2 ‖Ẽ(C)‖1− 9/4!2 , 9 = 1, 2, 3

for some uniform constant � > 0, interpolating between (5.5.6) and (5.5.8) we readily arrive at

‖ẼG (C)‖!2 .
�0 + [(C)2

(1 + C) 1
8
, ‖ẼGG (C)‖!2 . �0 + [(C)2, ‖ẼGGG (C)‖!2 .

(
�0 + [(C)2

)
(1 + C) 1

8 .

(5.5.9)

Subsequently, we employ the mean value inequalities in Lemma 5.4.9 to bound the derivatives

of the modulated perturbation E(C) in terms of derivatives of the unmodulated perturbation Ẽ(C).

180



Specifically, combining the bounds (5.4.17) with the estimates (5.5.5) and (5.5.9), we obtain

‖EG (C)‖!2 . ‖ẼG (C)‖!2 +
(
‖q‖�2

1
+ ‖Ẽ(C)‖�3

)
‖W(C)‖�1 .

�0 + [(C)2

(1 + C) 1
8
,

‖EGG (C)‖!2 . ‖ẼGG (C)‖!2 +
(
‖q‖�3

1
+ ‖Ẽ(C)‖�4

)
‖W(C)‖�2 . �0 + [(C)2,

(5.5.10)

where we use [(C) ≤ �.

Finally, by estimates (5.5.5), (5.5.6), (5.5.8), (5.5.9) and (5.5.10) it follows that there exists a

constant � > 1, which is independent of �0 and C, such that the key inequality (5.5.2) is satisfied,

which, as discussed previously, completes the proof of Theorem 5.1.4.. �

Remark 5.5.1. The choice of temporal weights in the template function [(C) used in the proof of

Theorem 5.1.4 can be motivated as follows. First, the weights applied to the terms in [(C) involving

‖E(C)‖!2 , ‖Ẽ(C)‖!2 , ‖W(C)‖!2 , ‖mCW(C)‖�2 and ‖mGW(C)‖�3 are given by the linear theory. Indeed,

Lemmas 5.3.1 and 5.3.2 imply that the linear term (̃(C)E0 in the integral equation (5.4.14) for E(C)

exhibits (1 + C)−3/4-decay, whereas the linear terms eA[q]CE0 and mℓG m
9
C B? (C) in the integral equa-

tions (5.4.6) and (5.4.15) for Ẽ(C) and W(C) exhibit decay at rates (1 + C)−1/4 and (1 + C)−1/4−(ℓ+ 9)/2,

respectively. Next, the temporal weight applied to the contribution ‖ẼGGGG (C)‖!2 in [(C) arises by

bounding the most critical nonlinear term in the integral equation (5.4.6) for Ẽ(C), which, as out-

lined in Remark 5.4.3, grows at rate (1+ C)1/4. Finally, the weights applied to ‖ẼG (C)‖!2 , ‖ẼGG (C)‖!2

and ‖ẼGGG (C)‖!2 arise by interpolation, whereas the weights applied to ‖EG (C)‖!2 and ‖EGG (C)‖!2

are directly linked to those applied to ‖ẼG (C)‖!2 and ‖ẼGG (C)‖!2 .

181



Appendix

5.A Local Theory

In this appendix we collect the necessary local theory for our nonlinear stability analysis. We first

establish local existence and uniqueness of the unmodulated perturbation.

Proof of Proposition 5.4.2. We note that (5.4.2) can be written as the semilinear evolution problem

mC Ẽ = !Ẽ + # (Ẽ),

where ! : � (!) ⊂ �2(R) → �2(R), with � (!) = �4(R) and !Ẽ = −�VmGG Ẽ, is a densely defined

skew-adjoint linear operator, and # : �2(R) → �2(R) given by

# (Ẽ) = Ñ (Ẽ) + A[q] Ẽ − !Ẽ,

is locally Lipschitz. Hence, ! is <-dissipative, and thus generates a �0-semigroup by the Lumer-

Phillips theorem. Thus, noting that the Hilbert space �2(R) is reflexive, the result follows immedi-

ately from classical local existence theory for semilinear evolution problems, cf. [54, Theorem6.1.3]

and [8, Proposition 4.3.9]. �

Next, we establish local existence and uniqueness of the spatio-temporal phase modulation

W, which arises as the solution of the integral equation (5.4.12). In particular, the result in

Proposition 5.4.5 is a consequence of the result in Proposition 5.A.2 below. First, we prove the

following preliminary result.
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Lemma 5.A.1. For Ẽ given by Proposition 5.4.2, the mapping + : �2(R) × [0, )max) → �2(R),

+ (W, C) [G] = Ẽ(G − W(G), C) + q(G − W(G)) − q(G),

is well-defined, continuous in C, and locally Lipschitz continuous in W (uniformly in C on compact

subintervals of [0, )max)).

Proof. First, we note the embedding �4(R) ↩→ �3
1
(R) implies that

Ẽ ∈ �
(
[0, )max), �3

1 (R)
)
. (5.A.1)

Therefore, the mean value theorem yields

‖+ (W1, C) −+ (W2, C)‖�2 . ‖Ẽ(C) + q‖�3
1
‖W1 − W2‖�2 , (5.A.2)

for W1,2 ∈ �2(R) and C ∈ [0, )max). Taking W2 = 0 in (5.A.2) and noting that+ (0, C) = Ẽ(C) ∈ �2(R),

shows that + is well-defined. Moreover, (5.A.1) and (5.A.2) yield Lipschitz continuity of + in W

(uniformly in C on compact subintervals of [0, )max)).

Similarly as in (5.A.2), we employ the mean value theorem and (5.A.1) to obtain

‖+ (W, C) −+ (W, B)‖�2 . ‖(+ (W, C) −+ (W, B)) − (+ (0, C) −+ (0, B))‖�2 + ‖+ (0, C) −+ (0, B)‖�2

. ‖Ẽ(C) − Ẽ(B)‖�3
1
‖W‖�2 + ‖Ẽ(C) − Ẽ(B)‖�2 ,

for W ∈ �2(R) and B, C ∈ [0, )max). Continuity of + with respect to C now follows by (5.4.4)

and (5.A.1). �

Proposition 5.A.2. For Ẽ given by Proposition 5.4.2, let + : �2(R) × [0, )max) → �2(R) be the

mapping in Lemma 5.A.1. Then, there exists a maximal time gmax ∈ (0, )max] such that the integral
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system

W(C) = B? (C)E0 +
∫ C

0
B? (C − B)N (+ (W(B), B), W(B), WC (B))dB,

WC (C) = mCB? (C)E0 +
∫ C

0
mCB? (C − B)N (+ (W(B), B), W(B), WC (B))dB,

(5.A.3)

has a unique solution

(W, WC) ∈ �
(
[0, gmax), �4(R) × �2(R)

)
.

In addition, if gmax < )max, then

lim
C↑gmax

‖(W, WC)‖�4×�2 = ∞, (5.A.4)

holds. Finally, W ∈ �1 ([0, gmax), �2(R)
)
and mCW(C) = WC (C) for C ∈ [0, gmax).

Proof. First, the result in Lemma 5.3.2 implies that the operators B? (C) : !2(R) → �4(R) and

mCB? (C) : !2(R) → �2(R) are C-uniformly bounded and strongly continuous on [0,∞). Next, recall

that the nonlinearityN can be decomposed as in (5.4.9), where Q contains no derivatives of E and

mGR is linear in E, EG and EGG . Then, it follows from Lemmas 5.4.4 and 5.A.1 that the nonlinear

map # : �4(R) × �2(R) × [0, )max) → !2(R) given by

# (W, WC , C) = N(+ (W, C), W, WC),

is well-defined, continuous in C, and locally Lipschitz continuous in (W, WC) (uniformly in C on

compact subintervals of [0, gmax)), where we also used the inequalities

mℓG 5 · m:G 6!2 ≤ ‖ 5 ‖�2 ‖6‖�4 , 0 ≤ : ≤ 3, 0 ≤ ; ≤ 2,

to bound the !2-norm of products for functions 5 ∈ �2(R) and 6 ∈ �4(R).

Standard arguments, see for instance [8, Proposition 4.3.3] or [54, Theorem 6.1.4], now imply
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that there exist constants ' > 0 and g ∈ (0, )max) such thatΨ : �
(
[0, g], �(')

)
→ �

(
[0, g], �(')

)
given by

Ψ(W, WC) [C] =
©«
B? (C)E0

mCB? (C)E0

ª®®¬ +
∫ C

0

©«
B? (C − B)N (+ (W(B), B), W(B), WC (B))

mCB? (C − B)N (+ (W(B), B), W(B), WC (B))

ª®®¬ dB,

is a well-defined contraction mapping, where �(') is the closed ball centered at the origin in

�4(R) × �2(R) of radius '. Hence, by the Banach fixed point theorem, Ψ admits a unique fixed

point, which yields a unique solution (W, WC) ∈ �
(
[0, g], �4(R) × �2(R)

)
to (5.A.3). Letting

gmax ∈ (0, )max] be the supremum of all such g, we obtain a maximally defined solution (W, WC) ∈

�
(
[0, gmax), �4(R) × �2(R)

)
to (5.A.3).

Next, assume by contradiction that gmax < )max and (5.A.4) does not hold. Take C0 ∈ [0, gmax).

Similarly as before, one proves that there exist constants ", X > 0, which are independent of C0,

such that ΨC0 : �
(
[C0, C0 + X], �(")

)
→ �

(
[C0, C0 + X], �(")

)
given by

ΨC0 (W̃, W̃C) [C] =
©«
B? (C)E0

mCB? (C)E0

ª®®¬ +
∫ C0

0

©«
B? (C − B)N (+ (W(B), B), W(B), WC (B))

mCB? (C − B)N (+ (W(B), B), W(B), WC (B))

ª®®¬ dB

+
∫ C

C0

©«
B? (C − B)N (+ (W̃(B), B), W̃(B), W̃C (B))

mCB? (C − B)N (+ (W̃(B), B), W̃(B), W̃C (B))

ª®®¬ dB,

is a well-defined contraction mapping, which admits a unique fixed point (W̃, W̃C) ∈ �
(
[C0, C0 +

X], �4(R) × �2(R)
)
. Setting C0 := gmax − X/2, it readily follows that (W̌, W̌C) ∈ �

(
[0, gmax +

X/2], �4(R) × �2(R)
)
given by

(W̌(C), W̌(C)) =


(W(C), WC (C)), C ∈ [0, gmax − X

2 ],

(W̃(C), W̃C (C)), C ∈ [gmax − X
2 , gmax + X

2 ],

solves (5.A.3), which contradicts the maximality of gmax. We conclude that if gmax < )max,

then (5.A.4) must hold.
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Finally, Lemma 5.3.2 readily implies that W(C) is differentiable on [0, gmax) with mCW = WC , where

we use B? (0) = 0. This completes the proof. �
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