Designing for Geospatial Information Technologies

Violet A. Kulo
Ward Mitchell Cates, Ed.D.
Alec Bodzin, Ph.D.
Lehigh University

Geographic Information Systems

- Map, visualize, and analyze geo-referenced data
 - Industry, businesses, education
- Contribute to science learning
 - Rich contextual learning
 - Critical thinking skills
 - Problem-solving skills
 - Authentic inquiry-based learning

Real-world Design

- Design task
 - Design science instruction supported by a GIS.
 - 8-week instruction
- First-time GIS users
 - Takes time for teacher to learn and teach students.
 - Students get easily frustrated.
- Accepted process model
 - Use Understanding by Design to design instruction
Real-world Design (still more)

- Learners
 - Diverse ethnic backgrounds
 - 10% ESL students
- Content
 - Generated by subject matter experts (SMEs)
 - Developed materials approved by design team

Real-world Design: Implications

- Science Ed experts knew the content really well.
- Environmentally conscious folks.
- Drafts versions of the materials had a few faults...
 - Not very easy to read, particularly given learner group
 - Layout could be stronger...
 - Too much text on one page (so can print on both sides)
 - Small illustration with no arrows or labels
 - Too much highlighting and too many kinds of highlighting
 - Only design model was UbD.

Selected Instructional Design Theories

- Behaviorism
 - Direct instruction
 - Emphasize extensive practice and correct responses
- Constructivism
 - Modify and refine what they know
 - Collaborate on tasks
- Inquiry teaching
 - Hands-on activities
 - Use evidence like scientists
 - Tenet of science education reform
Design Process Models: ADDIEs
Analyze-Design-Develop-Implement-Evaluate
- Dick, Carey & Carey (2005)
- Understanding by Design (Wiggins & McTighe, 2005)
- ARCS Motivational Model (Keller, 1983)
- Guiding principle of ID:
 - Steal only from the best!

Design Models I Used (see last pages of handout)
1. Behaviorism
 - Gagné's (1974) Nine Significant Events Model
2. Constructivism
 - Jonassen's (1999) Constructivist Learning Environments Model
 - Black & McClintock's (1996) Interpretation Construction (ICON) Model
3. Inquiry teaching

Derived Instructional Model
1. Confirm learners have necessary background.
2. Present instruction using appropriate model.
 - Content presentation sub-model
 - Computer-supported activities sub-model
 - Laboratory activities sub-model
3. Confirm instruction is meeting goals and objectives.
4. Confirm learners have acquired desired knowledge, skills, and attitudes.
 - Meta-principles also!
Derived Instructional Model

1. Confirm learners have necessary background.
2. Present instruction using appropriate model.
 - Content presentation sub-model
 - Computer-supported activities sub-model
 - Laboratory activities sub-model
3. Confirm instruction is meeting goals and objectives.
4. Confirm learners have acquired desired knowledge, skills, and attitudes.
 - Meta-principles also!

META-PRINCIPLE 1
Use multiple ways of learning to address learner differences.

META-PRINCIPLE 2
Use procedural facilitators to guide learners’ responses.
META-PRINCIPLE 3
Use icons consistently to enhance and reinforce student learning and use illustrations to reduce learner dependence on text.

META-PRINCIPLE 4
Facilitate the process of modifying instructional materials to meet the needs of different learners.

META-PRINCIPLE 5
Use contrast, repetition, alignment, and proximity (CRAP) design.
INSTRUCTIONAL MODEL: STEP 2.1
Sub-model for content presentation

INSTRUCTIONAL MODEL: STEP 2.2
Sub-model for computer-supported activities

INSTRUCTIONAL MODEL: STEP 2.3
Sub-model for laboratory activities