Alternative Proof of Lemma 2.6

Wesley R. Perkins

November 6, 2019

Proposition 2.6.1. A line L with slope m is a zero line if and only if $m^{2}=-1$.
Proof. " \Rightarrow " Suppose L is a zero line with slope m. By Lemma 2.2, a zero line has the same slope as the line perpendicular to it, i.e.

$$
m=-m^{-1} \Rightarrow m^{2}=-1
$$

This may also be shown directly as follows:
Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be two distinct points on L. Then the slope of L is given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

(Note $x_{2} \neq x_{1}$ by Remark 2.1.) Since $\left\|P_{2}-P_{1}\right\|=0$, observe

$$
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=0 \Rightarrow\left(y_{2}-y_{1}\right)^{2}=-\left(x_{2}-x_{1}\right)^{2} \Rightarrow m^{2}=-1 .
$$

Note that a slight modification of this direct method can give an alternative proof of Lemma 2.2.
" \Leftarrow " Suppose a line L has a slope m such that $m^{2}=-1$. This means that L cannot be vertical (as vertical lines do not have a defined slope), which in turn implies that the x-values of the points on L must be distinct. Fix $P_{1}=\left(x_{1}, y_{1}\right) \in L$, fix $P_{2}=\left(x_{2}, y_{2}\right) \in L$ such that $P_{2} \neq P_{1}$, and let $P=(x, y)$ be an arbitrary point in L distinct from P_{1}. Then,

$$
m^{2}=-1 \Rightarrow \frac{\left(y_{1}-y\right)^{2}}{\left(x_{1}-x\right)^{2}}=-1 \Rightarrow\left(y_{1}-y\right)^{2}=-\left(x_{1}-x\right)^{2} \Rightarrow\left\|P_{1}-P\right\|=0
$$

We may similarly demonstrate that $\left\|P_{2}-P\right\|=0$ for an arbitrary point $P \neq P_{2}$ in L. In particular, $\left\|P_{2}-P\right\|=0=\left\|P_{1}-P\right\|$ for all $P \in L$. Hence

$$
L \subseteq \operatorname{bisector}\left(P_{1}, P_{2}\right) .
$$

Since P was arbitrary, we immediately have that $\left\|P_{2}-P_{1}\right\|=0$, which implies $\operatorname{bisector}\left(P_{1}, P_{2}\right)$ is a zero line by definition 1.12. Moreover, this establishes that $P_{1}, P_{2} \in \operatorname{bisector}\left(P_{1}, P_{2}\right)$, which implies L and bisector $\left(P_{1}, P_{2}\right)$ have two points in common, so we must have

$$
L=\operatorname{bisector}\left(P_{1}, P_{2}\right) .
$$

Therefore, L is a zero line as claimed.

Remark 2.6.2. Proposition 2.6 .1 establishes that zero lines can only occur when $-1=p-1$ has a square root.

Lemma 2.6.3. If an arbitrary point P_{0} lies on a zero line, there are exactly two zero lines passing through P_{0}.

Proof. Assume $P_{0}=\left(x_{0}, y_{0}\right) \in \mathbb{F}_{q}^{2}$ lies on a zero line L_{1}. By Proposition 2.6.1, L_{1} has a slope m_{1} such that $m_{1}^{2}=-1$, which implies -1 has a square root. By Lemma 2.5, we have that -1 has exactly two square roots, and, in particular, there exists a number $m_{2} \neq m_{1}$ such that $m_{2}^{2}=-1$. If we consider the line L_{2} with slope m_{2} passing through P_{0}, then Proposition 2.6.1 implies that L_{2} is a zero line, which establishes there are at least two zero lines passing through P_{0}. If there were a third zero line L_{3} passing through P_{0}, then Proposition 2.6.1 implies it would have to have a slope $m_{3} \neq m_{1}, m_{2}$ such that $m_{3}^{2}=-1$, but this is impossible by Lemma 2.5. Therefore, there are exactly two zero lines passing through the point P_{0}.

