
ASTR/PHY 395 - Cosmology

Lecture notes

Timm Wrase

Abstract

These lecture notes will provide an introduction to cosmology, i.e., the large-scale
evolution of our universe from the big bang until today and into the far future. They
are roughly separated into three parts

Part I: The evolution of our universe: This part provides the background in
geometry that is needed to describe the evolution of our universe from
early times into the far distant future. Topics covered are: the Hubble
expansion, the Friedmann equations, the content of our universe, its
age and potential future fate, particle and event horizons and the
cosmic microwave background (CMB).

Part II: The thermal universe: This part discusses the evolution of particles
in the early universe up to a time of 380,000 years after the big bang.
Topics covered are: the standard model of particle physics, baryogene-
sis/leptogenesis, equilibrium thermodynamics, particle freeze-out, the
cosmic neutrino background, dark matter, big bang nucleosynthesis
and recombination.

Part III: Inflation in the very early universe: This part provides an introduction
to the theory of inflation, which is a conjectured period of accelerated
expansion during our very early universe. Topics covered are: the
horizon, flatness and monopole problems, inflation from a scalar field,
slow-roll inflation, small field models of inflation, large field models
of inflation, experimental constraints on inflationary models, beyond
slow-roll, reheating, the inhomogeneous universe and quantum fluctu-
ations as seed for our galaxies.
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Part I - The evolution of our universe

1 The expanding universe

In this section we will learn about the discovery of the expansion of our universe, as
well as the fact that the universe is homogeneous and isotropic on scales larger than a
few Mpc (megaparsec). This allows us to derive a set of simple equations, the so called
Friedmann equations, from general relativity. These equations play a central role in
describing the evolution of our universe.

1.1 The ‘Hubble’ expansion

When Einstein first wrote down his theory of general relativity in 1915, he was con-
vinced (like most other people) that our universe is static, i.e., the universe as a whole
doesn’t change in time. However, in 1929 Hubble was able to determine the distances
and relative velocities of other galaxies by observing Cepheid variables which led him
to a very different universe. In order to understand this, it is useful to first review
distance measurements in astrophysics.

1.1.1 Astronomical unit and parsec

There are a variety of different units used in cosmology and astrophysics. One standard
unit in astrophysics is the average distance between the earth and the sun which by
definition is one astronomical unit 1au ≈ 150×106km = 1.5×1011m. In cosmology we
are interested in larger scales and will mostly use the parsec (pc). The definition of the
parsec involves the apparent parallax motion of near stars that is due to the earth’s
motion around the sun, see figure 1.

From simple trigonometry we find

1pc =
1au

tan(1′′)
≈ 1au

1′′
=

1au
1
60

1
60

π
180

≈ 2× 105au , (1.1)

where we used that tan(1′′) ≈ 1′′. We can check that one parsec is roughly the distance
light travels in three years 1pc ≈ 3.3 ly ≈ 3.1× 1016m.

By measuring the parallax angle, astronomer can determine the distance of objects
that are not too far away. This leads to interesting discoveries that can then be used
to determine the distances of much further objects. In particular by studying nearby
so-called Cepheid variables, astronomers found that these stars pulsate radially with a
well-defined relation between their pulsation period and luminosity L (the total ‘light’
emitted by the star per time). By knowing this relation and the pulsation period we
can therefore obtain the stars luminosity L. The observed flux F then directly gives
us the distance to the Cepheid star since the observed flux decrease with the square of
the distance d to the star. In particular we find

L = 4π d2F ⇔ d =

(
L

4πF

) 1
2

. (1.2)
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Figure 1: The distance to an imaginary star with a parallax angle of 1′′ = 1 arc
second is one parsec (taken from Wikipedia).

Worked problem 1.1: Solar flux

The sun is 8 light minutes from earth and its luminosity is
L⊙ = 3.85× 1026 W . Calculate the flux observed on earth.

Solution:

F =
L⊙
4πd2

=
3.85× 1026 W

4π(8 · 1.8× 1010m)2
≈ 1480 W/m2 . (1.3)

The more exact value is 1373 W/m2. On the earth surface this is reduced
due to earth atmosphere by 15–80%.

Using these Cepheid variables one can determine the distances to many other ob-
jects, like for example type Ia supernovae. These are very bright explosions that turn
out to have very consistent peak luminosities. So, knowing the peak luminosity we
can fairly precisely determine the distance to any observed type Ia supernova in the
universe. The total energy released in these explosions, that last a few days, is as large
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as the energy our sun releases in its lifetime of roughly 1010yrs. So, we can observe
these supernovae very far out into the universe. The figure 2 shows how we can use
parallax, Cepheid variables and type Ia supernovae to reach distances of roughly 10
Mpc to 10 Gpc that are relevant for cosmology.

Figure 2: This figure shows the so-called cosmic distance ladder, i.e., different
methods to measure distances in astronomy. (Credit: Tabitha Dillinger).

1.1.2 Hubble’s discovery

Hubble studied these Cepheid variables in other galaxies and galaxy clusters and de-
termined their distances using the above equation. In addition, he used the Doppler
shift of the spectral lines in the star light to determine the relative velocities of these
galaxies and galaxy clusters. This led him to the following plot

Figure 3: Velocity (in km/s) vs. distance (in parsecs) for galaxies (black dots)
and galaxy clusters (circle). The solid line represents a best straight-line fit to the
black dots and the dashed line to the circles.
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It follows from Hubble’s data that the further a galaxy is away from us, the faster
it is moving away from us. This observation has been substantially improved over the
year, as is shown for example in figure 4.

Figure 4: Velocity (in km/s) vs. distance (in Mpc) for Type Ia supernovae (an-
other class of ‘standard candles’ that allows us to determine distances accurately).

Hubble’s original observation is inconsistent with a static universe and instead re-
quires us to consider a universe in which space itself is expanding. This is depicted in
figure 5.

Figure 5: A one dimensional universe in which space itself is expanding. This
leads to a linear relation between the relative distance and relative velocity of the
earth and any other object in this universe.

Note however, that this does not make the earth or us special in anyway. Any other
point in space will observe exactly the same ‘Hubble’ expansion of the universe, as is
shown in figure 6.

7



Figure 6: A one dimensional universe in which space itself is expanding. Any
point in space will observe the same effect: distant objects are moving away with
a velocity that is proportional to their distance.

Before we discuss the equations that describe such a universe, we discuss one more
observational fact about our universe in the next subsection.

1.2 Isotropy and Homogeneity

Trying to describe the time evolution of the entire universe seems like a formidable
task and one might wonder how this can be possibly done? In cosmology we are not
interested in the details of the evolution on small scales like for example our solar
system, but we would like to describe the origin, evolution and the ultimate fate of
our universe. But even that seems intractable. Imagine a universe whose evolution
is controlled by matter, i.e., at large scales by the evolution of the galaxies. This
seems correspond to an N -body problem with N of the order of a few hundred billion
(N ∼ 1011)!

Fortunately, our universe seems highly symmetric at scales larger than a few Mpc.
Concretely, there is ample evidence that our universe looks the same in every direction,
i.e., it is isotropic, and there are some indications that different locations in the universe
allow for the same observation that we make, i.e., the universe is homogeneous. These
two properties follow from the so called ‘cosmological principle’ that postulates that
we do not occupy any special place in the (large scale) universe and other observers
at any other place in the universe will observe the same properties of the universe.
While this ‘cosmological principle’ originally was just a postulate, there is now ample
observational data to support it.
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Worked problem 1.2: Isotropy and Homogeneity

Draw a two-dimensional space that is homogeneous but not isotropic and
one that is isotropic but not homogeneous.

Solution:

Figure 7: The picture on the left is homogeneous but not
isotropic. The picture on the right is isotropic around the dot
in the middle but not homogeneous.

The above picture would arise for example in settings with electric field
lines between two charged plates (on the left) or an electric point charge
(on the right).
Isotropy at each point does imply homogeneity, so the picture on the right
cannot be modified in such a way that it looks isotropic at each point
without also making it homogeneous.

A simple example of a 3-dimensional isotropic and homogeneous space is the flat
space R3. The line element for this case is

ds2 = dx21 + dx22 + dx23 ≡ dx2i . (1.4)

Another example of a space that is the same at every point and looks the same in every
direction is the 3-sphere S3 for which we can write the line element as1

ds2 = dx2i + dz2 , x21 + x22 + x23 + z2 ≡ x2i + z2 = a2 . (1.5)

One can prove that the only other such space is given by a hyperspherical surface with
negative curvature and line element

ds2 = dx2i − dz2 , −x2i + z2 = a2 . (1.6)

By rescaling the xi and z by a, we can write the last two as

ds2 = a2
(
dx2i ± dz2

)
, z2 ± x2i = 1 . (1.7)

1Note that the range of the xi for a 3-sphere is not from negative to positive infinity but limited such
that x2i ≤ a2 or after the rescaling by a below one has x2i ≤ 1.
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Differentiating z2 ± x2i = 1 leads to zdz = ∓(x1dx1 + x2dx2 + x3dx3) ≡ ∓xidxi and
the line element

ds2 = a2
(
dx2i ±

z2dz2

z2

)
= a2

(
dx2i ±

(xidxi)
2

1∓ x2i

)
. (1.8)

Finally, we introduce the number K ∈ {−1, 0, 1} and combine the three line elements
(1.4), (1.5), (1.6) into one single equation

ds2 = a2
(
dx2i +K

(xidxi)
2

1−Kx2i

)
. (1.9)

Since we have chosenK to be dimensionless we have to choose the xi to be dimensionless
as well due to the denominator 1 − Kx2i . Then the prefactor a needs to have the
dimension of a length. In the above equation K = 0 corresponds to the flat space
case and K = ±1 to the spherical and hyperspherical case. These three maximally
symmetric three-dimensional spaces can be similarly defined in two space dimensions
in which case we can picture them by embedding them into a three-dimensional space,
as is shown in figure 8.

Figure 8: The three possible geometries of our universe.

As can be seen from the figure, the three spaces can be distinguished by measuring
the three angels inside a triangle. For example, for a sphere one can start at the north
pole with a 90◦ angle. These two sides each meet the equator at 90◦ angles and by
choosing the third side to lie on the equator, we have constructed a triangle with total
interior angles that add up to 270◦! Generically one finds that for spherical geometries
the three angles inside a triangle are larger than 180◦, while for hyperspherical spaces
they are smaller than 180◦.

Worked problem 1.3: Calculating distances in curved space

Calculate the distance between the origin xi = 0 and the point
x1 = x2 = 1/

√
2, x3 = 0 for a = 1m and K = 0,±1. Choose a path

parametrized by 0 ≤ τ ≤ 1/
√
2 such that x1(τ) = x2(τ) = τ .

10



Solution: The line element simplifies for x3 = 0 and x1 = x2 = τ to

ds2 = a2
(
dx21 + dx22 +K

(x1dx1 + x2dx2)
2

1−K(x21 + x22)

)
= 2a2dτ2

(
1 +K

2τ2

1− 2Kτ2

)
. (1.10)

So, the distance is given by

∆s =

∫ s2

s1

ds =
√
2 a

∫ 1/
√
2

0
dτ

√
1 +K

2τ2

1− 2Kτ2
. (1.11)

For K = 0 we find

∆s =
√
2 a

∫ 1/
√
2

0
dτ = a = 1 m, (1.12)

which is the expected result for flat space. For K = +1 we find

∆s =
√
2 a

∫ 1/
√
2

0
dτ

1√
1− 2τ2

=
π

2
a ≈ 1.6 m, (1.13)

and for K = −1 we get

∆s =
√
2 a

∫ 1/
√
2

0
dτ

1√
1 + 2τ2

= arcsinh (1) a ≈ .88 m. (1.14)

Now that we have understood the spatial part of our universe, we can extend the
line element to include also time and write (note that we will set the speed of light
c ≈ 3× 108m/s equal to 1 so that 1s ≈ 3× 108m, see the next subsection for details)

ds2 = −dt2 + a(t)2
(
dx2i +K

(xidxi)
2

1−Kx2i

)
. (1.15)

This is the so called Friedmann-Robertson-Walker (FRW) metric that is used to de-
scribe our universe. Note, that in addition to adding the time coordinate t, we have
also allowed the scale factor a(t) to change with time. This scale factor is the function
that determines the evolution of our universe. In order to make this more transparent
let us first go to spherical polar coordinates

dx2i = dr2 + r2dΩ2 , dΩ2 = dθ2 + sin(θ)2dϕ2 , xidxi = rdr , (1.16)

so that the metric becomes

ds2 = −dt2 + a(t)2
(

dr2

1−Kr2
+ r2dΩ2

)
. (1.17)

Now we calculate the distance between an observer at the origin and an object at
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co-moving radial coordinate r (we always take a(t) > 0)

d(r, t) = a(t)

∫ r

0

dr′√
1−Kr′2

= a(t)×


arcsin(r) K = +1
arcsinh(r) K = −1
r K = 0

. (1.18)

This implies that any object at a fixed r moves away from us, if the scale factor a(t)
increases with time. More concretely, by differentiating the above equation we can
establish the linear relationship between the distance and the velocity

v =
∂d(r, t)

∂t
=
ȧ(t)

a(t)
d(r, t) ≡ H d(r, t) . (1.19)

In the last equation we defined

H(t) =
ȧ(t)

a(t)
, (1.20)

where H(t) is the so called Hubble parameter since Hubble discovered this linear re-
lationship. So, we see that our FRW metric is correctly capturing Hubble’s original
observation in figure 3 provided that ȧ(t) > 0.

1.2.1 Interlude: setting c = 1

You are probably familiar with the fact that people use different units around the world.
That is no problem since there are fixed conversion factors that convert one unit into
another. The speed of light in vacuum is a similar universal conversion factor that we
can use to convert time intervals into length and vice versa. This might seem peculiar
to a person that has not studied special relativity. However, in special relativity you
should have learned that space and time can mix under Lorentz transformation. So,
they are not separate entities but rather unified into what is called spacetime.

Worked problem 1.4: Using different units

You are working on a ship and are in charge of calculating the distance
it travels in spacetime. The crew tells you the travel time in minutes,
the distance along the x1-axis in nautical miles, the distance along the
x2-axis in yards and the distance along the x3-axis in feet. Write down
the corresponding line element ds2 in flat spacetime (so-called Minkowski
space) that gives ds in the SI unit of meters.

Solution: Similarly to above, we have to write down a line element with
prefactors c and ci, i = 1, 2, 3, that take care of the conversion from one
unit to the other:

ds2 = −c2dt2 + c21dx
2
1 + c22dx

2
2 + c23dx

2
3 . (1.21)

The values of c and ci can be determined to be

c = 1.8× 1010 m
minutes , c1 = 1852

m

nautical miles
,
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c2 = .91 m
yard , c3 = .3

m

feet
. (1.22)

The problem above shows that we can use different units for different directions
along spacetime. However, it also shows that this is very confusing. That is why we
normally never do that and set c = ci = 1. This does not fix the particular units we have
to work with. However, it requires us to use the same units for all spacetime directions
t, x1, x2, x3. For example, if we decide that we work with meters m, then a light beam
from the sun will have a travel time of roughly ∆t = 8 · 1.8 × 1010m = 1.44 × 1011m
to reach earth. On the other hand, if we decide that we work with minutes, then the
distance from the earth to the sun is roughly d = 8 minutes.

1.3 The Friedmann equations

The evolution of the scale factor a(t) is determined by the matter and energy content
of the universe using general relativity. If you are not familiar with general relativity
then the set of equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.23)

might look rather intimidating and this paragraph might seem rather complicated. In
this case you can jump ahead to the next paragraph. In an isotropic and homogeneous
universe Einstein’s equations boils down to two rather simple equations for a(t). The
left-hand-side of the above equation is entirely determined by the FRW metric given
above and the cosmological constant Λ. The right-hand-side is determined by the
energy-momentum tensor Tµν that encodes the matter and energy in our universe. In
a homogeneous and isotropic universe its spacial part has to be proportional to the
metric Tij = p(t)gij , where we allowed for an arbitrary time dependent function p(t).
The time component Ttt = ρ(t) is also an arbitrary function. Finally, the mixed space-
time components are a 3-vector. However, such a vector, if non-vanishing, would single
out a particular direction which is inconsistent with isotropy that demands that the
universe is the same in all directions so we have Tti = 0.

Solving Einstein’s equations above leads to the following two equations2 that are
called Friedmann’s equations(

ȧ(t)

a(t)

)2

+
K

a(t)2
− Λ

3
=

8πG

3
ρ(t) , (1.24)

ä(t)

a(t)
− Λ

3
= −4πG

3
(ρ(t) + 3p(t)) . (1.25)

These equations involve three new quantities that deserve further discussion: The
parameter Λ is called a cosmological constant and as we will see shortly, we can remove
it from the equations by shifting ρ and p. So, this means that in a homogeneous

2Depending on your level of familiarity with general relativity I encourage you to either derive these
equations yourself or to take a look at appendix A that gives the detailed derivation.
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and isotropic universe we can describe any kind of matter, radiation and energy with
just two quantities. What are these and how do we understand them intuitively?
A homogeneous universe obviously requires a distribution of energy and matter that
does not depend on the spacial coordinates, so instead of dealing with for example
empty space dotted with galaxies we can take a continuum limit and think of it as a
continuous distribution of matter. You might be familiar with similar approximations
when describing air or water. Instead of describing all individual molecules, we describe
the whole system as a continuous fluid. The quantity ρ(t) describes the energy density
(recall that mass equals energy due to E = mc2 = m) and the function p(t) describes
the pressure of this fluid.

By looking at the equations (1.24), (1.25) we note that ρ and p can describe a
cosmological constant. In particular, if we shift them such that

ρ→ ρ− Λ

8πG
, p→ p+

Λ

8πG
, (1.26)

then we remove Λ and find the Friedmann equations(
ȧ(t)

a(t)

)2

+
K

a(t)2
=

8πG

3
ρ(t) ,

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p(t)) .

(1.27)

(1.28)

Worked problem 1.5: Absorbing K in ρ and p

Show that one can likewise absorb the curvature term K/a(t)2 by shifting
ρ and p.

Solution: By simple inspection we find that the following shifts do the
trick

ρ→ ρ+
3K

8πGa(t)2
, p→ p− K

8πGa(t)2
. (1.29)

This would remove the K/a(t)2 term and further simplify the Friedmann
equations to (

ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) , (1.30)

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p(t)) . (1.31)

Given the above observation we are faced with the question of how to write the
Friedmann equations and which terms should appear on the left-hand-side and which
terms should be part of the right-hand-side. While this is somewhat of an academic
question there is a reason of choosing equations (1.27) and (1.28) as our favorite choice.
The way the Friedmann equations are derived leads naturally to the original form given
in (1.24) and (1.25). These equations have a clear physical interpretation: The left-
hand-side terms arise from general relativity and the right-hand-side arises from things
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that couple to gravity, like for example matter (electrons, protons, stars, etc.) or
radiation (i.e., photons). So, in a hypothetical universe with only gravity and nothing
else, the right-hand-side in equations (1.24) and (1.25) would be zero and the left-hand-
side would be unchanged. However, as we will see towards the end of this course, there
are particles that contribute to the right-hand-side of the equations (1.24) and (1.25)
like a cosmological constant.3 Therefore, it makes sense to remove Λ on the left-hand-
side and include it into ρ and p on the right-hand-side, i.e., to work with the Friedmann
equations as given in equations (1.27) and (1.28). No particles are known that would
contribute to the right-hand-side like the curvature term K/a(t)2. Therefore, we keep
the curvature term on the left-hand-side.

The two rather simple Friedmann equations govern our universe from a split sec-
ond after the big bang until today. All we need for this is the knowledge of ρ(t) and
p(t), i.e., of the matter and energy content of our universe. As we will see in the next
lecture, these functions are not too complicated and usually at each time there is one
form of energy that is dominating the expressions so that we can solve the Friedmann
equations analytically.

Worked problem 1.6: Constraints on the simplest solutions

Show that in a universe with only gravity, i.e., ρ = p = 0 in equations
(1.24) and (1.25), not all values of K are compatible with Λ ≤ 0.

Solution: The first Friedmann equation simplifies to(
ȧ(t)

a(t)

)2

+
K

a(t)2
− Λ

3
= 0 . (1.32)

If Λ < 0 then the left-hand-side is strictly positive for K = 0 and K = +1
and we have a contradiction. So, only K = −1 is allowed.
If Λ = 0, then K = 0 and K = −1 are allowed but K = +1 is again
forbidden.

Differentiating (1.27) we get

8πG

3
ρ̇(t) = 2

ȧ(t)

a(t)

(
ä(t)

a(t)
−
(
ȧ(t)

a(t)

)2

− K

a(t)2

)
. (1.33)

Using now equation (1.27) and (1.28) and recalling that H = ȧ/a we find the continuity
equation:

ρ̇(t) + 3H(t) (ρ(t) + p(t)) = 0 . (1.34)

This equation will be useful, when we discuss the different matter and energy content
of the universe in the next section.

3From quantum gravity considerations it is also not clear whether a constant Λ can exist.
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Summary: Friedman equations

There are two long range forces in the universe, electromagnetism and
gravity. Since the universe is electrically neutral on large scales, gravity
dominates and the evolution of our universe is described entirely by the
theory of general relativity.
Our universe is, on sufficiently large scales of several Mpc, homogeneous
and isotropic. This dramatically simplifies the equation of motions for
general relativity to the two Friedman equations:(

ȧ(t)

a(t)

)2

+
K

a(t)2
=

8πG

3
ρ(t) , (1.35)

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p(t)) . (1.36)

The two equation above can be combined into (and any one of them can
be replaced with) the continuity equation:

ρ̇(t) + 3H(t) (ρ(t) + p(t)) = 0 . (1.37)

In the equations above a(t) is the time dependent scale factor that con-
trols the size of spatial parts of our universe, K = 0,±1 is the curvature,
G = 6.67 × 10−11m3kg−1s−2 is Newton’s constant and ρ(t) and p(t) are
the energy density and pressure of the homogeneous fluids that fill our
universe. We also defined the Hubble parameter as

H(t) =
ȧ(t)

a(t)
. (1.38)

2 Dynamics of the universe

In the last section we learned that our universe is homogeneous and isotropic and can
be described by the so called FRW metric. Using general relativity one can derive
the Friedmann equations that describe the evolution of the universe for any given
energy and matter content with an energy density given by ρ(t) and a pressure p(t). In
this section we will discuss different forms of matter, work through Einstein’s biggest
blunder and determine the age and time evolution of our universe.

2.1 The different forms of matter

There are three different forms of matter and energy in our universe and they all
satisfy the relation p(t) = wρ(t), where the constant w is called the equation of state
parameter. Plugging this into the continuity equation (1.34) we can derive the following

0 = ρ̇(t) + 3
ȧ(t)

a(t)
(1 + w)ρ(t)
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0 =
ρ̇(t)

ρ(t)
+ 3(1 + w)

ȧ(t)

a(t)

0 =
d

dt
ln ρ(t) + 3(1 + w)

d

dt
ln a(t)

0 = ln (ρ(t)) + 3(1 + w) ln (a(t)) + const.

0 = ln (ρ(t)) + ln
(
a(t)3(1+w)

)
+ const.

1 = ρ(t) · a(t)3(1+w) · econst.
⇒ ρ(t) ∝ a(t)−3(1+w) . (2.1)

Thus, we see that the function ρ(t) and therefore p(t) = wρ(t) are related to a(t) in a
rather simple way. This means, as we will see below, that as long as a single matter
component is dominating, we can solve the equations that determine the evolution of
our entire universe analytically!

Worked problem 2.1: The initial big bang singularity

Use the above derived equation (2.1) to discuss what happens to the
energy density in the very early universe. In particular what happens to
a pressureless fluid with p = 0?

Solution: From Hubble’s observation we know that our universe is ex-
panding. That means that it was smaller in the past and in particular
much smaller in the early universe. So, since a(t) decreases, ρ(t) will like-
wise change, unless w = −1. For w < −1 we find that ρ goes to zero.
For the case of a pressureless fluid we have p = wρ = 0, so, w = 0 (since
the energy density is positive). For such w = 0 and more generally for all
w > −1 we find that the energy density goes to infinity when a(t) goes to
zero.

Before we solve the Friedmann equations let us discuss what kind of matter and
energy we expect to have in our universe and derive the corresponding equation of
state parameter w.

� Non-relativistic matter

The matter we are most familiar with are stars and galaxies that we can observe
at night in the sky. This form of matter has a velocity that is much smaller
than the speed of light so that we can neglect its kinetic energy. In a given box
in which each side has the initial length a(tin)l, we have a certain number of
stars and galaxies with a mass M . The energy density is then given by ρ =
E/(a(tin)l)

3 = M/(a(tin)l)
3, where we used E = M in units where c = 1. Now

when the universe evolves, the box will change its volume to a(t)3l3 as is shown
in figure 9.

Since the mass M stays the same we find the following scaling

ρm(t) ∝ a(t)−3 ⇔ w = 0 ⇔ pm(t) = 0 . (2.2)
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Figure 9: Non-relativistic matter in an expanding universe.

So, we see that non-relativistic matter has an equation of state parameter w = 0
and therefore vanishing pressure, which makes sense since the matter inside our
box should not exert any pressure on the walls.

As we will discuss below, the largest fraction of cold (i.e., non-relativistic) matter
in our universe is in the form of an unknown so called dark matter.

� Radiation

Another form of energy in the universe is radiation (like for example light). The
energy of light in units where c = ℏ = 1 is given by E = 2π/(a(tin)λ), where
a(tin)λ is the wavelength. If we have a certain number of photons inside a big
volume of initial size (a(tin)l)

3, then the energy density gets again diluted due to
the increase in the volume of the box as above. Additionally, due to the expansion
of the space the initial wavelength a(tin)λ increase to a(t)λ, as shown in figure
10,

Figure 10: Radiation in an expanding universe.

so that we find for radiation

ρr(t) ∝ a(t)−4 ⇔ w =
1

3
⇔ pr(t) =

1

3
ρr(t) . (2.3)
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As we will learn later, our universe is filled with the cosmic microwave background,
which is thermal radiation left over from the big bang. Its spectrum is the best
measured black body in nature.

� The cosmological constant

As we have seen in subsection 1.3 in equations (1.24), (1.25) and(1.26), we can
describe a cosmological constant by

ρΛ(t) = −pΛ(t) =
Λ

8πG
⇔ w = −1 . (2.4)

So, in this case ρΛ = −pΛ is constant and the energy density does not change in
time. This can be understood as follows: During the expansion of the universe
more of the vacuum is created and this vacuum has a non-zero energy density
ρ so that ρ does not change during the expansion (or contraction), as shown in
figure 11.

𝑎 𝑡𝑖𝑛 𝑙
𝑎 𝑡 𝑙

Figure 11: A cosmological constant does not get diluted in an expanding universe.

2.2 Conservation of energy

If you are not too familiar with the theory of general relativity, then you might wonder
about the conservation of energy in the above examples. This is a generic feature of gen-
eral relativity. The would-be conservation of energy is replaced by the condition that
∇µT

µν = 0, where ∇µ denotes the covariant derivative. In particular that means that
∂µT

µν +Γν
µσT

µσ +Γµ
µσT σν = 0. Using appendix A that derives Friedmann’s equations

you can check that the above four equations (ν = 0, 1, 2, 3) reduce to the continuity
equation (1.34) for ν = 0 and are trivial otherwise. If you are confused about how this
non-conservation of energy is possible in a physical theory, recall that the conservation
of energy follows via Noether’s theorem from the time-translational symmetry. So, any
physical theory that is not invariant under time translations can and generically will
violate the conservation of energy. An expanding universe is certainly not invariant
under time translations so it does violate the standard conservation of energy but it
does satisfy the continuity equation that was implied by the two Friedmann equations.
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Worked problem 2.2: Energy conservation in a static universe

While an expanding or contracting universe is generically not invariant
under time translations, a static universe is. Show that energy is
conserved in a static universe.

Solution: We have learned above, that energy conservation is generalized
to the continuity equation (1.34):

ρ̇(t) + 3H(t) (ρ(t) + p(t)) = 0 . (2.5)

In a static universe ȧ = 0 and therefore H = ȧ/a = 0 and the continuity
equation reduces to ρ̇ = 0. Since the universe is static, volumes do not
change and we can multiply ρ by an arbitrary volume V and find that the
energy in that volume is conserved

Ė =
d(ρ V )

dt
= ρ̇ V = 0 . (2.6)

2.3 The dust filled universe

In this section we will study the simple case of a universe which contains non-relativistic
matter, so we set p(t) = 0 and we have ρ(t) ∝ a(t)−3 > 0 from (2.2). The second
Friedmann equation (1.28) then immediately tells us that such a universe cannot be
static, i.e., ä(t) ̸= 0. In fact, it tells us that the expansion of the universe is decelerating.
This is very intuitive since we know that gravity always attracts. In a universe filled
with matter the gravitational attraction between the matter will slow down any initial
expansion. There then seem to be three possibilities:

1. The universe will keep expanding forever at a slower and slower rate.

2. The expansion of the universe will eventually come to a stop.

3. The expansion will slow down and then gravitational attraction between the mat-
ter forces the universe to contract and eventually collapse.

We will see that these cases correspond to K = −1, 0, 1. We can write equation (1.27)
as

0 ≤ ȧ(t)2 =
8πG

3
ρm(t)a(t)2 −K =

cm
a(t)

−K , (2.7)

where we introduced the constant cm > 0 via 8πGρm(t)/3 = cm/a(t)
3 and used (2.2).

We immediately see that for K = −1 the right-hand-side can never vanish so in this
universe any initial expansion ȧ(t) will go on forever. For the case K = 0 the right-
hand-side vanishes for a(t) → ∞ so the expansion will eventually come to a stop.
Finally, for K = +1 the first term dominates for very small a(t) but once a(t) = cm/K
the expansion will come to a stop and the universe will then contract (since (1.27)
implies ä(t) < 0). These three scenarios are shown in figure 12.
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Figure 12: An open, flat and closed universe corresponding to K = −1, 0, 1.

We can also rewrite the first Friedmann equation as given in (2.7) as

1

2
ȧ(t)2 + V (a(t)) = −K

2
, (2.8)

with V (a(t)) = −cm/(2a(t)). The above equation describes the motion of a 1-dimensional
particle in the potential V and with a total energy E = −K/2. Since V (a(t)) < 0 we
can conclude that for E ≥ 0, i.e., K = 0 andK = −1 there exist unbound solutions and
the universe can expand forever. For K = 1 we have E = −1/2 and the trajectories
are bound. This is shown in figure 13.

K<0

K>0

a

V(a)

Figure 13: Unbound trajectories only exist for K = −1 and K = 0, while for K = 1
the universe expands and then contracts again.
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2.3.1 A static universe?

Note, that independent of the value of K we find that the second Friedmann equation
(1.28) does not permit static solutions for a universe filled with matter. Before the
discovery that our universe was expanding, this fact was very troublesome for people
like Einstein that imagined our universe to be time independent. Let us therefore try
to construct a static universe with matter by adding in the cosmological constant Λ.
The universe can then be described by ρ(t) = ρm(t) + ρΛ, p = pΛ = −ρΛ. In a static
universe with ȧ(t) = ä(t) = 0, we then find from equation (1.28) that

0 = ρ+ 3p = ρm − 2ρΛ ⇔ ρm = 2ρΛ > 0 , (2.9)

since ρm > 0. Using this in equation (1.27) gives

K

a2
=

8πG

3
ρ =

8πG

3
(ρm + ρΛ) = 8πGρΛ = Λ > 0 . (2.10)

So, we have succeeded in finding a static solution provided that K = 1 and Λ > 0.
In this static solution we have a = 1/

√
Λ. The important question to ask is whether

such a solution is stable. To answer that, we can look again at equation (2.8). The
potential now has an extra contribution from the cosmological constant so that we find
for K = 1

1

2
ȧ(t)2 + V (a(t)) =

1

2
ȧ(t)2 − cm

2 a(t)
− 1

6
Λ a(t)2 = −1

2
. (2.11)

A plot of the potential is shown in figure 14.

-Λ a (t)2

-
cm

a(t )

a=1/ Λ

a

-
1

2

V(a)

Figure 14: The potential for a static universe withK = +1, matter and a cosmological
constant Λ > 0. We see that the static solution with a = 1/

√
Λ is a maximum and

therefore unstable.

We see that our static universe corresponds to a maximum of the potential. This
means this static universe is unstable. If the matter and energy content is the tiniest
bit different, then this universe will either expand forever or collapse. Fortunately, our
universe is not static, so that we don’t have to worry about such delicate solutions.

Historically, the following happened: In 1915 Einstein’s published his theory of
general relativity without the cosmological constant Λ. When he then tried to use his
equations to describe our universe, which he believed to be static, he failed. Instead
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of trusting his theory and predicting that our universe is not static, he introduced
the cosmological constant Λ and gives it the very specific value required for the static
universe discussed in this subsection. Later Einstein will call this his ‘biggest blunder’.
In 1927 Georges Lemâıtre shows, by combining general relativity with Hubble’s obser-
vations, that our universe is expanding. In 1931 Einstein finally accepts the idea of an
expanding universe and he proposes together with Willem de Sitter the model of an
expanding universe without a cosmological constant, i.e., the model that we discussed
at the beginning of subsection 2.3.

2.3.2 The age of the universe

Since we know that our universe is expanding, let us ask the simple question of how old
our universe would be, if all its energy would be contained in non-relativistic matter.
This is not that bad of an approximation and will give us an age that is of the correct
order of magnitude. Before we start the calculation let us introduce an important
convention. We call our current time t0, i.e., we use a subscript 0 to denote today’s
value of the time variable. Likewise, we use a0 = a(t0) and H0 = H(t0) = ȧ(t0)/a(t0) to
denote today’s value of the scale factor and Hubble parameter. Since H0 by definition
is a constant, it is usually called the Hubble constant. There are ever improving
measurements of the Hubble constant but its uncertainty is still somewhat large. For
that reason, one usually writes

H0 = 100h
km

sMpc
, (2.12)

where the current experimental value of h is4

h = .677± .008 . (2.13)

Hubble’s original observations led him to h ≈ 5 due to several systematic errors, cf.
figure 3. So, over the last century astrophysicists reduced the error from a few hundred
percent to just a few percent.

The unit of H and H0 is 1/time. This can be easily seen from the definition
H = ȧ/a, where the length dimension of a cancels but the time derivative leaves us
with 1/time. The reason why there are two different length units in the quoted value
for H0 in equation (2.12) is that astronomers measure cosmological distances in Mpc
and velocities in km/s. So, looking back at Hubble’s law in equation (1.19): v = H d,
we see why the unusual units arise.

Worked problem 2.3: The inverse Hubble constant in years

What is 1/H0 in years?

4As we will discuss later, there are two very different ways of determining the Hubble constant and they
currently disagree with each other. It is not clear right now why that is the case. The value given below is
obtained by the Planck collaboration by studying the cosmic microwave background.
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Solution: We simply need to convert Mpc to km and seconds to years

1

H0
=

sMpc

67.7km
=

yr

3.15× 107s

s 3.09× 1019km

67.7km
= 14.4× 109yr . (2.14)

This value of 14.4 billion years is actually fairly close to the age of our
universe. As we will see below, this is not a coincidence.

Now let us use the value of H0 to determine the age of a universe filled with non-
relativistic matter. We will set K = 0 which, as we will discuss below, is very much
consistent with observation. We then find from equation (2.2) that

ρ(t) = ρ0

(
a0
a(t)

)3

, (2.15)

where ρ0 is the current energy density of the universe. Now we use this in the Friedmann
equation (1.27)

a(t)ȧ(t)2 =
8πG

3
ρ0a

3
0√

a(t) ȧ(t) =

√
8πG

3
ρ0a30√

a(t) da =

√
8πG

3
ρ0a30 dt , (2.16)

where in the last line we used ȧ(t) = da/dt. Now we can integrate both sides which
leads to

2

3
a(t)

3
2 =

√
8πG

3
ρ0a30 t+ const. (2.17)

By demanding that a(t = 0) = 0 is the initial singularity we find that the integration
constant vanishes. The above equation implies

a(t) = a0

(
t

t0

)2/3

, (2.18)

since by definition a(t0) = a0 and t0 is implicitly defined in (2.17) but we will not need
this particular expression. We rather calculate H0 directly

H0 =
ȧ(t0)

a(t0)
=

2
3a0 t

− 1
3

0 /t
2
3
0

a0
=

2

3

1

t0
. (2.19)

So, we have found the age of a matter filled universe in terms of the Hubble constant
today

t0 =
2

3

1

H0
=

2

3

sMpc

100h km
≈ 2

300h
3× 1019 s ≈ 9.6× 109 yr = 9.6 Gyr . (2.20)

While this is pretty close to the age of our universe which is roughly 13.8× 109 years,
it is inconsistent with the observation of the oldest stars that are as old as 13 × 109

years.
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2.4 Time evolution of the universe

As we have seen above, a matter dominated universe gives us the right order of magni-
tude for the age of the universe but the answer is inconsistent with observations. The
reason for that is that our universe contains other forms of energy as well. At different
points of time different forms of energy density dominate the evolution of the universe.
Let us therefore also determine the time dependence of the scale factor for the other
cases. We start with the general expression (2.1) which is equal to

ρ(t) = ρ0

(
a(t)

a0

)−3(1+w)

. (2.21)

Using this in the Friedmann equation (1.27) and assuming a negligible curvature con-
tribution (K = 0), we can repeat the above calculation(

ȧ(t)

a(t)

)2

=
8πG

3
ρ0

(
a(t)

a0

)−3(1+w)

a(t)
1+3w

2 ȧ(t) =

√
8πG

3
ρ0a

3(1+w)
0

a(t)
1+3w

2 da =

√
8πG

3
ρ0a

3(1+w)
0 dt

2

3(1 + w)
a

3(1+w)
2 =

√
8πG

3
ρ0a

3(1+w)
0 t+ const. , w ̸= −1 . (2.22)

We can again set the constant to zero by choosing a(t = 0) = 0 and fix the factor of
proportionality by demanding that a(t0) = a0 and get

a(t) = a0

(
t

t0

) 2
3(1+w)

, w ̸= −1 . (2.23)

The above derivation doesn’t apply to the case of a cosmological constant but in that
case one has simply ρ(t) = const. and finds from (1.27) that

a(t) = a0e
H0(t−t0) . (2.24)

Note that in this case the ‘beginning’ of the universe is not at t = 0 but rather at
t = −∞. So, such a universe is infinitely old. This case is also special since the Hubble
parameter H(t) is actually constant (since ρ is constant), while in all other cases it
changes with time as

H(t) =
2

3(1 + w) t
, w ̸= −1 . (2.25)

Our derivation above also applies to the case of a negatively curved universe with
K = −1 and ρ(t) = 0, since this can be thought of as a fluid with energy density
ρ ∝ a(t)−2 which is equal to w = −1/3. Let us summarize the different scalings we
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found

a(t) =a0

(
t

t0

) 1
2

, for radiation, i.e., w =
1

3
,

a(t) =a0

(
t

t0

) 2
3

, for matter, i.e., w = 0,

a(t) =a0
t

t0
, for curvature with K = −1, i.e., w = −1

3
,

a(t) =a0e
H0(t−t0) , for Λ, i.e., w = −1.

(2.26)

(2.27)

(2.28)

(2.29)

Worked problem 2.4: Energy density and pressure

Determine the time dependence of the energy density ρ and the pressure p.

Solution: For a cosmological constant with w = −1 we have that ρ =
−p = const. So, they both do not change in time.
Otherwise, we find for ρ(t) (and therefore also p(t) = wρ(t)) from the first
Friedmann equation (1.27) and using equation (2.25) that

ρ(t) =
3

8πG
H(t)2 =

3

8πG

(
2

3(1 + w)

)2 1

t2
, w ̸= −1 . (2.30)

This means that, in the absence of a cosmological constant, in an expand-
ing universe the energy density is diluted as t−2 independently of which
kind of fluid dominates the energy density.

2.5 Fun facts

Let us conclude with two non-trivial observation. A universe with a flat geometry
K = 0 is special in the sense that it can lead to a critical evolution (see figure 12) but
it also is special since our own universe seems to have a very small (or even vanishing)
curvature |K/a20| ≪ (ȧ(t0)/a0)

2. We have seen in the first lecture that the spatial part
of such a universe could be simple the flat space R3. This is however not the entire
truth. It is also possible that one, two or all of the three xi directions are periodic,
i.e., they are circles. This would mean, if these circles wouldn’t be too large, we could
see ourselves in the sky or we could see the same galaxy twice in the universe by
looking in opposite directions. However, up to date there is no evidence of such a
non-trivial topology so if the spacial part of our universe is finite (or periodic in any
one direction), then the corresponding radius has to be very large and we might never
be able to observe this. However, it is interesting to know that our universe (or more
precisely a universe with K = 0) does not necessarily have to be spatially infinite.

A common question that arises when discussing the big bang is its location. Where
did it happen, i.e., where is the center of the universe? We have learned that our
universe is homogeneous and isotropic. This means there is no special point at which
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the big bang could have happened. Rather it must have happened everywhere. We
can understand this intuitively from the FRW metric (see equation (1.15))

ds2 = −dt2 + a(t)2
(
dx2i +K

(xidxi)
2

1−Kx2i

)
. (2.31)

The big bang singularity is in principle the point in the past where a(t) = 0. At this
point dx2i +K(xidxi)

2/(1−Kx2i ) still describes flat space, a 3-sphere or a hyperspher-
ical surface with negative curvature, however, this part gets multiplied by zero. For a
3-sphere, which has a finite coordinates range (recall x2i ≤ 1) and for flat space with
three periodic directions, this means that the corresponding compact spaces shrink to
zero size at the big bang singularity. However, for R3 and the hyperspherical surface
the coordinate ranges are infinite. So, in this case the universe remains infinitely large
even at the big bang singularity! Why is it then called a singularity if the universe
might have still been infinitely large? The answer is for example given in problem 2.4
above. At the big bang singularity certain quantifies diverge and our equations break
down. Strictly speaking we should think of general relativity as a ‘low energy effective
theory’ that is only valid for energies below the Planck energy. In particular, we should
only use it at times t > tP = 5.4× 10−44s.

Summary: The dynamics of the universe

In this section we learned about the time evolution of our universe that
is determined by the fluid that dominates the energy density of the
universe. Three such fluids are non-relativistic matter like stars and
galaxies, radiation and dark energy. All of these can be described by
fluids with p(t) = wρ(t), where the constant w is called the equation
of state parameter. It takes the vales w = 0 for matter, w = 1/3 for
radiation and w = −1 for a cosmological constant.

We then derived how the scale factor and the energy density change with
time and found

a(t) = a0

(
t

t0

) 2
3(1+w)

, w ̸= −1 , (2.32)

and

ρ(t) =
3

8πG

(
2

3(1 + w)

)2 1

t2
, w ̸= −1 . (2.33)

For the special case of a cosmological constant with w = −1 one finds that
the energy density is constant and that

a(t) = a0e
H0(t−t0) . (2.34)
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3 Our universe (and its fate)

In this section we discuss the observed values for the different forms of energy and
matter in our universe. Based on that it is easy to discuss the fate of our universe in
the far distant future. It will be however much more interesting and complicated to
describe the history of our universe from the beginning until today and that is what is
going to occupy us for the rest of this semester.

3.1 Critical density

In a universe like our own the curvature |K/a20| ≪ (ȧ(t0)/a0)
2 is very small and it is

useful to define the so-called critical energy density. From the first Friedmann equation(
ȧ(t)

a(t)

)2

+
K

a(t)2
=

8πG

3
ρ(t) , (3.1)

we find after setting K = 0 the critical energy density

ρc(t) =
3H(t)2

8πG
. (3.2)

This critical density today is roughly ρc(t0) ≈ 10−26kg/m3 which is incredibly small.

Worked problem 3.1: The best vacuum obtained on earth

The best vacuum obtainable on earth with our current technology has
around 1,000 atoms/cm3. Assume the atoms are the lightest possible
atoms, namely hydrogen atoms. What is the energy density in such a
vacuum?

Solution: 1,000 hydrogen atoms have a mass of m = 1.7× 10−24kg. This
leads to an energy density of

ρvac = 1.7× 10−24kg/cm3 = 1.7× 10−18kg/m3 . (3.3)

Interplanetary space contains roughly 11 molecules per cm3, interstellar
space 1 molecule and intergalactic space 10−6 molecules per cm3.
Since there is a lot of intergalactic space in the universe, the critical energy
density ρc(t0) ≈ 10−26kg/m3 above is not much larger than the energy
density for intergalactic space ρint−gal ≈ 1.7× 10−27kg/m3.

Having defined the critical density, we can normalize the energy density for all fluids
by dividing by the critical density and define

Ωi(t) ≡
ρi(t)

ρc(t)
with i = m, r,Λ . (3.4)
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We can also define the total normalized energy density Ωtot =
∑

iΩi. With that we
can rewrite equation (3.1) as

Ωtot(t) =
∑
i

Ωi(t) = 1 +
K

ȧ(t)2
. (3.5)

From this we see that for an open universe Ωtot < 1 and for a closed universe Ωtot > 1.
For a flat universe withK = 0 we have Ωtot = 1 being constant. Note, that observations
will always have uncertainties. This means that if our universe is actually flat (K = 0)
then we would never be able to know for sure. However, if our universe would have
non zero curvature K/ȧ(t)2 ̸= 0, then this is something we could in principle measure
with very high confidence.

3.2 Our universe

In the last few decades our understanding of the universe has substantially improved
and cosmology has become a precision science where most parameters can be measured
with error bars that are a few percent or even less. This ‘golden age’ of cosmology is
far from over and future experiments promise substantially better measurements and
hold the prospect of discovering new fascinating features of our universe.

As we have discussed before, |K/ȧ20| ≪ 1 in our current universe and there is no
observational evidence for non-vanishing curvature. The current upper bound is∣∣∣∣Kȧ20

∣∣∣∣ < .005 . (3.6)

As discussed above, this means that the total energy density of our universe is very
close to the critical energy density. This then for example means that if a particular
type of matter or energy constitutes for example 70% of the energy density in our
current universe, then its current energy density is .7ρc(t0).

Worked problem 3.2: The value of a0 in the absence of curvature

Show that for K = 0 the Friedmann equations (1.27) and (1.28) are
invariant under rescaling of a(t) by an arbitrary constant. What does
that mean for the value of a0?

Solution: Rescaling a(t) by a constant c we find for K = 0(
ȧ(t)

a(t)

)2

=

(
c ȧ(t)

c a(t)

)2

=
8πG

3
ρ(t) , (3.7)

ä(t)

a(t)
=

c ä(t)

c a(t)
= −4πG

3
(ρ(t) + 3p(t)) . (3.8)

So, the Friedmann equations are indeed invariant under this rescaling.
This means that the value of a0 has no physical meaning and cancels out in
all calculations for K = 0. We can understand this more mathematically
by the fact that in flat space we can rescale the xi-coordinates by 1/c,
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while rescaling a(t) by c. This does not change the metric and leads to a
physically equivalent situation.
Note, that this is independent of whether some or all of the xi coordinates
are compact or not.

Note also that this means that in our universe where
∣∣∣Kȧ20 ∣∣∣ is unmeasurably

small, the value of a0 is arbitrary and has nothing to do with the size of
our universe.

Let us now take inventory of our current universe:

� Matter: While matter like the stars in the galaxies are the most obvious form of
matter one can think of, they turn out to be actually only a minimal fraction of
the matter in our universe (roughly 0.5%). However, there is a lot of Hydrogen
and Helium in the universe in large clouds that contribute to what is usually
called baryonic matter. The reason for this name is presumably that the baryons
(protons and neutrons) make up for almost the entire amount of the mass and
the leptons (electrons) only contribute a very small amount of mass. The current
value for the baryonic density parameter is

Ωb,0h
2 = .02226± .00023 ⇒ Ωb,0 ≈ .048 . (3.9)

There is another form of matter that only recently became non-relativistic which
are neutrinos. They contribute roughly 0.3% of the total energy density. As we
will discuss later, during the early times of the universe neutrinos behaved as
radiation and not as matter.

So, the matter we know and understand constitutes only roughly 5% of the total
energy density of our current universe!

It turns out that there has to be another type of non-relativistic matter in our
universe in order to explain for example the mass difference between the mass
of the visible matter in galaxies and the total mass derived from gravitational
effects. Since this matter is not visible because it doesn’t interact with photons,
it is called dark matter. We still don’t know what this dark matter really is and
have not yet been able to detect dark matter particles in any of the ongoing
experiments. Nevertheless, we can conclude from cosmological observations that
their contribution to the density parameter is

Ωc,0h
2 = .1186± .0020 ⇒ Ωc,0 ≈ .258 . (3.10)

So, the energy density of our current universe arises to roughly 30% from non-
relativistic matter with an equation of state parameter w = 0. The exact current
bound is

Ωm,0 = .308± .012 . (3.11)

� Radiation: We know that there are photons (light) in our universe, however,
these contribute a negligible amount to the current energy density. In particu-
lar, the photons from the cosmic microwave background, that will play a very
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important role in the coming lectures, contribute to the density parameter only

Ωr,0 ≈ 5× 10−5 . (3.12)

Our universe also contains gravitons and the corresponding gravitational waves
that contribute to the radiation. Gravitational waves have first been detected
directly in 2015 by the LIGO collaboration. The so far detected gravitational
waves arise from mergers of very massive objects like neutron stars and black
holes. There are also other sources of gravitational waves in our current universe
and we expect that the universe should additionally be filled with a primordial
cosmic gravitational wave background. However, the contributions from all these
sources to the radiation density parameter today is negligible.

So, we find that radiation is unimportant in our current universe. However, due
to its equation of state parameter w = 1/3 we derived Ωr(t) ∝ a(t)−4. This means
that in the early universe where a(t) was much smaller, radiation was actually
the dominating form of energy.

� Dark Energy: The largest contribution to the density parameter in our current
universe is due to dark energy, a currently not fully understood form of energy
with negative pressure that leads to an accelerated expansion of our universe. We
will discuss this in more detail in the next section. Here let us just say that dark
energy is very compatible with a cosmological constant Λ with equation of state
w = −1. The current contribution to the density parameter is

ΩΛ,0 = .692± .012 . (3.13)

Worked problem 3.3: A ‘force’ that counteracts gravity

We have seen above that a positive cosmological constant leads to
an exponentially expanding universe with a(t) = a0e

H0(t−t0), see
equation (2.24). Since our universe’s energy density is dominate
by dark energy with w = −1 this should approximate our universe
fairly well.
Assume one object is on an approximately circular motion around
another (like for example the earth around the sun). If the two
objects are a distance r = a(t) d apart, the cosmological expansion
leads to an outward acceleration r̈ = ä d = H2

0r. Compare this
acceleration for our value of H0 to the inward acceleration due to
gravity. Plug in values for the systems earth-sun, sun-milky way
and milky way-Virgo supercluster (vsc).

Solution: The acceleration on a circular orbit is v2/r = v2/(a(t)d).
The velocity squared for a light object orbiting a massive object of
mass M is given by v2 = GM/r. This leads to the following
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outward: H2
0r inward: GM/r2

earth-sun 7× 10−25m/s2 6× 10−3m/s2

sun-milky way 1× 10−15m/s2 3× 10−9m/s2

milky way-vsc 3× 10−12m/s2 5× 10−13m/s2

We see that dark energy is not strong enough to have a substantial
effect on the solar system or galaxies but it can affect superclusters.

So, we have seen that our current universe has negligible curvature and negligible
contributions from radiation. The total energy density splits into roughly 70% dark
energy (behaving like a cosmological constant) and 30% non-relativistic matter. The
fact that most of this non-relativistic matter is made out of unknown particles might
come as a big surprise. It often leads to the statement that we don’t understand 95% of
our universe since we don’t understand the dark energy either, however, we know the
equations of state parameters for dark matter and dark energy very well, so that we can
describe the history of our universe very accurately. As we mentioned above, compared
to radiation both dark matter and dark energy become less and less important at earlier
times due to their different scaling with a(t), so that they actually are unimportant in
our description of the very early universe (the same is true for curvature, i.e., the extra
contribution in the first Friedmann eqn. for non-zero K).

Figure 15: Pie-Chart of the matter and energy content of our universe (taken from
Wikipedia).

The different contributions to our universe are summarized in figure 15, whose val-
ues slightly differ from the ones I have given above. The reason is that contributions
from dark energy and matter can still change at the level of a few percent since they
are sensitive to the value of the Hubble constant that has not yet been measured that
accurately (recall that this is the reason why we defined it in terms of an unknown h
as H0 = 100h km/(sMpc)). In the last few years experiments have measured central
values of h ranging from .74 to .67. If you think that this is not overly precise you have
to keep in mind that in particular satellite experiments take a very long time from the
planning stage until the data is analyzed and usually different experiments determine
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cosmological parameters in very different ways. So, we should be happy that they all
seem so close to each other that they are mutually consistent. Also, as we will see in
the next section, the discovery of dark energy, that is the dominating form of energy
in the current universe, was only roughly 20 years ago!

Worked problem 3.4: Starlight

Do a back of the envelope estimate to determine the contribution of
starlight to the energy density of our current universe.

Solution: Stars are fusing hydrogen and helium to heavier elements and
release energy in the form of starlight. Nuclear fusion converts a few
per mil of the rest mass energy of a star into other forms of energy like
neutrinos and starlight. Usually there are several fusion processes, which
leads to the following estimate

rest mass · few per mil · several fusion processes
· fraction that goes into photons not neutrinos

≈ 1% · rest mass .

(3.14)
As we will learn below, the heavy elements above in figure 15 were created
in stars. If we add the entire contribution from all stars that are currently
still fusing material to the rest mass, we find an upper limit for starlight
of

Ωstarlight ≈ (.5% + .03%) · 1% ≈ 5.3× 10−5 . (3.15)

Clearly this is negligible today. Note that, contrary to the primordial radi-
ation that dominated our early universe, the starlight did not exist in the
very early universe (before the first stars and galaxy formed). Hence, the
energy density of starlight never played an important role in the evolution
of our universe.
Note, that the neutrino contribution in figure 15 is from primordial neu-
trinos in the comic neutrino background (see below).

3.3 Solving Friedmann’s equation for our universe

With the above information we have everything we need to solve Friedmann’s equation
and determine the scale factor of our universe. In order to do that let us first use the
definition of the critical density today ρc,0 = 3H2

0/(8πG) (cf. equation (3.2)) to rewrite
the Friedmann equations for K = 0 (cf. equations (1.27) and (1.28))(

ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)
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= H2
0

(
Ωm,0

(
a0
a(t)

)3

+Ωr,0

(
a0
a(t)

)4

+ΩΛ,0

)
, (3.16)

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p(t))

= −H
2
0

2

(
ρ(t) + 3p(t)

ρc,0

)
= −H

2
0

2

(
Ωm,0

(
a0
a(t)

)3

+ 2Ωr,0

(
a0
a(t)

)4

− 2ΩΛ,0

)
. (3.17)

It is a straightforward exercise to show that the second equation is not independent
from the first, so we can solve only the first Friedmann equation. Unfortunately, there
is no simple closed form solution but it can be solved easily numerically with the
boundary condition a(0) = 0, see figure 16.

Figure 16: A plot of the scale factor of our universe. The dashed black lines denote
today.

From the above numerical solution, we can determine t0 such that a(t)/a0 = 1, i.e.,
we can find the age of the universe to be t0 = 13.8Gyr. We can also study different
time ranges. For example, for the early universe when a(t) is very small, we expect
from the above equation (3.16) that radiation will dominate the evolution. This should
then lead to a(t) ∝

√
t, cf. equation (2.26). This is indeed what we can see from our

numerical solution in figure 17.
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Figure 17: A plot of the scale factor of our early universe (in blue). The orange line
that nearly coincides with the blue is given by

√
t/Gyr/32.6.

In an intermediate time range we find that the scale factor behaves like a(t) ∝ t
2
3 ,

which is the expected behavior for a universe dominated by matter, cf. equation (2.27).
This is shown in figure18.

Figure 18: A plot of the scale factor of our universe (in blue). The orange line that

nearly coincides with the blue is given by (t/Gyr)
2
3 /6.58.

In the future we expect the universe to expand and therefore the matter should
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get diluted like a(t)3 while the dark energy should remain constant. This means the
expansion should become exponentially in t, as we have derived in equation (2.29).
This is not visible in figure 16 although the dark energy is the dominant form of energy
in our current universe. However, if we plot the scale factor further into the future,
then we can see the exponential expansion, as shown in figure 19.

Figure 19: A plot of the scale factor of our universe (in blue). The orange line that
coincides with the blue for large t is given by .495e.057t/Gyr.

Thus, we see from solving the scale factor for our universe that its evolution can
be divided into three different parts: An early epoch that is dominated by radiation,
an intermediate epoch dominated by matter and finally the current epoch that is
dominated by dark energy. We will return to this in the next section after first studying
in more detail dark energy and the fate of our universe in the next subsection.

3.4 Dark energy

Arguably the most important discovery in cosmology in the last twenty-five years is the
discovery of dark energy. In 1998 the High-Z Supernova Search Team and in 1999 the
Supernova Cosmology Project published their analysis of type Ia supernovae, which
are a type of standard candles in cosmology. Their observations are in strong tension
with a matter dominated universe and much more compatible with a universe whose
expansion is accelerating. For this discovery S. Perlmutter, B. Schmidt and A. Riess
were awarded the 2011 Nobel Prize in Physics. Before we look at their data, we need
to review several useful definitions.
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3.4.1 Redshift

As we have discussed previously, in an expanding universe the wavelength λ of a photon
gets stretched as well. For example, if a photon is emitted at time t1 with wavelength
λ1 and we observe it today at time t0 with wavelength λ0, then we have the simple
relation

λ0 =
a(t0)

a(t1)
λ1 . (3.18)

Note, in particular for an expanding universe we have a(t0) > a(t1) so that the wave-
length becomes larger λ0 > λ1. This means that the observed light is ‘redshifted’.
This terminology arises from the fact that for visible light the red wavelengths are
the longest. Since bluish light has the shortest wavelengths one likewise uses the term
‘blueshift’, if wavelength become shorter. This would happen, if the universe contracts
or a star is moving towards us with a speed that overcompensates the redshift from
the expansion of the universe.

The fractional shift in the wavelength of photons is the so-called redshift parameter

z ≡ λ0 − λ1
λ1

=
a(t0)

a(t1)
− 1 . (3.19)

Since we know the time evolution of a(t) in our universe, we have a one-to-one map
from t to a(t) so we can assign to events either a time t or a particular value of the scale
factor a(t) (modulo the overall rescaling for K = 0 that we discussed in problem 3.2).
Likewise, we can use equation (3.19) to assign a redshift z to a particular time t1 in
the past. For example, currently the oldest observed galaxy has a redshift parameter
of zG ≈ 11 which corresponds to a time of a little bit more than 420 million years after
the big bang. So, for our stars and galaxies the values of z are rather modest, however,
for the cosmic microwave background that will play an important role in the following
sections the redshift is zCMB ≈ 1000.

Worked problem 3.5: Behavior of the redshift

(a) Discuss the behavior of the redshift for events in the very early
universe when t1 approaches the big bang.

(b) What is the redshift factor today?

(c) Since our universe is expanding it will be, at some time in the future,
twice as big. What will be the redshift at that future time?

(d) What will be the redshift factor in the infinite future in a universe
that keeps expanding forever?

Solution:

(a) While t1 becomes smaller, a(t1) likewise becomes smaller, approach-
ing zero, and therefore the redshift parameter will diverge, going to
positive infinity.
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(b) For t1 = t0 one trivially finds that z = 0.

(c) If the universe in the future is twice as big, we have a(t1) = 2a(t0).
This leads to a redshift

z =
a(t0)

a(t1)
− 1 =

1

2
− 1 = −1

2
. (3.20)

So, while the definition in terms of a photon wavelength does not
make sense for future events, we can use the definition of the redshift
in terms of the scale factor for past, current and future events. All
future events will have negative redshift and all past events will have
positive redshift.

(d) In an forever expanding universe a(t1) → ∞. This means the red-
shift factor will become z → −1. So, while going back in time the
redshift factor can become arbitrarily large, if we extend it into the
future of our universe it cannot become arbitrarily large and nega-
tive: −1 < z <∞.

As you might have noticed from the definition above in equation (3.19), the redshift
parameter tells us how much smaller the universe was when the light was emitted. We
find

a(t1)

a(t0)
=

1

1 + z
⇒ a(t1)

a(t0)
≈ 1

z
for z ≫ 1 . (3.21)

So, for example, when the first galaxies were formed around zG ≈ 10 the universe was
roughly one tenth of its current size. When the cosmic microwave background was
emitted at zCMB ≈ 1000 the universe was 1/1000 of its current size.

3.4.2 Accelerated Expansion

The Supernova Cosmology Project studied 42 type Ia supernova with redshift param-
eter between z ≈ .2 and z ≈ .9. The result is shown in figure 20. The plot resembles
Hubble’s original plot of distance vs. velocity (cf. figures 3 and 4). However, this plot
is somewhat different. On the logarithmic x-axis we have the redshift that, as we have
seen above, encodes the time in the past when the light was emitted or likewise the
distance the light has traveled from the type Ia supernova to us. On the y-axis we see
something called “effective mB” which is the observed brightness. It is related to the
observed flux here on earth via F ∝ 10−2mB/5.5 Since the light curves for type Ia super-
nova are so homogeneous, we know how the observed flux correlates with the distance.
The axis are chosen such that a universe with only matter, namely (Ωm,0,ΩΛ,0) = (1, 0)
would lead to a straight line. This straight line is shown in the figure 20 in dashed
light blue: the somewhat hidden third blue line from the top behind the middle solid
black line (that denotes the same). This is the dust filled universe that we studied
above in subsection 2.3. We see that the data points for large redshift on the right of

5See for example §1.3-1.6 in Weinberg’s “Cosmology” book for more details.
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the plot are consistently above this line and cluster somewhere between the top two
blue lines that denote universes with (Ωm,0,ΩΛ,0) = (0.5, 0.5) and (Ωm,0,ΩΛ,0) = (0, 1).
So, this is consistent and was the first step towards the more precise values we quoted
above for our universe (Ωm,0,ΩΛ,0) = (.308, .692). Intuitively we can understand the
data as follows: In a universe with cosmological constant that pushes things apart the
supernovae will be further away than in a universe with only matter. Thus, less of the
supernovae luminosities is observed on earth due to their larger distances. This means
the photon flux F ∝ 10−2mB/5 is smaller and this manifests itself in a larger effective
mB. This effect accumulates with distance so for supernovae that are very close, it is
very small and becomes larger and larger for supernovae that are further away.

Figure 20: Hubble diagram obtained from 42 high-redshift type Ia supernovae from
the Supernova Cosmology Project and 18 low redshift supernovae from the Calan-
Tololo Supernova Survey. We see that the observed expansion favors a universe with
matter and a cosmological constant.

So, we see that the data favors a universe with a substantial contribution from
a cosmological constant. When these supernovae were originally studied it was clear
that there was severe tension with a flat matter dominated universe and that any kind
of energy density that leads to an accelerated expansion would help to explain the
discrepancy. While a cosmological constant is the most natural energy density that
does the job, it is not the only possibility. From the second Friedmann equation and
using p(t) = wρ(t) we find that any fluid with w < −1/3 leads to an accelerated
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expansion:

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p(t)) = −4πG

3
ρ(t)(1 + 3w) > 0 ⇔ w < −1

3
. (3.22)

So, the equation of state parameter for the dark energy initially didn’t have to be w =
−1 but could have been very different. However, during the last decade experiments
have measured the equation of state parameter for the dark energy very accurately and
the current value is6

wDE = −1.006± 0.045 . (3.23)

This is very much consistent with a cosmological constant.
Assuming that the dark energy has equation of state parameter w = −1 one can fit

the theoretical predictions of a universe with matter and cosmological constant with
the data from supernovae (SNe), the cosmic microwave background (CMB) and baryon
acoustic oscillations (BAO) to determine the density parameters as shown in figure 21.

Figure 21: Different experiments exclude different parameter regions leaving only a
very small part in the (Ωm,ΩΛ)-plane. These three observations are very different and
it is very satisfying that all three slices intersect so nicely.

6There are slightly different values for this equation of state parameter and in particular the error bar
can be substantially larger, depending on which other parameters we hold fixed or let vary.
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3.4.3 The smallness of the cosmological constant

Interestingly the value of the cosmological constant differs from its natural value by a
factor of 10−120, which is certainly the biggest discrepancy between theoretical expec-
tation and measured value that we have ever observed in nature. As you checked in the
first homework, if the cosmological constant would be anywhere near its natural value
no structures could have formed and such a universe would be empty and lifeless. It
actually turns out that the value of the cosmological constant can’t be that much big-
ger than what we observe, since otherwise structure formation would not take place.
Concretely, the cosmological constant can only be larger by a factor of roughly 200
since otherwise hydrogen and helium clouds would not have gravitationally clumped
to form stars and galaxies.

This factor of 200 does not sound too bad compared to 10−120, however, this fact
by itself does not explain the smallness of the observed value. For such an explanation
we would first have to assume that there are a gigantic number of universes with
random values for the cosmological constant and if this were the case then we would
of course live in one that allows for lifeforms to exist. If the cosmological constant is
somewhat randomly distributed between zero and the Planck scale then we would need
of the order of 10120 different universes for this explanation to work! While this sounds
crazy, it seems actually very likely that our best candidate for a theory of quantum
gravity, which is called string theory, does indeed have so many (or actually many
more) solutions.

This anthropic argument is pretty unsatisfying. Essentially, we didn’t explain or
derive the smallness of the cosmological constant at all from any underlying theory.
However, it might be that this is how things are. A similar problem is the distance
between the earth and the sun. If the earth would be much closer or further away, then
there would be no liquid water and life as we know it wouldn’t exist. Kepler tried to de-
rive the distance between planets and the sun from an underlying theory. Now we know
that Newton’s theory of gravity or Einstein’s general relativity do not constrain the
orbits of the planets but these are rather randomly distributed. Since there are a lot of
planets in our solar system and we have also discovered plenty of planets orbiting other
stars, the anthropic argument in this case is rather common sense. A big difference here
is that we can observe other planets. If we would not be able to observe any evidence
for the existence of other universes, then this theoretical idea couldn’t really be verified.

Worked problem 3.6: The factor of 200

In 1987 Steve Weinberg calculated the upper bound on the cosmological
constant Λ above which structure formation in the early universe would
not be possible due to the exponential expansion of the universe. As we
mentioned above this upper bound is roughly Λup ≈ 200Λobs, where Λobs

is the observed value. This seems spectacular given that the naturally
expected value is larger by 10120. However, Weinberg was not happy with
this: Assume a large set of different universes with evenly distributed
values for the cosmological constant. What is the most likely value for all
universe with Λ < Λup?
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Solution:

From the above we see that most of the universes should have a value for
the cosmological constant that is of the same order of magnitude as the up-
per bound Λup. Only a very small fraction will have much smaller values.
So, it seems as if one would still require some fine-tuning to obtain a uni-
verse like our own. However, as was pointed out by Vilenkin, at the upper
bound structure formation is barely possible (and proceeds very slowly).
So, universes like our own might be somewhat more unlikely in the above
sample but they lead to much more structure formation and therefore pre-
sumably to much more stars and galaxies, increasing the chance for the
existence of observers like ourselves.

3.4.4 The fate of our universe

Now that we know that the current evolution of our universe is governed by a very
small cosmological constant let us ask what this means for the future of our universe.
As we derived in the previous section, we have Ωm ∝ a(t)−3 and ΩΛ = const. Since
a(t) is growing, the matter contribution will become more and more unimportant and
our universe is currently entering a phase of exponential expansion. As you can see
from equation (2.1) in section 2,

ρ(t) ∝ a(t)−3(1+w) , (3.24)

any contribution to the energy density with w > −1, will become less and less important
in an expanding universe. We don’t have any reliable theoretical models that lead to
an equation of state parameter w < −1, so it seems very plausible that our universe
keeps exponentially expanding in the future. What does that mean?

The first cosmological implication is that the universe lives infinitely long and al-
ternatives like a big crunch are excluded. Since the cosmological constant is so tiny, its
implications are otherwise rather minuscule. Concretely, within one year the distance
between two objects increases due to the exponential expansion roughly by a modest
0.00000001%. This is so small that the initial gas clouds of hydrogen and helium could
clump and form stars, galaxies and galaxy clusters. As we studied in worked problem
3.3, the ‘smaller’ structures like our solar system or our galaxy are gravitational bound
and will not really experience a different evolution due to the accelerated expansion
of our universe. Also, the galaxy cluster that contains the milky way will stay gravi-
tationally bound. However, other galaxy clusters that are far away from ours will be
redshifted more and more and will eventually become unobservable. This is a some-
what counterintuitive fact that we will make precise in the next section. Naively one
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would have expected that we can see more and more of our universe the longer we wait,
since light has more time to reach us. But this intuition is wrong in an exponentially
expanding universe and, in the future, we will actually see less and less of our universe!

Having discussed the cosmological fate of our universe based on the current obser-
vation, you might be curious about more details and phenomena on smaller scales. For
example, stars will eventually burn up all hydrogen and helium and our universe will
become a dark place. This doesn’t conclude the evolution of our universe and if you
are interested you can for example consult Wikipedia for the details of the “Future of
an expanding universe”.

There is a caveat to the above-described fate of our universe. As we will see later,
in order to describe inflation, we will introduce a scalar field that moves in a potential.
The cosmological constant can be explained by such a scalar field that sits at a mini-
mum of the potential, where the value of the potential at the minimum is the value of
the cosmological constant. In this alternative description, we can then ask whether this
minimum is a local or a global minimum. If it is a local minimum, then the scalar field
could tunnel quantum mechanically to another minimum with a smaller cosmological
constant. This cosmological constant could be zero or even negative. Such transitions
are highly suppressed but if they would happen in the future, then this would of course
change the evolution of the universe.

Summary: Our universe

In this section we learned about the amounts of different energy densities
in our universe: Curvature remains so far unmeasurable small and has
therefore no impact on the evolution of our universe. This means that
the energy density of our universe today is ρ ≈ 10−26kg/m3. 70% of
that energy density are in the form of dark energy that behaves within
experimental errors like a cosmological constant. The remaining 30% are
in the form of non-relativistic matter. These 30% split into 25% that are
in the form of an unknown dark matter and 5% that are in the form of
standard matter: hydrogen and helium clouds, stars, heavier elements and
neutrinos. This means more than 80% of the matter in our universe is in
the form of unknown dark matter!
Next, we solved for the scale factor a(t) for our universe and found that
its evolution can describe by three eras: First a radiation dominated part,
then a matter dominated part and finally the current and future era that
is dominated by the dark energy that leads to an exponential expansion.
We defined the redshift z = a(t0)

a(t1)
− 1 and studied in depth the accelerated

expansion of our universe that is driven by dark energy. We discussed
the cosmological constant problem, i.e., the question of why the amount
of dark energy is as small as it is. Due to this dark energy our future
universe is expected to expand forever and all matter gets further and
further diluted. This means our universe is expected to eventually become
a dark and empty space (unless the sign of the dark energy is changing in
the future).
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4 Our universe from 3.8× 105 to 13.8× 109 years

In this section we introduce different commonly used distances in cosmology and we
calculate in particular the size of our visible universe. Then we discuss the cosmic
microwave background and the overall evolution of our universe from 380,000 years
after the big bang until today.

4.1 Particle and event horizon

Let us return to the FRW metric

ds2 = −dt2 + a(t)2
(

dr2

1−Kr2
+ r2dΩ2

)
. (4.1)

We argued that isotropy forbids mixed terms between the time and spatial coordinates.
Then by redefining the time coordinate we can choose the coefficient of dt2 to be unity.
However, there is another very convenient time coordinate, that is called conformal
time and we will denote it by τ . It is defined such that

dt2 = a(τ)2dτ2 . (4.2)

This means that the FRW metric takes the form

ds2 = a(τ)2
(
−dτ2 + dr2

1−Kr2
+ r2dΩ2

)
. (4.3)

Note, that we chose K ∈ {−1, 0, 1}, so that it is clear from (4.3) that r, θ, ϕ are
dimensionless, while t and a(t) have the dimension of length or time (recall that c = 1).
This then means that τ is also dimensionless. Likewise, ȧ(t) is dimensionless and

a′(τ) ≡ da

dτ
, (4.4)

has the dimension of length or time.
For example, for K = 0 the metric (4.3) is just the flat space Minkowski metric

multiplied by an overall factor a(τ). Such a factor that multiplies the entire metric is
called a conformal factor, hence the name conformal time for τ . As we have seen in the
first lecture the coordinates r, θ, ϕ do not give us physical distances since they neglect
the factor a(t)2 in the metric. The coordinates r, θ, ϕ are called comoving coordinates.
Many observable objects like ‘standard candles’ have a non-zero velocity in comoving
coordinates: v⃗comoving = a(t) ˙⃗r in addition to the velocity due to the Hubble expansion
v⃗Hubble = ȧ(t)r⃗. For far away objects the Hubble velocity is usually much larger while
for close by objects like for example cepheids in our galaxy, the Hubble velocity is
negligible.

Worked problem 4.1: Comoving vs. Hubble velocities

Stars in galaxies and galaxies within clusters have comoving velocities
of a few hundred km/s. Determine the distance at which the Hubble
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velocity is vHubble = 100km/s.

Solution: The simplest way to do that is to use Hubble’s law as given in
equation (1.19)

vHubble = H0 d = 67.7km/s/Mpc d = 100km/s . (4.5)

This gives a distance of d = 1.5 Mpc. In Hubble’s original plot in figure 3,
he studied galaxies and galaxy cluster up to a distance of 2 Mpc. So, the
comoving velocity is responsible for the substantial scattering. However,
while the Hubble velocity points away from us, the comoving velocity
can be towards us, away from us or perpendicular to our line of sight.
Therefore, one can see the Hubble expansion in his original plot.

Light plays a special role in observations but also in determining the causal structure
of our universe since no information can travel faster than light. So, two places that
cannot exchange light in the lifetime of our universe are causally disconnected. Light
follows a null-geodesic which means that ds = 0. From the way we have written the
metric in equation (4.3), we see that in this case the scale factor a(τ) does not matter
at all and for example for a radially traveling light ray we have

ds = 0 ⇒ dτ =
dr√

1−Kr2
, (4.6)

independent of a(τ).

4.1.1 The particle horizon

Similarly, to a black hole, where the event horizon indicates the horizon beyond which
observers from the outside cannot see, i.e., from beyond which they cannot receive
any light, there are two important horizons in cosmology. The first horizon, which is
called particle horizon defines the maximal distance a photon can have traveled since
the beginning of the universe. In an expanding universe we have to be precise by what
we mean by this distance: We mean the current distance at time t0 or τ0 between the
photon and the object that emitted it at the beginning of the universe. This is shown
in figure 22.

Without loss of generality, we can look at a photon starting at the origin r = 0 and
traveling outward. So, we have

dH(t) ≡ a(τ)

∫ rH

0

dr√
1−Kr2

= a(τ)

∫ τ

τi

dτ ′ = a(t)

∫ t

ti

dt′

a(t′)
, (4.7)

where we used equation (4.6) and then equation (4.3).
For example, for a matter or radiation dominated universe we have a(t) = a0(t/t0)

p

with p < 1 and the beginning of the universe is at ti = 0. This leads to

dH(t0) = a0

∫ t0

0

dt′ tp0(t
′)−p

a0
=

t0
1− p

<∞ . (4.8)
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Figure 22: Light is being emitted in the early universe at t = 400 Myr by the star
on the left. While the light travels to our sun on the right, the distance between the
two stars increases due to the expansion of our universe. The particle horizon is the
distance to an imaginary star that emitted light at the beginning of the universe, i.e.,
it is the size of the visible universe.

This means that light can have only traveled a finite distance since the beginning of
the universe, which is what we would have naively expected. This of course also means
that we can only see a finite part of our universe.

For a universe that is exponentially expanding due to a cosmological constant we
have a(t) = a0e

H(t−t0) and the beginning of the universe, i.e., a(ti) = 0, is at ti = −∞.
This leads to

dH(t0) =

∫ t0

−∞
dt′e−H(t′−t0) = − 1

H
e−H(t′−t0)

∣∣∣∣t0
t′=−∞

= +∞ , (4.9)

so that in this case the particle horizon is infinite. This fact will be tremendously im-
portant once we discuss inflation. The reason is that the cosmic microwave background,
which was created shortly after the big bang, is essentially the same on distances much
larger than the particle horizon of a matter or radiation dominated universe. This
seems in contradiction with causality and requires us to postulate a phase of exponen-
tial expansion at the beginning of the universe, which is called inflation.

This cosmic microwave background is the first light in our universe that we can still
observe today. It originated shortly after the big bang so the light has been traveling
for 13.8 Gyrs. We can now ask how big the visible universe is today by calculating the
particle horizon

dH(t0) = a0

∫ t0

0

dt′

a(t′)
. (4.10)

For that purpose, it is sufficient to take the matter and the cosmological constant into
account which leads to

a(t) = a0

(
Ωm,0

ΩΛ,0

) 1
3
[
sinh

(
3

2
H0

√
ΩΛ,0t

)] 2
3

. (4.11)
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Plugging in the values from the last lecture ΩΛ,0 = .692 and Ωm,0 = .308 leads to

dH(t0) ≈ 3.4t0 ≈ 46.5Gly . (4.12)

So, our visible universe has currently a radius of 46.5Gly, although it is only 13.8 Gyrs
old. This shouldn’t be too surprising since we know that our universe has been con-
stantly expanding since the big bang (cf. figure 22).

Worked problem 4.2: Particle horizon in a dust filed universe

Assume that our universe had no dark energy, i.e., take ΩΛ,0 = 0 and
Ωm,0 = 1. How much smaller would the particle horizon be, if the age of
the universe is still t0 = 13.8 Gyr?

Solution: For a matter dominated universe, we calculated the particle
horizon in equation (4.8), where we need to use that p = 2/3,

dH(t0) =
t0

1− p
= 3t0 = 41.4Gly . (4.13)

So, without dark energy that pushes things apart faster the event horizon
would be smaller by more than 5Gly.

4.1.2 The event horizon

Another important horizon in cosmology is called the event horizon. It refers to the
maximal distance light emitted today at t0 can travel. This horizon determines which
parts of space we can exchange information with. If the event horizon is finite, then
there are parts of the universe which are causally disconnected from us and similar to
the black hole, these parts cannot send information to us (and contrary to the black
hole, we cannot send information to these parts of the universe either).

The definition of the event horizon is

de ≡ a0

∫ ∞

t0

dt′

a(t′)
. (4.14)

Let us again first look at a matter or radiation dominated universe with a(t) = a0(t/t0)
p

and p < 1. We find

de =

∫ ∞

t0

dt′ tp0
t′p

=
tp0 t

′(1−p)

1− p

∣∣∣∣∣
∞

t′=t0

= ∞ . (4.15)

Again, this result is consistent with our naive expectation. In the infinite time until
the end of the universe the light can travel an infinite distance, so that in such a
universe we could send and receive signals from anywhere in the universe. However,
as we discussed in the previous section, our universe is currently and, in the future,
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dominated by a cosmological constant and a(t) approaches an exponential expansion
a(t) = a0e

H(t−t0). This means that we will never be able to see the entire universe

de =

∫ ∞

t0

dt′ e−H(t′−t0) = − 1

H
e−H(t′−t0)

∣∣∣∣∞
t′=t0

=
1

H
= const . (4.16)

So, we see that even if the light travels infinitely long it can only tell us about places
at a finite distance. Intuitively we can understand this since the exponential expansion
constantly stretches the space between two objects. If the distant is larger than 1/H,
then in any given amount of time the increase of the distant due to the stretching is
larger than the distant light can travel.

Worked problem 4.3: Evolution of Hubble parameter

Use the numerical solution for a(t) for our universe that was discussed in
subsection 3.3 to find the Hubble value in the far distant future.

Solution: Using the numerical solution for a(t) it is trivial to find H =
ȧ/a, which is plotted below.

Figure 23: A plot of the time evolution of the Hubble parameter
in our universe.

From the above we see that the Hubble parameter is shrinking with time.
It asymptotes to the value H(∞) = .83H0 ≈ 1/17.4Gyr ≈ 56.3 km

sMpc .

Since our universe has currently still a substantial amount of matter, the Hubble
parameter is changing until in the far future the energy density is almost completely
given by the dark energy and the Hubble parameter becomes constant. This asymptotic
Hubble parameter in our universe is actually not that different from our current value
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H(t = ∞) ≈ .83H0, see problem 4.3. So, this means that in the far future we can
only exchange information with objects that have a distance of less than 1/H(∞) ≈
17.4Gly. How does that compare to the current event horizon? A lower bound would
be 1/H0 ≈ 14.4Gly. However, matter that is still important in our current universe
leads to a larger event horizon. Using the solution a(t) given in equation (4.11) and
that describe our current and future universe very well, we find the event horizon for
our universe to be

de = a0

∫ ∞

t0

dt′

a(t′)
≈ 16.6Gly . (4.17)

Since during an exponential expansion objects that are not gravitationally bound
to our galaxy will move further and further away from us, they will actually leave our
event horizon in the future. This means for example that very distant galaxy clusters
that we can exchange information with today will at some point in the future leave our
event horizon and become unreachable. As mentioned before, contrary to intuition, we
will therefore be able to exchange information with less parts of our universe in the
future.

We can also ask how much of the universe we can ever observe in the future. We
have seen that the first light (the CMB) has a current distance that is far bigger than
the above event horizon. This is due to the fact that our universe in the past wasn’t
dominated by dark energy and therefore didn’t have a finite even horizon. Once we
have a finite event horizon, only light within this horizon can reach us. This means
that there is light from far distant objects that has entered our event horizon already
but hasn’t reached us yet. The maximal distance today of such objects that we will be
able to see in the future can be calculated as sum of the particle and event horizon

dH(t0) + de = a0

∫ ∞

0

dt′

a(t′)
≈ 4.6t0 ≈ 64Glyrs , (4.18)

where we used a(t) from equation (4.11).
The current event horizon and particle horizon for our universe are shown in figure

24 as beige and blue regions. The light from the light blue region with radius dH(t0)+
de(t0) ≈ 64 Glyr will still reach us in the future because it has already entered our
event horizon. So, the current size of the visible universe that we will see in the far
distant future is 64 Glyr.

In the far future the universe keeps expanding exponentially. That leads to an event
horizon de(tf ) = 1/H(tf ) = 17.4 Gyr (cf. worked problem 4.3). The visible universe
with radius dH(tf ) will grow exponentially since the prefactor in front of the integral is
a(tf ) ∝ eH(tf )tf and the integral itself is finite and will approximate dH(t0)+de(t0) ≈ 64
Glyr, see figure 25. However, the part of the universe that we cannot see that is outside
the visible universe will also grow exponential and we will actually not see much more
in the far distant future. While the event horizon will take on a fixed finite value in
the future, we will be able to explore less and less of the universe in the future. For
example, a reachable galaxy that is currently 10 Gly away would most likely at some
point in the future leave our even horizon due to the exponential expansion of the
universe and thereby become unreachable.
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Figure 24: Summary of the particle and event horizon in our current universe with
t0 = 13.8 Gyr. The sun denotes us and the (beige) event horizon denotes the region
that we can reach with light signals emitted today. The observable universe in darker
blue is what we can actually see today out of the potentially much larger universe.
Light from the light blue region with radius de(t0) + dH(t0) has already entered our
event horizon and we will be able to see it in the future. The red question marks
indicate regions that we know nothing about.

Figure 25: The event horizon will be a little bit larger in the far future at tf ≫
13.8 Gyr. The light blue region will continuously shrink while the darker blue visible
universe will grow eventually exponentially like a(tf ) ∝ eH(tf )tf . However, the unknown
region with red question marks will likewise grow exponentially and we will never see
more than the light blue region above in figure 24 that is now the darker blue region
in the far future.

4.2 The cosmic microwave background (CMB)

In 1964 Arno Penzias and Robert Wilson were working on the detection of radio waves
that bounced off echo balloon satellites when they discovered a faint background of
radiation in the microwave range using the antenna shown in figure 26.

Surprisingly this signal seemed to come from everywhere in the sky. Checking their
antenna, they discovered a family of nesting pigeons that they removed together with
what Penzias called “white dielectric material” (aka bird poop). Nevertheless, the
signal remained. At the same time some astrophysicists were planning to search for
such a signal since they had realized that, if the universe had started in a hot dense
state, then the subsequent expansion would lead to photons whose wavelength would
get red-shifted due to the expansion of the universe in such a way that their wavelength
is today in the millimeter or micrometer range. This is exactly what Penzias andWilson
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Figure 26: The Holmdel Horn Antenna in use in 1962 by Penzias and Wilson.

discovered and for this they were awarded the 1978 Nobel Prize.
In the subsequent decades these photons that are called the cosmic microwave back-

ground (CMB) since they fill the universe homogeneously and isotropically have been
studied by many ground-based and satellite experiments. This CMB is a clear evidence
for a hot big bang and at the same time the best tool for precision measurements in
cosmology. The COBE satellite that was launched in 1989 was the first space-based ex-
periment that measured the CMB. It showed that the CMB follows the best black-body
spectrum ever observed in nature (see figure 27).

George Smoot and John Mather, two of COBE’s principal investigators, were
awarded the 2006 Nobel Prize in physics for their work on the COBE project. This
shows the great importance of the CMB in understanding the evolution of our universe
from the very beginning until today.

Recall that the radiation from a black body is described by Planck’s law which
gives for c = ℏ = 1

B(λ, T ) =
4π

λ5
1

e
2π

λkBT − 1
. (4.19)

Here kB = 8.6× 10−5eV/K is the Boltzmann constant given in terms of electron volts
and Kelvin. The black body spectrum of the CMB corresponds to a temperature of

TCMB,0 = 2.72548± 0.00057K ≈ −270◦C . (4.20)

So, we see that the CMB is pretty cold.

Worked problem 4.4: Wavelength of CMB photons

What is the wavelength of photons from the cosmic microwave background
at its peak intensity?
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Figure 27: The black body spectrum of the CMB as measured by the COBE satel-
lite. The errors bars are too small to observe and it is impossible to distinguish the
theoretical curve from the measured spectrum (figure taken from Wikipedia).

Solution: From Wien’s displacement law we find

λmax = 2898µmK/T ≈ 1mm. (4.21)

The maybe confusing thing to note is that microwaves do not have wave-
lengths of micrometers but rather wavelengths between 1 millimeter and
1 meter.

In an expanding universe the wavelength of photons gets red-shifted so that a
current wavelength λ0 was at an earlier time t1 λ1 = a(t1)λ0/a0. This tells us that the
wavelength scales like a(t) and then it follows from (4.19) that the temperature of the
CMB scales like 1/a(t). In particular the temperature of the CMB at the earlier time
t1 is given by

TCMB(t1) =
a0
a(t1)

TCMB,0 = (1 + z)TCMB,0 . (4.22)

So, we see that the temperature of the CMB was much larger for a much smaller uni-
verse. This means that the further we go back in time the hotter the universe was.

52



Worked problem 4.5: Temperature of the CMB

We mentioned above that the CMB photons were emitted at a redshift of
zCMB ≈ 1000. What was the temperature at that time and what is kBT
in eV ?

Solution: The temperature is trivially given by

TCMB(tCMB) = (1 + 1000)TCMB,0 = 2727K . (4.23)

Now using that kB = 8.616 × 10−5eV/K we find an energy E = kBT =
.2eV . As we will discuss in much more detail below, at this point the
black body spectrum contains already a substantial number of photons
with energies around 13.6 eV . So, we are at the transition between ionized
and atomic hydrogen.

We have seen in the last lecture that the CMB radiation is only contributing a
very small amount to the current energy density of our universe. Nevertheless, the
radiation energy density has the strongest dependence on the scale factor and will
therefore inevitably dominate in the very early universe. Recall from the last lecture
that the Friedmann equation for our universe can be written as

ρc(t) = ρΛ + ρm(t) + ρrad(t) ≈ ρc(t0)

[
.7 + .3

(
a0
a(t)

)3

+ 10−4

(
a0
a(t)

)4
]
. (4.24)

While the cosmological constant is currently and, in the future, dominating the energy
density, this was different at earlier times when a(t) was much smaller than a0. In
particular, if we plot the energy density as a function of a as a log-log-plot we find the
following history of our universe:

While we are currently (and in the future) in an era dominated by the dark energy,
this was different in the past. The substantial amount of matter in the universe was
dominating its evolution until fairly recently. In the far distant past, when the universe
was much, much smaller, radiation was actually the dominating form of energy density
since it grows like a(t)−4.

Recall that a curvature contribution proportional to K/a(t)2 was never the domi-
nating form of energy density. It is currently very small and will become less important
in the future since it decays with increasing a(t) while the dark energy is most likely
constant. Going backwards in time the matter and radiation contributions will grow
faster than the curvature so that the curvature was less important in the past. So, the
curvature was never dominating but it could nevertheless be non-zero and measurable
with more precise experiments in the future. This would then not really affect the
part of the evolution of our universe that we are currently discussing but it would be
interesting on theoretical grounds and might hint at or exclude certain transitions in
the very, very early universe.

Above we have argued that the temperature of the CMB is decreasing over time
and therefore in the past the universe was much hotter. From equation (4.24) and the
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Figure 28: The evolution of our universe.

figure 28 we see that the universe in the past also had a much higher energy density.
So, our universe started out in a much hotter and much denser state that then got
diluted and cooled due to the expansion of the universe. This means that we can use
thermodynamics and our knowledge of particle and nuclear physics to understand its
early evolution.

4.3 From 380,000 years after the big bang until today

Before we delve into the more involved evolution of the early universe, let us first
discuss the evolution from the time the CMB was released until today. The following
picture shows the rather few important cosmological periods of our universe since the
release of the cosmic microwave background:

As discussed before and studied in the homework, the cosmological constant started
to dominate the evolution of the scale factor a(t) a few billion years ago. However,
there is substantial amount of baryonic and dark matter in the universe and this form
of non-relativistic matter was dominating in the not-too-distant past.

During this matter dominated era very small deviations from a perfectly homo-
geneous universe were amplified by gravity and structures started to form. We will
later discuss these inhomogeneities in more detail and understand their amazing ori-
gin: quantum fluctuations! These very small effects in our everyday life have actually
led to the small inhomogeneities that are the seeds of our stars and galaxies, which
is one of the most amazing features of our universe. As we will discuss in the next
sections a few hundred years after the big bang our universe was a soup of atomic
nuclei, electrons and photons. The photons constantly interacted with the electrons
via Compton scattering and the negatively charged electrons interacted with the pos-
itively charged nuclei via the Coulomb force. Atoms like hydrogen were not stable as
long as there were photons with an energy larger than the binding energy of hydrogen
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Figure 29: The evolution of our universe since the release of the cosmic microwave
background 3.8× 105 years after the big bang.

which is 13.6eV , since these photons would ionize the hydrogen. However, at around
380,000 years after the big bang the universe had cooled enough so that stable atoms
could form. The photons at this time had mostly energies below the 13.6eV threshold
and could not ionize the atoms anymore. Since the atoms are electrically neutral their
interaction with the photons became negligible at this point and the photons could
essentially stream freely. These photons are what we observe today so they have been
traveling for more than 1.3×1010 years! Detailed studies of the photons and particular
the deviation from homogeneity and isotropy tell us a lot about the universe at the
time of the so called ‘last scattering’ after which these photons were able to stream
freely. However, these photons also tell us about much earlier times as we will see later
in this course.

As mentioned above, when neutral atoms formed roughly 380, 000 years after the
big bang, very small inhomogeneities started to amplify due to the gravitational attrac-
tion: The initially more or less homogeneous distribution of neutral atoms contained
only hydrogen, helium and lithium. Any small inhomogeneity in such a setup will am-
plify due to gravity: Denser regions will attract more matter and become even denser
and therefore increase their gravitational attraction. Such regions that become more
and more dense will eventually after a few hundred million years lead to the first stars.
In these stars the gravitational attraction is sufficiently strong to start nuclear fusion,
which provides the energy for the stars to shine and also leads to the creation of el-
ements heavier than Lithium. These heavier elements were then released at the end
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of the lifetime of the first stars in supernovae explosions. Stars and planets like the
ones in our solar system that are then later on formed contain heavier elements. This
star formation process out of the initial hydrogen and helium mixed with some heavier
elements will go on for roughly 1014 years. This follows since as we have discussed in
the previous section, a large amount of hydrogen and helium is still in clouds outside
of stars.

Summary: Distances and overview of our universe and its fate

We introduce the formal definition of the particle horizon dH and the event
horizon de

dH(t0) = a0

∫ t0

0

dt′

a(t′)
,

de(t0) = a0

∫ ∞

t0

dt′

a(t′)
. (4.25)

The particle horizon denotes the radius of the visible universe toady and is
given by 47 Gly. This is substantially larger than the naive estimate based
on the universe’s age of 13.8 Gyr because the universe is expanding. The
surprising fact about our universe is that, even in the infinite far future,
the particle horizon will remain finite: 67 Gly. The reason for that is the
exponential expansion due to the dark energy.
The event horizon denotes the maximal distance a light signal released
today can travel. Again, surprisingly this is finite in our universe and only
16.6 Gly. This is again due to the exponential expansion caused by the
dark energy. The event horizon will slightly increase in the future to an
asymptotic value of 17.4 Gly since the Hubble parameter will decrease.
While no information, light signal or alien can reach us from a distance
larger than the event horizon, very distant galaxies and galaxy cluster will
move outside of our event horizon due to the Hubble expansion of our
universe. This means that in the far distant future we can interact with
less galaxies instead of more. However, our galaxy and local cluster that
are gravitationally bound cannot be moved apart by the dark energy.
Next, we discussed the cosmic microwave background (CMB), the earliest
visible light in the universe that file our universe. The spectrum follows
almost perfectly the blackbody curve with a temperature of TCMB,0 =
2.725K. Going backwards in time this means that our universe was much
denser and hotter since a(t) was much smaller. We have seen that the
universe can be roughly divided into three ears: an early radiation dom-
inated era, followed by a matter dominated era and finally today we are
in an era of dark energy domination. We also learned that the CMB was
released 380,000 years after the big bang when the universe transitioned
from a hot plasma to becoming electrically neutral. Then it took a few
hundred million years for the primordial hydrogen and helium to form the
first stars and galaxies. We expect this star formation to continue for 1014

years since there is still a substantial fraction in gas clouds.
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Part II - The thermal universe

5 The particles in our universe

In the last section we have shown that our very early universe was in a very hot
and dense state. During the expansion of the universe this hot ‘soup’ cooled and
underwent a variety of interesting transitions. In the next few sections, we will discuss
the thermodynamical evolution of our universe from a split second after the big bang
until the release of the cosmic microwave background 380,000 years after the big bang.

We will from now on set the Boltzmann constant equal to one, kB = 1, and measure
temperatures in eV .

5.1 The Standard Model of Particle Physics

Currently the world’s largest particle accelerator, the Large Hadron Collider, does
experiments at an energy of up to 13 TeV . So, we understand particle physics up
to this energy scale very well. The particles with masses below this scale and their
interactions are described by the so-called standard model of particle physics, which is
a particular quantum field theory.7 Here we will recall some features of the standard
model of particle physics and summarize the relevant terminology before we discuss
particle physics in the early universe. Compared to the periodic table that you are
probably familiar with from your chemistry class, the content of the standard model
of particle physics is fairly simple. We know in total of 13 different particles that
constitute all the matter in the standard model of particle physics. These 13 particles
interact via three different forces: The electro-magnetic force, the weak force and the
strong force, which we will all discuss below.

5.1.1 The (known) particles in our universe

The 13 particles come in three different groups:

1. The six leptons are probably the particles you are most familiar with. They are
fermions and have spin 1

2 . They consist of the electron and its cousins the µ-
and τ -particle that all carry one unit of negative electric charge. Additionally,
there are three neutrinos that are called νe, νµ and ντ and that all are electrically
neutral. All of these six leptons carry no charge under the strong force but they
do interact via the weak force. (We will discuss these forces shortly in subsection
5.1.2 below.)

2. There are six more fermionic spin 1
2 particles that are called quarks. These quarks

combine to form the probably more familiar protons and neutrons as well as other
particles that we will discuss below. The quarks also come in two groups of three
particles: the up, charm and top quarks carry +2

3 units of electrical charge and
the down, strange and bottom quarks carry −1

3 unit of electric charge. All quarks
are charged under the strong force and the weak force.

7Quantum field theories are theories that combine quantum mechanics with special relativity.
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3. Lastly there is one more particle in the standard model that was predicted a long
time ago but only recently discovered in 2012, the Higgs boson which has spin-
0. The Higgs particle plays a special role among all particles. It is responsible
for giving a mass to the other particles. This process of giving a mass involves
a phase transition in our very early universe. This phase transition changes
the cosmological constant we discussed above by a term that is of the order
λHiggs ≈ −10−65. This means that the value of the cosmological constant before
this transition λbefore needs to cancel with λHiggs precisely to 55 digits so that
λtoday ≈ 10−120 ≈ λbefore + λHiggs.

All these particles and their masses are shown in figure 30.

Figure 30: The known particles in our universe (taken from Wikipedia).

Interestingly the leptons and quarks come both in three families (the first three
columns in figure 30). Each family contains four particles with the same charges but
with different masses. Since the heavier particles in the second and third family can
decay into the lighter particles in the first family, it turns out that essentially all stan-
dard model particles in our universe are the particles from the first column.8 This
means in particular that all the elements in the periodic table are made up of only of
three different particles: the electron, and the up and down quarks.

8Neutrinos can oscillate between different families and heavier particles can be created in processes that
involve energies larger than their rest mass but these heavier particles quickly decay to up and down quarks
and/or electrons.
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Worked problem 5.1: Particles with integer charges

You might be confused because quarks carry a non-integer charge, while
more familiar particles like the electron, proton and neutron all have
integer charges. Is it possible to combine quarks to obtain the electric
charges 0 and +1? How many quarks does one at least need?

Solution: We will discuss this below in detail but from the figure 30 above
we see that quarks have electric charge -1/3 or +2/3. So, if we want to
get 0, we need at least three quarks: One quark with charge +2/3 and two
with -1/3. Likewise, if we want to get +1, we need at least three quarks:
Two quarks with charge +2/3 and one with -1/3.
As we discuss below, there are also anti-quarks with electric charges -2/3
and +1/3 which leads to further possibilities.

5.1.2 The three forces in the standard model of particle physics

There are four particles that control the interactions between these 13 particles. The
three different interactions in the standard model of particle physics are mediated by
bosonic spin 1 particles and we quickly discuss the three interactions:

The electro-magnetic force

The force you are probably most familiar with is the electro-magnetic force that is
mediated by photons. Many of the particles in the standard model carry an electric
charge and therefore interact with photons. Since the photon is massless the interaction
strength between two particles falls off as a power law (versus an exponential). This
means that the electro-magnetic force could compete with gravity which has the same
power law fall off and is in some sense much weaker. However, our universe is essentially
electrically neutral on all but very small scales. So, for example, the earth and the sun
carry essentially no net electric charge so their interaction is only determined by their
masses, i.e., by gravity, and the electro-magnetic force plays no role. The same is true
on larger scales that are relevant for cosmology.

The weak force

The weak interaction is probably the force you are most unfamiliar with. It is mediated
by three different particles: the electrically neutral Z boson and the two electrically
charged W± bosons, where the later carry ±1 unit of electric charge. Since these three
particles that mediate the weak force are rather heavy, the weak force is relevant only
on fairly short distances, smaller than 10−16m, like inside a nucleus. There the weak
force is responsible for radioactive decay of nuclei.
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Worked problem 5.2: A force mediated by massive particles

The weak force is mediated by massive particles with a mass of roughly
m ≈ 10−25kg. Having set c = ℏ = 1 a mass can be rewritten as an inverse
length L = 1/m. What is this length in meters?

Solution: We just need to insert the appropriate powers of ℏ and c to
convert the inverse mass into meters

L =
1

m
≈ 1

10−25kg

ℏ
c
≈ 1025

kg

10−34m2kg/s

3× 108m/s
= 6.7× 10−18m. (5.1)

If we have set h = 2πℏ to one then we would have found 2πL = 4×10−17m.
This is the value that actually sets the range of the weak force. This force
goes exponentially fast to zero for larger distances.

The strong force

The strong force is what keeps for example the positively charged protons together
inside the nuclei. So, it is clear that it is much stronger than the electric force between
these charged particles. At low energies the strong force becomes so strong that charged
particles cannot exist in isolation. Whenever we try to separate two particles that are
charged under the strong force, the energy in the field between the particles becomes
so large that it can lead to pair production of new particles that combine with the
particles we tried to separate into particles that are neutral under the strong force.
The strong force is different from the electromagnetic force in the sense that there are
three different types of charges (plus their anti-charges carried by the anti-particles).
So, we cannot label the charges by a positive or negative number but rather we have
to use three different labels (and anti-labels). For lack of a better label people call
the three charges red, green and blue (and the corresponding anti-charges anti-red,
anti-green and anti-blue). All quarks carry a single-color charge, i.e., they come in
three types so that for example we have a red, a green and a blue up quark. To form
particles that are neutral under the strong force we need all three colors to appear once
or we can combine a color with an anti-color.

5.1.3 Hadrons, baryons and mesons

Since the quarks are not playing much of a role in our everyday life, let us discuss a
little bit more how they form more familiar composite particles, which also allows us
to introduce a little bit more terminology. Above we discussed the six leptons, the
electron, muon and tau and the three corresponding neutrinos. The name lepton is
derived from a Greek word that means fine, thin, little, which is appropriate since,
as far as we know, these particles are fundamental in the sense that they are not
composed of other particles. The leptons are supposed to be contrasted with the
hadrons, derived from the Greek word for thick and strong. These are not fundamental
particles but rather particles that are kept together by the strong force. These hadrons
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are furthermore divided into mesons, which are bosonic particles with integer spin and
baryons, which are fermionic particles with half integer spin.

Let us try to build some baryons. As we have heard above, the quarks have to
appear in color neutral bound states at low energies. So, we cannot get a baryon that
is made up of a single quark. In order to have half integer spin, i.e., a baryon, we
therefore need three quarks (and no anti-quarks). If we take three quarks of the same
type, like for example three up quarks, then they cannot combine due to the fermi
statistics. Since the quarks are spin 1

2 particles we can combine at most one spin +1
2

quark and one spin −1
2 quark of the same type. So, the lightest baryon is a composite

particle of two up quarks and one down quark, often denoted as uud. This baryon
has electric charge +1 and is called the proton. One might think that each of the
three quarks can have different color charges so there should be more than one proton,
however, this is not the case since color neutrality requires us to take the antisymmetric
combination of all color neutral combinations of the three quarks. The proton is as
far as we know the only stable baryon. The next heavier baryon is udd. It is the
electrically neutral neutron, that has a mean lifetime of slightly less than 15 minutes.
These two baryons will play a very important role in the creation of nuclei in our very
early universe, as we will discuss in section 8. All other baryons have a very short
lifetime so that they quickly decay into protons and neutrons.

The mesons are all unstable so they do not play such an important role in cosmol-
ogy. Let us nevertheless discuss the pions that are the lightest mesons: We want to
get a particle with integer spin so we need (at least) two quarks to construct a meson.
Since we want these particles to be color neutral, we need actually a quark and an
anti-quark to construct the simplest and lightest mesons. Restricting again to hadrons
formed out of the u and d quarks and anti-quarks we seem to have four possibilities
to construct two quark mesons: uū, dd̄, ud̄ and ūd, where a bar over a quark denotes
the anti-quark. However, the actual meson particles we observe are sometimes linear
combinations of quark-anti-quark pairs. In particular the sum of uū and dd̄ combines
with ±ss̄ to form two η mesons. This leaves us with only three light π mesons that are
made up of u and d quarks and anti-quarks: The π0 = (uū−dd̄)/

√
2, the π+ = ud̄ and

the π− = ūd, where the superscript denotes the electric charges in units of the electron
charge. All these mesons decay very quickly with a mean lifetime of 2.6 × 10−8s for
the π± and 8.4× 10−17s for the π0.

Worked problem 5.3: The masses of hadrons

The masses of the proton and the neutron are mp = 938MeV/c2 and
mn = 940MeV/c2. Compare these to the sums of the masses of their
constituent quarks.

Solution: From figure 30 we can read off mu = 2.3MeV/c2 and md =
4.8MeV/c2. This leads to

2mu +md = 9.4MeV/c2 ↔ mp = 938MeV/c2

mu + 2md = 11.9MeV/c2 ↔ mn = 940MeV/c2

Clearly, these masses are very different and this difference is due to the
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binding energy that is actually almost ten times as large as rest mass
energy of the constituent particles.

5.1.4 Gravity and a theory of everything

Note, that the standard model or particle physics neglects gravity entirely. This is
very well justified in most regimes of interest to elementary particle physics but it tells
us that in order to describe our entire universe, we need another theory that unifies
quantum field theories with gravity in a so-called theory of everything.

General relativity that we are using in this course to describe the evolution of our
universe is likewise incomplete since it is a classical theory and it inevitably breaks
down near the Planck scale 1/

√
G = 1.22 × 1019GeV . We will only use the so-called

reduced Planck mass which is given by 9

MP =
1√
8πG

= 2.435× 1018GeV . (5.2)

Since the universe was at higher and higher temperatures/energies the further back in
time we are going, we reach a point at which general relativity cannot be used anymore.
This in particular means we cannot use general relativity to understand the actual be-
ginning of our universe, i.e., the big bang. It is also unclear whether we will ever be
able to get experimental insight into the physics that caused the big bang. However,
between the energies of less than an eV at the time the CMB was released until the
energies studied in particle accelerators of a few TeV we have 12 orders of magnitude
of well understood physics to discuss and from the TeV range up to the Planck scale
we will discuss another 15 orders of magnitude in energy of slightly more speculative
physics. There are also ideas for theories of quantum gravity that go beyond general
relativity and might allow us to theoretically understand the initial singularity that
arises in general relativity at the beginning of our universe.

Worked problem 5.4: The Planck time

Calculate the Planck time by recalling that an inverse mass or energy can
be rewritten as a time.

Solution: We have seen before in worked problem 5.2 that we can con-
vert a mass into a length so with another appropriate insertion (or actual
removal) of c = 1, which connects length and time, we can also convert it
into a time:

1

MP
=

ℏ
2.435× 1018GeV

=
6.58× 10−16eV · s
2.435× 1018GeV

= 2.7× 10−43s . (5.3)

In principle we would therefore hope that we might be able to use general

9We will often drop for simplicity the word reduced and refer imprecisely to MP as the Planck mass.
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relativity to describe our universe at time t > 2.7 × 10−43s after the big
bang. However, it is not fully clear at what scale general relativity breaks
down. Strictly speaking we also cannot use it to even discuss the time
range between the start of the universe and the time general relativity
becomes applicable.

5.2 The universe in thermal equilibrium

In the early universe at temperatures above a few hundred GeV all standard model
particles will have energies that are much larger than their rest mass:

E(p) =
√
m2 + p2 ≈ p . (5.4)

This means that they do not behave like non-relativistic (pressureless) matter but
rather like radiation (i.e., like for example photons for which E = p). Since the masses
are negligible in this era, there is only one scale in the standard model which is the
rate of interactions Γ, i.e., the number of interactions per time. In principle this rate
can be different for the different particles but we neglect this for the rough estimates
in this section. In our expanding universe there is one more length or time scale set by
the Hubble scale H. If the particles interact a lot without feeling the expansion of the
universe, then they will be in local equilibrium. This would mean that

Γ ≫ H . (5.5)

If the above equation is true, then we can use equilibrium thermodynamics to describe
our universe. We would therefore like to estimate during which temperatures/energies
the above is expected to be true.

The particle interaction rate can be written as

Γ ≡ nσv , (5.6)

where n is the number density, i.e., the number of particles per volume, σ is the
interaction cross-section and v is the average velocity of the particles. Since, as we
argued above, all particles are highly relativistic for T ≫ 100GeV , we have v ≈ c = 1.
The only dimensionful quantity is the temperature T , that has the dimension of an
energy which is the same as an inverse length. So, we find for the number density and
the cross section

n ∼ T 3 , σ ∼ T−2 . (5.7)

For the cross section we can be more precise. Two particles interact dominantly via the
exchange of one of the gauge bosons (that are all massless above 100GeV ). We often
write this in terms of Feynman diagrams that use straight lines to indicate fermions
and wiggly lines to describe a gauge boson:

�
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The interaction cross section is the square of such a diagram so that it goes like
the fourth power of the interaction strength between the fermion and the gauge boson.
This interaction strength is usually called

√
α, which gives

σ ∼ α2

T 2
. (5.8)

Putting this together we find the following scaling of the interaction rate

Γ ≈ nσ ≈ α2T . (5.9)

The actual value of α depends on the particular force with which the particles interact
as well as the energy scale. However, at high energies the interaction strengths of all
forces seem to become almost the same, which hints at a unification of all force in a
so called grand unified theory (GUT). At this GUT scale the energy is approximately
1016GeV and the value of α is α ≈ .05.

As we have seen above, our early universe was dominated by radiation.10 This
means that

H2 =
ρ

3M2
P

∼ 1

a(t)4M2
P

∼ T 4

M2
P

⇒ H ∼ T 2

MP
. (5.10)

Putting this together we find that

Γ

H
∼ α2MP

T
∼ 1016GeV

T
, (5.11)

which means for roughly 100GeV ≪ T ≪ 1016GeV we have Γ ≫ H. So, our early and
hot universe was in a state of local equilibrium and we can describe it using equilibrium
thermodynamics.

5.3 Baryogenesis

In the following we will describe the cooling of our universe starting from a ‘soup’ of
matter and photons at a temperature of a few hundred GeV , using our knowledge of
particle physics and thermodynamics. However, before we do that let us mention a
puzzle: In a very hot universe we can create particle-anti-particle pairs from photons,
denoted γ. For example, for the electron e− and the positron e+ we can have the
reversible process

e− + e+ ↔ γ + γ . (5.12)

In an expanding universe we know that the photons ‘lose’ energy due to the redshift,
E ∝ 1/a(t). This means that there is a certain point at which the two photons on the
right won’t have enough energy to create an electron-positron pair. At that moment
the above process should only go in one direction

e− + e+ → γ + γ . (5.13)

If the early universe has an equal number of particles and anti-particles then eventually,
we would expect that all particles and anti-particles annihilate and leave a universe

10This is also plausible from the above discussion that showed that all the standard model particles behaved
like radiation instead of matter in the early universe.
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filled with photons. However, in our universe there is an asymmetry between matter
and anti-matter, so that our universe ended up with matter and not just radiation. This
asymmetry can be quantified by the ratio between the number of baryons (protons and
neutrons) and photons in our current universe. Observations tell us that today

nb
nγ

≈ 6× 10−10 , (5.14)

while the same ratio for anti-baryons seems to be essentially zero. There is no mech-
anism inside the standard model of particle physics that can explain this so called
baryogenesis, i.e., the observed matter-anti-matter asymmetry, so we will simply as-
sume that the initial conditions of the universe were such that they lead to the observed
baryon to photon ratio.11

Worked problem 5.5: Baryon asymmetry

Assume a particular volume of the early universe contained nq quarks and
nq̄ anti-quarks. During the cooling process each quark-anti-quark pair
annihilates and produces two photons. Determine the smallest integers
nq and nq̄ that lead to the above ratio in equation (5.14). You can use
that approximately nq ≈ nq̄.

Solution: We have nq ≈ nq̄ and since each quark-anti-quark pair anni-
hilates into two photons we have nγ = nq + nq̄ ≈ 2nq ≈ 2nq̄. We also
need to recall that each baryon contains three quarks. So, after the quark-
anti-quark annihilation we are left with nb = (nq − nq̄)/3. This leads
to

nb
nγ

=
(nq − nq̄)/3

2nq
=
nq − nq̄
6nq

≈ 6× 10−10 . (5.15)

To get the smallest integers let us assume that a single baryon survives:
nb = 1 = (nq − nq̄)/3. This leads to

1

2nq
≈ 6× 10−10 . (5.16)

The solution is nq = 833, 333, 333 which implies nq̄ = 833, 333, 330. So, we
see that in the early universe the different between matter particles and
anti-matter particles is absolutely tiny.
We assumed above that the initial state has only quarks and anti-quarks
but in reality, there are also photons in the very early universe. However,
their number is comparable to the number of quarks and anti-quarks nγ ∼
nq ∼ nq̄, so that the above calculation wouldn’t really change by much.

Note that the asymmetry in the early universe has to exist not only in baryons but
also in leptons like the electron since ultimately electrons and the baryons combine to

11There are a variety of theoretical ideas of how such an asymmetry can arise but so far the experiments
have not singled out any particular model, so we refrain from discussing baryogenesis in any further detail.
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form the atoms in our universe. In the early universe there were ample interactions
that also converted quark-anti-quark pairs into electron-positron pairs

q + q̄ ↔ e− + e+ . (5.17)

This means in turn that it is not absolutely necessary, that baryogenesis that creates
an asymmetry between baryons and anti-baryons, had to happen in our universe. It is
also possible that there was leptogenesis that led to an asymmetry between leptons, like
the electron e−, compared with anti-leptons, like the positron e+. Due to the ample
interactions in the early universe either baryogenesis or leptogenesis or a combination
of both could have led to the observed asymmetry today.

Summary: Particle physics in the early universe

Compared to the periodic table in chemistry, particle physics with 17
fundamental particles is rather simple. Almost all the regular matter in
our universe (and everything in the chemistry periodic table) is made out
of only three particles: the electron and the up and down quarks. The
latter two combine to form the more familiar protons and neutrons.
The particles in our universe interact via the electromagnetic, the weak
and the strong forces as well as gravity. Our very early universe was a hot,
dense soup of fundamental particles that were due to ample interactions
in thermal equilibrium. This opens up the possibility to use equilibrium
thermodynamics to describe the evolution of our early universe analytically
in the next sections.
One of the remaining puzzles in early universe cosmology is the differ-
ence in matter and anti-matter: While the initial soup of particles and
anti-particles cools in the expanding universe, particles and anti-particles
annihilate each other. This ultimately led to our universe that contains
no more anti-matter but some regular matter that formed the stars and
galaxies. There is however no process in the Standard Model of Particle
Physics that can explain this asymmetry between matter and anti-matter
in the early universe. So, new physics is needed to give rise to this so-called
baryogenesis.

6 The thermal universe

In the previous section we have seen that the standard model particles in the early
universe were interacting so much that the Hubble expansion is negligible compared to
the interaction rate, while the temperature is in the range 100GeV ≪ T ≪ 1016GeV .
This means that there is ample time for the standard model particles to be in thermal
equilibrium by the time the temperature is a few hundred GeV . We can therefore use
equilibrium thermodynamics to discuss the evolution of this soup of standard model
particles as the universe expands and cools.
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6.1 Equilibrium Thermodynamics

In order to understand the number density n, energy density ρ and pressure P 12 for
different particles in the early universe we need to know their distribution as a function
of phase space, i.e., their distribution in real space and momentum space encoded in
a function f(r⃗, p⃗). For a homogeneous distribution, this phase space function cannot
depend on the spatial coordinate r⃗ and for an isotropic distribution the phase space
function can only depend on the absolute value of the momentum p = |p⃗|. For a
system of particles in equilibrium the distribution function is given by the Fermi-Dirac
distribution for fermions and by the Bose-Einstein distribution for bosons. Both can
be written as

f±(p) =
1

e(E(p)−µ)/T ± 1
, (6.1)

where the + sign is for fermions and the − sign is for bosons and µ denotes the chemical
potential that generically is a function of the temperature T .

Due to the ample interactions in the early universe all particles have the same
average kinetic energy, i.e., the same temperature T so that we do not need to keep
track of different temperatures. In the early universe the chemical potentials for all
the particles are small so that we can neglect them and set µ = 0. However, this
would mean that the number of particles and anti-particles is the same which isn’t
quite true as discussed above in subsection 5.3 on baryogenesis. A small non-zero
chemical potential allows one to account for the small matter-anti-matter asymmetry
but it substantially complicates the analysis and is not needed for our discussion.

Allowing for g internal degrees of freedom, i.e., for particles with spin, the particle
density in phase space is given by g

(2π)3
f(p), where we dropped the subscript ± to avoid

cluttering.13 In order to obtain the number density n, we need to integrate this over
the momentum

n ≡ g

(2π)3

∫
d3pf(p) . (6.2)

To obtain the energy density ρ, we need to weigh each state by its energy E(p) =√
m2 + p2 so that we have 14

ρ ≡ g

(2π)3

∫
d3pf(p)E(p) . (6.3)

Lastly the pressure is defined as

P ≡ g

(2π)3

∫
d3pf(p)

p2

3E(p)
. (6.4)

The integrals in n, ρ and P have to be evaluated numerically unless we are in

12We will switch conventions and denote the pressure by P to avoid confusion with the absolute value of
the momentum p = |p⃗|.

13For massless particles g = 1 for real scalar fields and g = 2 otherwise. For massive particles the spin S
determines g via g = 2S + 1.

14For strongly interacting particles we would have to take into account the interaction energy, but the
particles in the early universe were weakly interacting so that we can neglect the interaction energy.
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particular limits. For such limits we will make use of the general formulas∫ ∞

0
du

un

eu − 1
= ζ(n+ 1)Γ(n+ 1) , (6.5)∫ ∞

0
duune−u2

=
1

2
Γ
(
1
2(n+ 1)

)
, (6.6)

where ζ is the Riemann zeta-function and the Γ-function is an extension of the factorial
function and in particular takes the values Γ(n) = (n− 1)! for n ∈ N∗.

6.1.1 The relativistic limit

Let us first evaluate n, ρ and P for relativistic particles:

E(p) =
√
m2 + p2 ≈ p≫ m. (6.7)

We define y = p/T so that f±(y) = 1/(ey ± 1). For bosons we then find

nb =
g

(2π)3

∫ ∞

0

4πT 3y2dy

ey − 1
=
gT 3ζ(3)Γ(3)

2π2
=
ζ(3)

π2
g T 3 , (6.8)

where ζ(3) ≈ 1.2. For fermions we can use that

1

ey + 1
=

1

ey − 1
− 2

e2y − 1
, (6.9)

to get

nf = nb −
g

(2π)3

∫ ∞

0

8πT 3y2dy

e2y − 1
= nb −

g

(2π)3

∫ ∞

0

πT 3ỹ2dỹ

eỹ − 1
= nb −

1

4
nb =

3ζ(3)

4π2
g T 3 .

(6.10)
So, we have found for relativistic particles that

nb =
4

3
nf =

ζ(3)

π2
g T 3 . (6.11)

Note, that the scaling of T 3 agrees with our scaling assumption in equation (5.7) in
section 5.

Now let us likewise calculate the energy density

ρb =
g

(2π)3

∫ ∞

0

4πT 4y3dy

ey − 1
=

g

2π2
T 4ζ(4)Γ(4) =

π2

30
gT 4 , (6.12)

where we used that ζ(4) = π4/90. For fermions we find

ρf = ρb −
g

(2π)3

∫ ∞

0

8πT 4y3dy

e2y − 1
= ρb −

g

(2π)3

∫ ∞

0

1

2

πT 4ỹ3dỹ

eỹ − 1
= ρb −

1

8
ρb =

7

8

π2

30
gT 4 .

(6.13)
So, we have

ρb =
8

7
ρf =

π2

30
gT 4 , (6.14)

where the scaling with the temperature again agrees with the simple dimensional anal-
ysis we performed in the last lecture.
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Finally, for the pressure P we note that in the relativistic limit p2/E(p) = p = E(p),
so that it trivially follows from the definitions in equations (6.3) and (6.4) that for
bosons as well as fermions

P =
1

3
ρ = wρ , (6.15)

which nicely agrees with the equation of state parameter w = 1
3 for radiation.

6.1.2 Non-relativistic particles

We can also analytically solve for n, ρ and P in the non-relativistic limit, i.e., for
regular matter. In this case we have

E(p) =
√
m2 + p2 ≈ m+

p2

2m
. (6.16)

Let us define x = p/
√
2mT . Since the temperature is related to the average kinetic

energy T ∼ p2av
2m , which is much smaller than m, we find that eE/T ≈ em/T ≫ 1. This

means that the distribution function, as given in (6.1), is the same for bosons and
fermions

f(p) =
1

eE(p)/T ± 1
≈ e−

E
T ≈ e−

m
T e−x2

. (6.17)

This then gives for the number density

n =
g

(2π)3
e−

m
T

∫ ∞

0
4π(2mT )

3
2x2e−x2

dx =
ge−

m
T (2mT )

3
2Γ
(
3
2

)
4π2

= g

(
mT

2π

) 3
2

e−
m
T ,

(6.18)
where we used that Γ(3/2) =

√
π/2.

Worked problem 6.1: The number density for non-relativistic particles

Looking at the above expression, n ∝ e−
m
T , explain the behavior of n for

T < m.

Solution: Recall that T in our units with kB = 1 is essentially the ther-
mal energy, while m for c = 1 is the rest mass E = mc2. Once the thermal
energy drops below the rest mass energy particle-anti-particle pairs cannot
be created anymore and they start to annihilate. This leads to an expo-
nential decay of the particle density (as well as the anti-particle density).

In order to calculate the energy density, we use that E ≈ m and find to leading
order from the definition in equation (6.3) that

ρ = mn = gm

(
mT

2π

) 3
2

e−
m
T . (6.19)

Finally, we again calculate the pressure P as given in (6.4). Here we use that
p2/E ≈ p2/m = (2mT )x2/m and find, using the simplification leading to (6.18), that

P =
g

(2π)3
e−

m
T

3m

∫ ∞

0
4π(2mT )

5
2x4e−x2

dx =
ge−

m
T (2mT )

5
2Γ
(
5
2

)
12π2m
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= gT

(
mT

2π

) 3
2

e−
m
T = nT , (6.20)

where we used that Γ(5/2) = 3
√
π/4. Note that this is the familiar ideal gas law

P = nkBT or after multiplying by the volume V : PV = NkBT .
Now as we argued above, the temperature T is much smaller than the mass m.

This means that

P = nT =
T

m
ρ = wρ ≈ 0 for T ≪ m. (6.21)

So, we again reproduce our previous result that for non-relativistic matter we can
neglect the pressure.

6.2 The effective number of relativistic species

The total radiation density is given by the sum over the contributions from all particles

ρr =
∑
i

ρi =
π2

30
g⋆(T )T

4 , (6.22)

where i runs over all standard model particles and g⋆(T ) is the effective number of
degrees of freedom at temperature T , which we take to be the photon temperature.
The sum over i can receive two contributions. One from relativistic particles that are
in equilibrium with the photons, i.e., that have Ti = T ≫ mi. These contribute to g⋆
as follows

gth⋆ (T ) =
∑

i=bosons

gi +
7

8

∑
i=fermions

gi = gb +
7

8
gf , (6.23)

where th stands for thermal equilibrium. However, particles can decouple so that
they won’t be in thermal equilibrium with the photons anymore. If these particles are
relativistic, i.e., we have Ti ̸= T and Ti ≫ mi, then they contribute to g⋆

gdec⋆ (T ) =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

, (6.24)

where dec stands for decoupled. We thus have

g⋆(T ) = gth⋆ (T ) + gdec⋆ (T ) . (6.25)

As we discussed in section 5, at T ≫ 100GeV all standard model particles are rela-
tivistic (cf. figure 31) and in thermal equilibrium with the photons (and each other).

So, let us calculate g⋆ for the standard model. We have the following contribution
to gb:

� The Z, W+, W− and the photon γ are all massless vectors and have two degrees
of freedom each. Therefore, they contribute 4 · 2 = 8.

� Before the electroweak phase transition the Higgs scalar is a two vector whose
entries are complex scalars so that it contributes 2 · 2 = 4.

� There are actually 8 gluons15 that are all massless vectors, so that they contribute
8 · 2 = 16.

15This is not clear from figure 31 and follows from the more complicated nature of the strong force. The
gluons are the entries in an SU(3) matrix that has eight real independent entries.
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Figure 31: The known particles in our universe (taken from Wikipedia).

This leads to a total of gb = 28.
Massive fermions have two possible spins and therefore have two internal degrees

of freedom each. We take the neutrinos to be only left-handed, i.e., we assume that
the right-handed neutrinos are very heavy and do not contribute. Fermions also have
antiparticles that we need to include in our counting.16 Then we find the following
contributions to gf :

� The left-handed neutrinos and their anti-particles contribute 3 · 2 = 6.

� The electron e, the µ and the τ contribute twice as much 3 · 2 · 2 = 12.

� The six quarks can have three distinct charges under the strong force17 which
leads to an additional factor of 3 so that we have 6 · 2 · 2 · 3 = 72.

Thus, in total we have gf = 90 and the value of g⋆ at temperatures well above a
100GeV is

g⋆ = gb +
7

8
gf = 28 +

7

8
90 = 106.75 . (6.26)

In an expanding and cooling universe, particles will become non-relativistic. Before
we discuss this in detail in the next subsection, let us mention the electroweak phase
transition: At a temperature around 100GeV the standard model of particle physics
undergoes a transition during which the Higgs field develops a vacuum expectation
value. This vacuum expectation value is actually what gives a mass to all the fields

16The bosons above are their own anti-particles so we did not need to include the anti-particles above.
17Each of them is a three vector on which the gluon SU(3) matrix can act.
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(particles) in the standard model. After this phase transition the W± and Z gauge
fields have a mass. Massive vectors have three internal degrees of freedom so that this
modifies our counting above. However, these new three degrees of freedom (one for
each W+, W− and Z) come from the Higgs field that after this transition is only left
with a single degree of freedom. So, the net number of degrees of freedom does not
change during the electroweak phase transition.

6.3 Particle freeze-out

Once the temperature of the universe drops below the mass of a particle, the particle-
anti-particle annihilation for this particle is favored compared to particle-anti-particle
creation. This leads to an exponential decay of the particle number n, as derived
in equation (6.18). This transition from relativistic to non-relativistic particle and
the resulting annihilation of particles with their anti-particles is not instantaneous.
Roughly 80% of the particles are annihilated in the interval m > T > m/6.

One effect of this so-called particle freeze out is, as we will discuss below, that
the decrease in temperature of the universe is slowed down, since the particle-anti-
particle annihilation deposits the energy contained in the annihilating particles into
the remaining particles that are still in thermal equilibrium. But what happens to the
particles themselves? Do they completely disappear?

In a non-expanding (but still somehow cooling) universe with vanishing chemical
potential for these particles, this would be the case and the number density would keep
decreasing exponentially with the temperature. However, as we mentioned above in
subsection 5.3 (cf. equation (5.14)), in our universe there is a small baryon-anti-baryon
asymmetry so that the particles cannot all annihilate since there aren’t enough anti-
particles around. This leads to the observed remaining baryons in our universe. Note,
that in the standard model of particle physics heavy quarks (and leptons) decay to the
lighter quarks (and leptons). For example, the top quark has an estimated lifetime
of 5 × 10−25s so that any relic top quarks will quickly decay to up quarks. So, very
quickly all massive particles (except the stable neutrinos) will decay to the three stable
particles: the up quark, the down quark or the electron.

Another fate of non-relativistic particles in an expanding universe is that at a certain
point their interaction rate Γ (which is proportional to their exponentially decaying
number density n) becomes so small that it is smaller than the Hubble expansion H.
In such a case the particles and anti-particles cannot find each other anymore and
the annihilation stops. The exponential decay in the particle density followed by this
so-called freeze-out is shown in the log-log-plot in figure 32. As we will see below in
the next section, the neutrinos did undergo such a freeze-out in our early universe.

6.4 Evolution of the relativistic degrees of freedom

Having briefly discussed the potential fate of relativistic matter that becomes non-
relativistic, let us return to the relativistic degrees of freedom of the standard model,
during the time when our universe cools from a few hundred GeV to a few eV . The
behavior of g⋆(T ) is shown in figure 33.

After the electroweak phase transition particles have their usual mass and the
heaviest field, the top quark starts to become non-relativistic. This reduces g⋆ by
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Figure 32: Once a particle becomes non-relativistic its number density decays expo-
nentially. The Hubble expansion or a non-zero chemical potential can lead to a relic
density.

Figure 33: The evolution of the relativistic degrees of freedom in our early universe
(taken from Daniel Baumann’s “Cosmology” lectures).

12 · 7/8 = 10.5. Next the massive vector bosons W± and Z and the Higgs scalar be-
come non-relativistic, which reduces g⋆ by another 9 + 1 = 10. After that the b and c
quarks and the τ become also non-relativistic. At a temperature of roughly 150MeV
our universe undergoes another phase transition. The strong force becomes so strong
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that all quarks and gluons combine into uncharged bound states. For example, the u
and d quarks combine into protons uud and neutrons udd. As we discussed above, all
the particles that are combinations of three quarks are called baryons and even the
lightest of them, the proton, has a mass of 1GeV ≫ 150MeV so that after the QCD
phase transition the baryons are all non-relativistic. However, there are also bound
states of quarks and anti-quarks, the so-called mesons. The lightest mesons are the
pi-mesons π+ = ud̄, π− = dū and the π0 which is a combination of uū and dd̄. These
three mesons have a mass of 135MeV -140MeV so that they will still be relativistic
after the QCD transition. They become non-relativistic shortly before the µ leaving
only the electron e, the photons and neutrinos as relativistic particles. As you can
see from the graph something interesting is happening once the electrons become non-
relativistic and we will discuss this in the next section.

Summary: The thermal universe

Using equilibrium thermodynamics, we derived the number density, energy
density and pressure for relativistic and non-relativistic particles. This
allowed us to rederive the previously obtained equation of state parameters
w = 1/3 and w = 0.
Then we learned how to count relativistic degrees of freedom and how
these evolve in our very early universe. We also learned of two ways how
we can avoid ending up in a universe filled with only massless photons:
1) The previously discussed very small asymmetry between particles and
anti-particles, corresponding to a non-zero chemical potential, leads to the
remaining matter without anti-matter in our universe. 2) Another inter-
esting possibility is the decoupling of certain particles: In an expanding
universe, particles get diluted and if their coupling is sufficiently small then
at a certain point they cannot annihilate with their anti-particles because
they essentially cannot find each other anymore. This is what led to the
neutrino cosmic background in our universe.

7 Neutrino cosmic background and dark matter

In the previous section we have seen that our universe roughly 10−14s after the big
bang was filled with a ‘soup’ of standard model particles that are all in thermal equi-
librium. We described how during the expansion of our universe, due to the decrease
in temperature, particles become non-relativistic. In this section we start at an energy
of roughly 1MeV , which corresponds to 1s after the big bang, and we will discuss the
fate of electrons, positrons, photons and neutrinos. In order to do that it is useful to
keep track of a conserved quantity, namely the entropy.
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7.1 The entropy of our universe

In the second homework you used the first law of thermodynamics

TdS = dE + PdV , (7.1)

to derive the continuity equation ρ̇ + 3H(ρ + P ) = 0 under the assumption that the
entropy is not changing in an expanding universe. The continuity equation follows
from the Friedmann equations that we use to describe our universe which means that
the entropy in our universe is conserved. This means it is a useful quantity to keep
track of.

To do so we recall that the entropy and the energy are extensive quantities which
satisfy

∂VE =
E

V
, ∂V S =

S

V
. (7.2)

Using this and S = S(V, T ) and E(V, T ) we find from equation (7.1)

T∂TSdT + T∂V SdV = ∂VEdV + ∂TEdT + PdV

T∂TSdT + T
S

V
dV =

E

V
dV + ∂TEdT + PdV . (7.3)

Since dT and dV are independent, in particular the terms multiplying dV have to be
equal, which gives

T
S

V
=
E

V
+ P ⇒ S =

E + PV

T
. (7.4)

We now define the entropy density

s ≡ S

V
=
ρ+ P

T
. (7.5)

For our discussion of the early universe, we are interested in radiation with P = 1
3ρ for

which the entropy density becomes

s =
4

3

ρ

T
. (7.6)

Note, that it easily follows from the scalings ρ ∼ a−4, V ∼ a3 and T ∼ a−1 that the
entropy S = s · V is indeed constant.

In order to calculate the entropy density in the early universe, we have to sum over
all particles, taking into account their energy density and temperature. We do this like
in the previous section by defining

s =
2π2

45
g⋆S(T )T

3 , (7.7)

where we used equation (6.14) for the energy density ρ and T denotes the photon tem-
perature. The quantity g⋆S(T ) again is the sum of the particles in thermal equilibrium
with the photons and the decoupled particles g⋆S(T ) = gth⋆S + gdec⋆S (T ). The effective
number in thermal equilibrium is the same as before gth⋆S = gth⋆ , where gth⋆ was defined
in equation (6.23). However, due to the different scaling with temperature, this is not
true for the decoupled degrees of freedom. In particular, we have

gdec⋆S (T ) =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

, (7.8)
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which is different from gdec⋆ (T ) which has powers of 4 for the temperature (cf. equation
(6.24)).

As we showed above, the entropy is preserved and in the case that no particles
are created or destroyed then the particle density and entropy density scale in the
same way, i.e., like 1/V ∼ a−3. This means that their ratio ni/s is constant. Now
in the early universe in thermal equilibrium particles and anti-particles are constantly
created and destroyed but as we discussed before the net baryon number cannot change
due to perturbative standard model interactions. So, after baryogenesis the quantity
(nb−nb̄)/s is preserved and does not change during the evolution of our universe until
today.

Another consequence of the fact that sa3 = const. is that, using equation (7.7), we
find that

g⋆S(T )T
3a3 = const. ⇒ T ∝ g

− 1
3

⋆S a
−1 . (7.9)

This means that away from temperatures where particles become non-relativistic, we
find that the factor of proportionality, i.e., the slope of the decrease of the temperature,
is constant and depends on the relativistic degrees of freedom. If one species drops out
of equilibrium because it becomes non-relativistic, then its entropy density (like its
energy density) decays exponentially. However, the net entropy has to stay constant
so the particle that becomes non-relativistic has to transfer its entropy to the particle
species that are still in thermal equilibrium. For example, when electrons and positions
are in thermal equilibrium, we have the reaction

e− + e+ ↔ γ + γ . (7.10)

Once the temperature drops below the electron mass, the annihilation is strongly fa-
vored

e− + e+ → γ + γ , (7.11)

the electron and positron densities decay exponentially and their entropy is transferred
to the photons. Since g⋆S decreased by 7

84 during this decoupling of the electrons, the
factor of proportionality between T and a−1 in equation (7.9) has increased. This is
shown in figure 34.

7.2 Neutrino decoupling

In our universe things are more interesting and in particular the neutrinos play an
interesting role. Via weak interactions like for example

e− + e+ ↔ νe + ν̄e , (7.12)

they are kept in thermal equilibrium with the electrons. We have argued based on
dimensional analysis that the cross-section for such interactions goes like σ ∼ α2/T 2.
However, this is not anymore true after the electroweak symmetry breaking. After this
electroweak symmetry breaking the W± and Z bosons have a mass which provides
a new scale and actually determines the weak interaction strength. A process with
two initial and two final particles like the one in equation (7.12) scales like α2/m4

W ≈
10−10GeV −4. On dimensional grounds we then have

σ ∼ α2

m4
W

T 2 , (7.13)
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Figure 34: After the electrons and positrons become non-relativistic, they annihilate
which changes the evolution of the temperature of the photons (orange line).

so instead of increasing with decreasing temperature, σ is now decreasing during the
cooling of the universe.

Let us ask what this means for the ratio between the particle interaction rate
Γ = nσv compared to the Hubble expansion rate H ∼ T 2/MP . Recalling that n ∼ T 3

and v ≈ 1, we get
Γ

H
∼ α2

m4
W

T 5MP

T 2
≈
(

T

MeV

)3

. (7.14)

What this estimate shows is that particles like the neutrinos that only interact via the
weak force, will freeze-out at a temperature of roughly 1MeV .

Worked problem 7.1: Neutrino mass and decoupling

Look up the current bounds on the mass of neutrinos. What does that
mean for their decoupling?

Solution: The upper bound on the sum of the neutrino masses is .12eV .
This means the heaviest neutrino has a mass that has to be below .12eV .
This is much smaller than the freeze-out temperature. This means the
neutrinos decouple from each other, while they are still relativistic. At
a much later stage the neutrinos will becomes non-relativistic when the
temperature drops below their (unknown) mass. Recall, that the CMB
was emitted 380,000 years after the big bang, when the temperature was
roughly .3eV . So, the neutrinos will become non-relativistic after the CMB
was released.
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7.3 The cosmic neutrino background

The only particles that are relativistic at such low energies are the electron, the photon
and the neutrinos. The electron becomes non-relativistic at slightly lower temperature
T ≲ me = .5MeV . At this point the neutrinos are decoupled and the entropy of
the electrons is transferred only to the thermal bath of the photons. This means
that the neutrinos will have a lower temperature than the photons. In figure 34, the
neutrino temperature would follow the dashed blue line, while the photon temperature
corresponds to the orange line.

Let us make this more precise: Neglecting the decoupled neutrinos, we have before
and after the electron decoupling

g⋆S =

{
2 + 7

84 = 11
2 T > me

2 T ≪ me
. (7.15)

It then follows from equation (7.9) that the factor of proportionality between the
photon temperature Tγ and a−1 changes due to the electron decoupling by a factor of
((11/2)/2)1/3 = (11/4)1/3. However, the same factor for the neutrinos does not change
so that the neutrino temperature is slightly lower and given by

Tν =

(
4

11

) 1
3

Tγ ≈ .71Tγ . (7.16)

This means that our universe is filled in addition to the cosmic microwave background
with a cosmic neutrino background that currently has a temperature of

Tν,0 =

(
4

11

) 1
3

2.725K ≈ 1.95K . (7.17)

We are currently not able to experimentally detect this cosmic neutrino background
since the neutrinos have very low energies and interact only via the weak force. How-
ever, we have indirect evidence for their existence since their energy and entropy density
affect the big bang nucleosynthesis and anisotropies in the cosmic microwave back-
ground, both of which we will discuss later in this course.

Next let us calculate the values of g⋆ and g⋆S after the decoupling of the electrons.
For g⋆ we have from equations (6.23)-(6.25)

g⋆(T ) = gth⋆ + gdec⋆ (T ) = 2 +
7

8
· 2 · 3 ·

(
4

11

) 4
3

≈ 3.36 . (7.18)

Similarly, we find for g⋆S from equation (7.8)

g⋆S(T ) = gth⋆S + gdec⋆S (T ) = 2 +
7

8
· 2 · 3 · 4

11
≈ 3.91 . (7.19)

These are the values shown in figure 35, that we have already seen above.18 As is also
clear from figure 35, before the neutrino freeze-out we have g⋆ = g⋆S .

18The decoupling of the neutrinos is not instantaneous and not totally finished by the time the electrons
become non-relativistic. This means that a small fraction of the electron entropy is transferred to the
neutrinos. This is usually encoded in an effective number of neutrinos Neff ≈ 3.046 that replaces the 3 that
counts the neutrinos in equations (7.18), (7.19) which leads to the values in figure 35.
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Figure 35: The evolution of the relativistic degrees of freedom in our early universe
(taken from Daniel Baumann’s “Cosmology” lectures).

7.4 Important events in our early universe

Before we start to discuss the deviation from equilibrium and big bang nucleosynthesis
in section 8, it might be good to take stock and recall the important events of our
universe in the time from 10−14s to 380, 000 years after the big bang.

As we have discussed before the time of 10−14s after the big bang corresponds
to a temperature of 10TeV which is roughly the energy scale we can test in particle
experiments like the LHC at CERN. We have also argued that the standard model
particles are in thermal equilibrium at that time so that we have a hot and dense soup
of standard model particles at this point. The expansion of the universe leads to a
cooling of this plasma and the important events during the evolution and cooling of
our universe are summarized in the table below.

Baryogenesis: As we discussed in subsection 5.3, there is an asymmetry between
baryons and anti-baryons that cannot be explained by the standard model of particle
physics. Thus, at energies above 1TeV there must be some new physics that generates
this asymmetry. While there are many different theoretical ideas, there is no experi-
mental test of any of these so we cannot associate a time to baryogenesis. Since the
observed universe is neutral under the electric charge, there must be a similar asym-
metry between electrons and positrons so that after their annihilation we are left with
one electron for each proton.
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Event Time Redshift Temperature

Baryogenesis ? ? ?

EW phase transition 2× 10−11s 1015 100GeV

QCD phase transition 2× 10−5s 1012 150MeV

Neutrino decoupling 1s 6× 109 1MeV

Electron-positron annihilation 6s 2× 109 500keV

Big bang nucleosynthesis 3min 4× 108 100keV

Matter-radiation equality 6× 104yrs 3400 .75eV

Recombination 2.6− 3.8× 105yrs 1100-1400 .26− .33eV

CMB 3.8× 105yrs 1100 .26eV

Table 1: A summary of important events in our early universe.

Electroweak-phase transition: During this phase transition that we discussed
in the previous section, the particles get their mass due to the so called Higgs effect.
Once the standard model particles are massive, they start to drop out of equilibrium
whenever the temperature of the universe (i.e., the thermal bath) becomes smaller
than their mass. Then the particles start to annihilate with their anti-particles and
their number densities decrease exponentially. The remaining matter in our observed
universe is due to the matter-anti-matter asymmetry mentioned above.

QCD phase transition: The strong force is weaker at higher energies (tempera-
tures) and becomes stronger and stronger during the cooling of the universe. Around
150MeV the strong force is so strong that free gluons and quarks cannot exist any-
more and all the quarks are bound into so called baryons and mesons. These are bound
states that are neutral under the strong force. The lightest baryons are the familiar
proton and neutron. There are also heavier baryons and mesons that can be lighter
than the proton and neutron but all of these are unstable and quickly decay. So, a
little bit after the QCD phase transition we are left with essentially only protons and
neutrons that are the building blocks for the atomic nuclei.

Neutrino decoupling: As we discussed today, at around 1MeV the weak inter-
action becomes so weak that particles that are only charged under the weak force,
i.e., the neutrinos, decouple from the thermal plasma. These neutrinos, similarly to
the photons in the CMB, give rise to a cosmic neutrino background that is slightly
colder than the CMB and is difficult to observe directly. At the time of decoupling the
three neutrinos are still relativistic and during the cooling of the universe they become
non-relativistic whenever the temperature is smaller than their respective mass.
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Electron-positron annihilation: Around T ∼ me ≈ 511keV the electrons and
positrons become non-relativistic and transfer their energy and entropy into the pho-
tons only (since the neutrinos are decoupled already). This slows down the decrease in
the temperature of the photons a little bit so that the photons today have a temperature
that is a little bit larger than the temperature of the cosmic neutrino background.

Big bang nucleosynthesis: One of the greatest successes of the big bang cosmol-
ogy is that it correctly predicts the observed abundance of elements in our universe.
We will discuss in the next section 8 how the protons and neutrons in our universe
combine into atomic nuclei. Using nuclear physics, we can predict the ratios of num-
bers of different elements in the early universe and these predictions agree with what
we observe. Any kind of new physics that can appear beyond the standard model is
severely constraint by this success.

Recombination: Once the average energy of the photons drops below .33eV the
tail of high energy photons is sufficiently small to allow for neutral atoms to form. This
process in which electrons and protons combine19 takes roughly 100,000 years and at
its end the universe is filled with clouds of neutral atoms and the cosmic microwave
background.

The cosmic microwave background: Once the electrons and nuclei combine
into neutral atoms, the photons can stream freely until today. The observation of this
cosmic microwave background does not only tell us about the universe 380,000 years
after the big bang but the incredible homogeneity of the CMB also strongly motivates a
short phase of accelerated expansion in our very early universe, the so-called inflation.
The small deviations from homogeneity in the CMB photons we observe together with
their polarization provide detailed information about this period of inflation.

7.5 Dark Matter

As we have seen in subsection 3.2, roughly 80% of the matter in our universe is not in
the form of standard model particles but rather in the form of dark matter that consists
of one (or multiple) unknown particle species. Since we don’t know what these particles
are and how they interact, we cannot say for sure how their observed energy density
arises. However, if we assume that the dark matter and standard model particles are
in thermal equilibrium in the early universe, then the evolution of the dark matter
particles should be describable with the tools we developed so far. In particular, since
the dark matter is not visible and so difficult to detect, it can at most interact with the
standard model particles via the weak force (or via an unknown even weaker force). If
we assume that the mass of the dark matter particles is above their decoupling scale,
then they would become non-relativistic before they decouple from the standard model
particles and their number density starts to exponentially decay. Then at a certain
point their interaction rate becomes so small that Γ ∼ H which leads to a freeze-out
and a relic density of dark matter particles. This scenario can lead to the observed

19Don’t ask why this is called recombination. The electrons and nuclei were never combined before that
point.
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amount of dark matter and experiments have already substantially constraint the cross-
section and mass of such weakly interacting massive particles (often called WIMPs).
This is shown in figure 36 where the constraints on the WIMP mass is plotted against
the WIMP-nucleon cross section. The upper right region is excluded by experiments.

Figure 36: Some experimental bounds on weakly interacting massive particles.

While some experiments have claimed a detection of dark matter in the past, other
experiments could not reproduce these findings. So, we have to wait for future experi-
ments to shed light on the nature of the dark matter in our universe.

Summary: The cosmic neutrino background and dark matter

We have learned about entropy and entropy density and how they evolve
in our early universe. Then we used that to understand how the electron-
positron-annihilation in our early universe slowed down the cooling of the
photons. The neutrinos on the other hand had decoupled already 1s after
the big bang and therefore cooled faster than the photons, leading to a
slightly lower temperature for them Tν ≈ .71Tγ .
Subsection 7.4 provides an intermediate brief summary of all important
events discussed in part II of these notes. This leaves out dark matter
because our current understanding of it is very limited. In particular, the
once popular idea of weakly interacting massive particles (WIMPs) has
been tested in the relevant mass range and experiments have come up
empty handed. However, there are many other theoretical ideas for dark
matter, some of which will get tested in the future.
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8 Big bang nucleosynthesis

In this section we discuss the Boltzmann equation that allows one to describe the
evolution of processes in our universe that are not in equilibrium. Then we discuss the
formation of light elements during big bang nucleosynthesis and the recombination of
electrons and protons into neutral hydrogen.

8.1 The Boltzmann Equation

The number density in the absence of interactions (or in equilibrium) scales like the
inverse volume, i.e., like a−3, since it is a density. This means that it satisfies the
equation

0 =
1

a3
d(na3)

dt
=
dn

dt
+ 3

ȧ

a
n =

dn

dt
+ 3Hn . (8.1)

As we discussed in the previous section, there are ample interactions in which two
particles interact and become two new particles. These can be schematically written
as

1 + 2 ↔ 3 + 4 , (8.2)

which means that particle 1 and 2 annihilate and become particles 3 and 4 (and vice
versa). Such interactions together with decays of single particles are the most relevant
processes in the early universe since the interaction of three or more particles is much
more unlikely because these three or more particles would have to be all very close at
the same time.

The Boltzmann equation describes the evolution of the number density n1 of for
example particle 1 in the presence of interactions. Here we focus on the interaction
(8.2), in which case the Boltzmann equation is given by

1

a3
d(n1a

3)

dt
= −⟨σv⟩n1n2 + c n3n4 , (8.3)

where the first term describes the reduction of n1 due to annihilation of particles 1
with 2, while the second term describes the production of 1 particles (and 2 particles)
due to the annihilation of 3 and 4 particles. The free parameter c can be related to
the thermally averaged cross-section ⟨σv⟩: We know from equation 8.1 that the right-
hand-side of equation 8.3 has to vanish in thermal equilibrium, i.e., for ni = neqi . This
gives

c =
neq1 n

eq
2

neq3 n
eq
4

⟨σv⟩ . (8.4)

The Boltzmann equation then becomes

1

a3
d(n1a

3)

dt
= −⟨σv⟩

(
n1n2 −

neq1 n
eq
2

neq3 n
eq
4

n3n4

)
. (8.5)

This can be rewritten as

d log(n1a
3)

d log(a)
= −Γ1

H

(
1− neq1 n

eq
2

neq3 n
eq
4

n3n4
n1n2

)
, (8.6)

where Γ1 = n2⟨σv⟩. The above equation determines the evolution of the number
density for particles species 1 as a function of a(t). Since a(t) grows with t in our
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universe we can essentially think of the above Boltzmann equation as determining the
evolution of species 1 with time. We see that Γ1/H plays a crucial role in determining
the evolution of n1a

3. If the interaction rate Γ1 becomes small compared to the Hubble
rate H, we have a freeze out and the number density of n1 scales like a constant times
a−3.

To describe the evolution of all the particles in our early universe one has to solve
simultaneously all the corresponding coupled Boltzmann equations. This is of course
only possible numerically and goes beyond what we will discuss in class. Here we will
focus on a few simple interesting cases that we can discuss more or less analytically
and using the equilibrium results from the previous lectures. We will henceforth drop
the superscript eq and just write ni for the number densities in equilibrium.

Chemical potentials

Before we discuss big bang nucleosynthesis it is useful to review the effect of a non-
zero chemical potential µ. In the phase space distribution function (see for example
equation (6.1)) a non-zero chemical potential leads to

f±(p) =
1

e(E(p)−µ)/T ± 1
, (8.7)

where µ(T ) is generically a complicated function. While again each particle can have
a different chemical potential, chemical equilibrium, which is reached via interactions,
leads to relations between the chemical potentials. For example, interaction like the
ones in equation (8.2) lead to

µ1 + µ2 = µ3 + µ4. (8.8)

Non-zero chemical potentials will modify the expression for, for example, the number
density, so that for non-relativistic particles in equilibrium it is given by

n = g

(
mT

2π

) 3
2

e
µ−m
T . (8.9)

However, if we take ratios of number densities in which the chemical potential cancels
due to equation (8.8), then we don’t really need the values of the chemical potentials.

Worked problem 8.1: Photon chemical potential

Photons can interact with electrons via a double Compton scattering

e− + γ ↔ e− + γ + γ . (8.10)

What does that mean for the chemical potential of photons?

Solution: In equilibrium the chemical potentials on the left-hand-side
and the right-hand-side have to be equal, which means

µe + µγ = µe + 2µγ . (8.11)
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This means that photons have vanishing chemical potential

µγ = 0 . (8.12)

8.2 Big bang nucleosynthesis

Big bang nucleosynthesis refers to the formation of atomic nuclei during the cooling of
our early universe. Recall that after the QCD phase transition around 150MeV quarks
form colorless bound states that include protons and neutrons. During the continu-
ous cooling of our universe, the number densities of these non-relativistic baryons is
exponentially decaying until, due to the initial asymmetry between baryons and anti-
baryons, we are left with a residual amount of baryonic matter in the form of protons
and neutrons and heavier nuclei. The protons and neutrons can bind via the strong
force into atomic nuclei and via the weak force neutrons and protons can convert into
each other. All these processes are initially in equilibrium and we want to understand
with which relic abundance of nuclei we are left, once these processes drop out of
equilibrium due to the cooling of our universe.

The two reasons why we can actually do that without solving many coupled Boltz-
mann equations are firstly that essentially no elements heavier than Helium are created
during big bang nucleosynthesis, so that we can just focus our attention on Hydrogen
and Helium and secondly that initially we have only neutrons and protons in equilib-
rium without any relevant number of heavier nuclei.

Worked problem 8.2: The beginning of nucleosynthesis

We have seen that deuterium starts to form around T ≈ .1MeV .
What is roughly the corresponding time for the beginning of big bang
nucleosynthesis?

Solution: We can cheat slightly and look-up in table 1 that T = 1MeV
corresponds to 1s after the big bang. Since we are in the radiation domi-
nated phase, we have T ∝ a(t)−1 ∝ t−

1
2 . A reduction in temperature by a

factor of ten hence leads to an increase in time by 100. So, big bang nucle-
osynthesis starts roughly after 100s ∼ 1− 2 minutes. It doesn’t take very
long and all the primordial helium in our universe formed within minutes.

8.2.1 Protons and neutrons

At temperatures above 1MeV protons and neutrons are in equilibrium due to weak
interactions of the form

n+ νe ↔ p+ + e− . (8.13)
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The chemical potential is the average energy needed to add an extra particle (“dE =
µdN”). Electrons and neutrinos are much lighter than neutrons and protons and the
particles are non-relativistic so that E ∼ m. We therefore conclude that the chemical
potentials for electrons and neutrinos are negligible small, so that equation (8.8) tells
us that µp = µn. Taking the ratio of the proton and neutron number densities, the
chemical potential then simply cancels (see equation (8.9)) and we find

nn
np

=

(
mn

mp

) 3
2

e−
mn−mp

T . (8.14)

Recalling the proton and neutron masses mp = 938.27MeV and mn = 939.57MeV , we
see that their ratio is very close to 1 and their difference is mn −mp = 1.3MeV . So
at large temperatures T ≫ 1MeV we have the same number of neutrons and protons,
while at energies below T ∼ 1MeV , the ratio of the neutron to proton number density
is exponentially decaying. However, as we have seen above when we discussed neutrinos
in subsection 7.2, processes that involve the weak interactions like the one in equation
(8.13) will become irrelevant at energies below roughly 1MeV , since Γ/H ≈ 1 for
T ≈ 1MeV (see equation (7.14)). Actually, a more careful analysis reveals that the
weak interactions become irrelevant at T ≈ .8MeV which leads to

nn
np

=

(
mn

mp

) 3
2

e−
mn−mp

T ≈ e−
1.3MeV
.8MeV ≈ .2 . (8.15)

Once the temperature drops further the finite lifetime of the neutron becomes impor-
tant. In particular, a free neutron can decay via

n→ p+ + e− + ν̄e , (8.16)

which leads to an exponential decay of the neutron number density

nn
np

→ nn
np
e−

t
886s ≈ .2e−

t
886s , (8.17)

where we used that the mean lifetime of a free neutron is 886s. The decay of the
neutrons stops once they are bound into nuclei which happens around t ≈ 330s which
leads to

nn
np

∣∣∣∣
t≈330s

≈ .14 . (8.18)

8.2.2 Heavier nuclei

Let us study a process that involves the production of the lightest nucleus that is not
just a proton, i.e., deuterium. One neutron and one proton can form deuterium (and
a photon):

n+ p+ ↔ D+ + γ . (8.19)

As we argued above, the photon’s chemical potential vanishes so that the chemical
potentials cancel in the following ratios

nD
nnnp

=
3

4

(
2π

T

mD

mnmp

) 3
2

e−
mD−mn−mp

T , (8.20)
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where we used gn = gp = 2 and gD = 3.20 The ratio between the masses is ap-
proximately 2/mp, however, the difference in the mass of the deuterium and its two
constitutions is the binding energy mn +mp −mD ≈ 2.2MeV . At energies well below
the proton and neutron masses, i.e., at T ≪ 1GeV , the number densities of protons and
neutrons are not exponentially decaying anymore but are determined by the non-zero
baryon number in our universe, i.e., by equation (5.14)

np ∼ nn ∼ nb ∼ 10−9nγ = 10−9 2ζ(3)

π2
T 3 , (8.21)

where we used equation (6.11) for the photon number density. Using this in equation
(8.20), we get

nD
np

≈ 8

(
T

mp

) 3
2

e
2.2MeV

T 10−9 . (8.22)

This implies that for T = 1MeV , we have nD/np ≈ 10−12 and for roughly T ≈
.066MeV we have nD/np ≈ 1. This means that at temperatures above T ≈ .1MeV
the deuterium abundance is negligible and the same is true for even heavier nuclei.

8.2.3 Nucleosynthesis

Now we have all pieces in place and can discuss the creation of nuclei that are not
just a proton. Our starting point are protons and neutrons. As we mentioned before,
processes involving more than two particles are very rare so that the initial process
must be the formation of deuterium from one proton and one neutron as shown in
equation (8.19). Only once deuterium is formed, which as we saw above happens
around T ≈ .066MeV , can Helium be produced via

D + p+ ↔ 3He+ γ ,
D + 3He ↔ 4He+ p+ . (8.23)

The binding energy of 4He, BHe, is larger than that of deuterium BD. This leads to
an enhancement of the number density of Helium compared to that of deuterium

nHe

nD
∝ e

BHe−BD
T . (8.24)

This is similar to equation (8.22), where deuterium is favored at low temperatures,
except that here we don’t have a suppression factor. This means that helium is almost
immediately produced after deuterium and that all neutrons end up in 4He nuclei.
Since each 4He atom contains two neutrons, this allows us to easily determine the
fraction of helium to hydrogen in our universe

nHe

nH
=
nHe

np
≈

1
2nn

np
= 7% . (8.25)

This answer is very close to a full numerical analysis that solves all the coupled Boltz-
mann equations and which gives something like 6.2% ≈ 1

16 . Since the mass of a Helium
nucleus is roughly four times as large as the proton mass, we find that roughly one
fourth of the mass of ordinary matter in our early universe is in the form of Helium
and the rest in the form of Hydrogen. This perfectly agrees with observations and is
one of the great successes of big bang nucleosynthesis and shown in figure 37.

20Deuterium is the spin 1 combination of the proton and neutron, so gD = 2s+1 = 3. The corresponding
spin 0 particle is unstable.
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Figure 37: The mass fraction of several light nuclei as theoretical predicted (colored
band) and the observational constraints (grey bands). The value of the top horizontal
axis is fixed by Ωbh

2 as given above in equation (3.9). This translates into η = nb/nγ
on the bottom horizontal axis (cf. equation (5.14)).

Beyond Helium You probably wonder why heavier atomic nuclei don’t form during
big bang nucleosynthesis (and how they appeared in our universe). The reason that
they aren’t formed from protons, neutrons, deuterium and helium is the following: As
we have seen above, before helium can be formed, protons and neutrons need to first
combine to form a substantial amount of deuterium. During this time the universe
keeps cooling and the nuclei loose part of their kinetic energy, which makes it harder
to overcome the Coulomb barrier (i.e., to bring together two positively charge nuclei).
More importantly, once a large amount of 4He is formed, these can only combine
to form 8Be which is unstable and decays faster than it can be formed. Very small
amounts of Tritium and 3He that are also created during big bang nucleosynthesis can
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combine with 4He to form 7Li of which we observe tiny amounts today.21 So big bang
nucleosynthesis produces only very light elements. As briefly mentioned before, the
heavier elements that we see today in our universe and that we are made of are created
in the first stars through nuclear fusions. Once the heaviest of these stars explode in
supernovae, these heavy elements are released into the interstellar medium and can
become part of second-generation stars and form planets.

The abundance of the different nuclei in our early universe as a function of time is
shown in figure 38.

Figure 38: The mass fraction of several light nuclei as a function of time. The
logarithm base is 10 and nucleosynthesis essentially happens around 200 seconds, i.e.,
around 3 minutes after the big bang. (Figure taken from http://www.astro.ucla.

edu/~wright/BBNS.html).

8.3 Recombination and photon decoupling

After nuclei are formed around T ≈ .06MeV , which corresponds roughly to a time
of 3 minutes after the big bang, our universe contains a soup of positively charged
nuclei, free electrons and photons (as well as decoupled neutrinos). During the further
expansion and cooling of our universe the energy density of radiation decays like a−4,
while the energy density in the non-relativistic matter decays like a−3. Roughly 60,000
years after the big bang the energy densities in radiation and matter are equal and our
universe enters its matter dominated era. Another 200,000 years later electrons and
nuclei start to form neutral atoms, during a period that is usually called recombina-
tion.22 Once the recombination ends and the universe essentially consists of neutral
atoms, the photons in the cosmic microwave background can stream freely until today

21Actually we observe slightly more Lithium than theoretical predicted (see figure 37) which might require
small modifications of big bang nucleosynthesis.

22A more accurate name would be combination since they have never been combined before.
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and tell us about the universe 380,000 years after the big bang as well as much earlier
times.

8.3.1 The Saha equation

The process that keeps electrons, protons and photons in equilibrium during the first
200,000 years after the big bang is

e− + p+ ↔ H + γ . (8.26)

At a temperature of T ≈ 1eV all particles except the photons are non-relativistic and
they all are in (chemical and thermal) equilibrium due to the above process. Recalling
that the photon chemical potential vanishes, we can look at the following ratio in which
the chemical potentials cancel23

nH
npne

=

(
mH

memp

2π

T

) 3
2

e
mp+me−mH

T , (8.27)

where we used that gH = 4 = gegp. Using that mp ≈ mH , that the binding energy
of hydrogen is mp +me −mH = 13.6eV and the fact that our universe is electrically
neutral which implies ne = np, we find

nH
n2e

=

(
2π

meT

) 3
2

e
13.6eV

T . (8.28)

Next, we define the free electron fraction as the ratio of free electrons to baryons

Xe ≡
ne
nb
. (8.29)

As we have seen above in equation (8.25), more than 90% of the baryon number is due
to the protons, that can be in the form of positively charged nuclei np or in the form
of neutral hydrogen nH , so that

nb ≈ np + nH = ne + nH ≈ 10−9 2ζ(3)

π2
T 3 , (8.30)

where we used equation (8.21). From the definition in equation (8.29) we then find

1−Xe

X2
e

=
(np + nH)− ne

n2e
(np + nH) =

nH
n2e
nb . (8.31)

Using this in equation (8.28) we find the Saha equation

1−Xe

X2
e

= 10−9 2ζ(3)

π2

(
2πT

me

) 3
2

e
13.6eV

T . (8.32)

23Here we use nH to denote the neutral hydrogen only so that np ̸= nH .
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8.3.2 Recombination

The Saha equation allows us to get an estimate for the energies at which recombination
happened. Taking the onset of recombination as the temperature Tbeginning at which
Xe = .9 and the end of recombination as the temperature Tend at which Xe = .1,
we find from equation (8.32) that Tbeginning ≈ .35eV and Tend ≈ .30eV . The reason
that these results are so much smaller than the 13.6eV binding energy is that there
are many, many more photons than baryons and that the black body spectrum of the
photons has a tail of high energy photons that keep the Hydrogen ionized until the
average temperature of the photon bath is well below the binding energy of Hydrogen.24

8.3.3 Photon decoupling

The so-called time of last scattering at which the electrons and photons scatter for the
last time via Thompson scattering

e− + γ ↔ e− + γ , (8.33)

is actually happening even later around a time when Xe ≈ .01. We see this as fol-
lows: The cross-section for Thompson scattering is σT ≈ 2 × 10−3MeV −2 and the
corresponding interaction rate is given by

ΓT ≈ neσT = nbXeσT ≈ 10−9 2ζ(3)

π2
T 3XeσT . (8.34)

In order to determine the temperature at decoupling Tdec we have to check when the
above interaction rate is of the same size as the Hubble expansion rate. During matter
domination the Hubble rate is given by 25

H = H0

(
T

T0

) 3
2

. (8.35)

This implies

ΓT (TD) = H(TD) ⇔ T
3
2
DXe(TD) = 109

π2

2ζ(3)

H0

σT T
3
2
0

. (8.36)

We can numerically solve this equation and find TD ≈ .26eV and Xe(TD) ≈ .003. The
temperature TD ≈ .26eV corresponds to a time of 380,000 years after the big bang and
a redshift of z ≈ 1100.

24The binding energy, i.e., the ionization energy for the first electron in 4He is the highest of any atom in
the periodic table, namely 24.6eV . Therefore, Helium nuclei combine with electrons before the protons.

25This follows from the first Friedmann equation

H2 =
8πG

3
ρm ∝

(
a0
a(t)

)3

and the fact that a(t) ∝ 1/T .
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Summary: Nucleosynthesis

Arguably the biggest success of the big bang model is the predictions of
element abundances in our very early universe. The initial soup of par-
ticles cools and eventually starts forming nuclei. Their abundance can
be calculated using standard nuclear physics and we found that, surpris-
ingly, essentially only Helium is being formed. The ratio of Helium nuclei
and protons (i.e., Hydrogen nuclei) perfectly matches observations. This
so-called nucleosynthesis happened during the first few minutes of our
universe.
After more than 200,000 years the universe has cooled sufficiently so that
electrons can combine with the nuclei to form neutral atoms. It takes
until 380,000 years after the big bang to have a sufficiently large number
of neutral atoms that allows a free streaming of the cosmic microwave
background that we observe today.
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Part III - Inflation

9 Inflation solves early universe problems

Having discussed the thermal history of our universe and in particular its evolution at
times larger than 10−14 seconds after the big bang, we will now venture even closer to
the initial singularity and discuss the theory of inflation. We will first layout the original
problems that cosmologists were facing before Guth, Linde, Albrecht and Steinhardt
invented inflation in the 1980’s. Then we explain how inflation solves these problems.

9.1 Beyond ΛCDM

To describe the evolution of our universe so far, we have been able to use well tested
particle and nuclear physics and two extra ingredients: the cosmological constant Λ
and cold dark matter (CDM), where cold refers to the fact that this matter behaves like
non-relativistic matter with equation of state parameter w = 0. This so called ΛCDM
model seems to correctly describe the evolution of our universe from 10−14 seconds
after the big bang until today. However, we have already seen that there has to be
something else that we don’t understand yet: The asymmetry between matter and anti-
matter requires processes in the earlier universe that go beyond the standard model of
particle physics. In addition, it seems that our universe underwent a period of inflation
during very early times. While experiments provide us with ever improving bounds
on different inflationary models, they have not yet singled out one particular model of
inflation so we will discuss a variety of different models and their features. Since the
theory of inflation is less well tested, we should ask what its generic predictions are and
which of those we observe. As discussed above, cosmologists up until 1980 were faced
with some problems that get resolved, if our very early universe underwent a period of
inflation. However, the absence of these problems is then not a prediction but rather
a post-diction of inflation since it was invented to resolve these issues. Does inflation
make in addition any generic predictions that we can test? Yes, as we discuss at the
end of this course, all inflationary models predict a nearly scale invariant spectrum
for the density perturbation that are tiny deviations from an entirely homogeneous
universe. The imprint of these density perturbations has been observed in the cosmic
microwave background. So, it is fair to say that the observational evidences for the
theory inflation are pretty robust and our universe most likely underwent such a phase
at a time that could be as early as 10−34 seconds after the big bang.

9.1.1 The horizon problem

The first problem in an early universe that is only dominated by radiation and mat-
ter is called the horizon problem. Recall that the photons of the cosmic microwave
background decoupled 380,000 years after the big bang and they constitute the best
black body spectrum ever observed in nature. This black body spectrum has the same
temperature everywhere in the sky. In particular this means that all the photons that
come to us from one side have the same temperature as the photons that come from the
opposite side. This seems only possible, if these photons have been in causal contact
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with each other so that they can be in thermal equilibrium. We have previously dis-
cussed that there are abundant interactions in the early universe that establish a local
equilibrium but we haven’t discussed the size of these local patches in equilibrium. In
order to do so, it is useful to work again with the conformal time τ .

The metric in conformal times is given by (see equation (4.3) above)

ds2 = a(τ)2
(
−dτ2 + dr2

1−Kr2
+ r2dΩ

)
, (9.1)

and a radially traveling light ray satisfies

ds = 0 ⇒ dτ =
dr√

1−Kr2
≡ dχ . (9.2)

In particular this means that in the (χ, τ)-plane light rays travel along straight lines at
45◦ angles. For each point P in the (χ, τ)-plane we can draw a future light-cone and a
past light-cone by drawing two straight lines at ±45◦ angles that intersect in P . Every
point in spacetime inside the past light-cone can send information to the point P and
every point in the future light-cone can receive information from the point P . We have
already discussed these causally connected parts in subsection 4.1 above. The radius
of the future light-cone is the event horizon and the radius of the past light-cone is the
particle horizon (see figure 39).

Figure 39: The future and past light-cone associated to the point P .

The question we have to ask is whether all the points on the surface of last scattering
that we observe today have been in causal contact or not? The answer is no! This means
that in an early universe that is radiation dominated the photons that are coming from
one side of the universe and are reaching us today have never been in causal contact
with the photons coming from the other side of the universe. So, why are they both
having the same temperature? This is the horizon problem and is depicted in figure
40.

The initial singularity with a(τ = 0) = 0 has non-zero (and maybe even infinite)
comoving spatial size. If we assume that the points on this initial surface are not
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Figure 40: The point P1 and P2 have past light-cones that do not intersect so these
two points have never been in causal contact. The blue cone is the future light-cone
of one point on the initial singular surface and the red line shows the maximal surface
size that could have been in causal contact.

particularly fine-tuned to have all the same initial conditions then we expect thermal
equilibrium to lead to the same temperature only for rather small patches of the sky. A
simple calculation for our universe reveals that only photons coming from within a 2◦

angle should be in thermal equilibrium. This means that the surface of last scattering
should consist of roughly 4π/(2◦∗2π/360◦)2 ≈ 104 different patches that have not been
in thermal equilibrium.

We will see later that there are actually small fluctuations in the temperature of
the CMB of the order of .01%. While this is incredibly small, it raises the ques-
tion of how different causally disconnected patches would have to be in order not to
worry about the fine tuning of the initial surface. A natural expectation would be a
change of temperature between different regions of the order of 1K, i.e., of the order of
TCMB,0 = 2.725K. Additionally, once we know about these small fluctuations in the
CMB then there is actually an even better posed horizon problem: The fluctuations in
the temperature are correlated on scales much larger than 2◦, so how is this possible,
if these regions have not been in causal contact?

9.1.2 The flatness problem

The second problem is also related to fine tuning. Recall from subsection 3.2 that the
curvature contribution to the energy density of our universe is very small. This means
that the normalized total energy density today is ΩT ≈ 1. More specifically, from
equations (3.5) and (3.2), we have

Ωtot − 1 =
K

ȧ(t)2
=

3K

8πGρc(t) a(t)2
. (9.3)

Today the experimental bound is (see equation (3.6))

K

ȧ(t0)2
< .005 . (9.4)

Let us look at the last term in equation (9.3). If the energy density is dominated by a
cosmological constant then ρc(t) is constant, however, during a matter dominated era
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we have ρc(t) ∝ a(t)−3 and during the radiation dominated era we have ρc(t) ∝ a(t)−4.
This means that any small deviation of Ωtot from one will grow during the radiation
and matter dominated era. Likewise, going back in time we find that the value of Ωtot

must have been incredibly close to 1 in the early universe. At matter-radiation equality
(z = 3400) we have roughly

Ωtot − 1 < .005
1

3400
≈ 1.5× 10−6 , (9.5)

and at the time of the electro-weak phase transition with T ≈ 100GeV and z = 1015

we have

Ωtot − 1 < .005
1

3400

(
3400

1015

)2

≈ 1.7× 10−29 . (9.6)

Finally, at the Planck scale T ≈MP = 2.2× 1018GeV we would have

Ωtot − 1 < .005
1

3400

(
3400

1015 · 2.2× 1016

)2

≈ 3.5× 10−62 . (9.7)

This seems like an incredible fine tuning, which can’t be explained by just K = 0.
Even in a flat universe we would expect some locally changing value of K, since the
spacetime is dynamical in general relativity. So why is the value in our (visible) universe
so incredibly fine-tuned?

9.1.3 The monopole problem

Alan Guth was thinking about so-called grand unified theories (GUT) in which all forces
of the standard model of particle physics are unified in a single force around an energy
scale of approximately 1016GeV . This single force is broken into the strong, weak and
electromagnetic force at energies below 1016GeV and usually this phase transition leads
to unwanted relics like for example magnetic monopoles. The existence of such heavy
particles that would be produced during the phase transition can overclose the universe
(Ω ≫ 1). So, Guth’s original motivation for inflation was to remove the overabundance
of these heavy relics in GUT theories.

9.2 Inflation

Inflation is a period of accelerated expansion of our universe that happened at very
early times. Here we will focus on the case in which the universe is approximately
exponentially expanding as is the case during an era that is dominated by a cosmological
constant. Such a period solves the three problems above, if it lasts sufficiently long. We
can make this more precise and determine a minimal amount of exponential expansion
that is required to solve each of the problems above.

9.2.1 Solving the horizon problem

If in the very early universe there would have been a phase during which a(t) grows
exponentially, then a small patch in local thermal equilibrium could be stretched to
the size of the surface of last scattering that we observe today and thereby solve the
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horizon problem.26 More precisely, if the early universe would have been in a phase
with a(t) ∝ eHt, then the beginning of the universe would not be at t = 0 anymore but
at t = −∞. This would likewise push the initial conformal time τi to −∞, while any
finite period of inflation pushes τi to a negative but finite value. This can then allow
for causal contact of all the points we observe on the surface of last scattering as is
shown in figure 41.

Figure 41: The point P1 and P2 have past light-cones that can intersect, if we have
a period of exponential expansion that pushes τi sufficiently far back.

Before we discuss how such a period of inflation can arise in our very early universe,
we would like to get an estimate for how long it would have to last in order to solve
the horizon problem. From the diagram 41, it is clear that we need the conformal
time between the beginning of inflation τi and the end of inflation which is around the
reheating time τreh to be at least as large as the time between reheating and today at
τ0.

Recalling that dτ ≡ a(t)−1dt we get

τreh−τi =
∫ τreh

τi

dτ ′ =

∫
dt′

a(t′)
=

∫
da

aȧ
=

∫ areh

ai

da

a2Hinf
≈ 1

aiHinf
− 1

arehHinf
≈ 1

aiHinf
,

(9.8)
where we used that the Hubble constant during inflation is approximately constant
and that ai ≪ areh due to the exponential expansion during inflation.

To get a very simple (but fairly accurate estimate) we assume that the universe
after the end of inflation is radiation dominated so that a(t) = a0

√
t/t0 and a2H =

26Actually things are more complicated: Inflation itself needs somewhat special initial conditions to start,
so that the horizon problem is substantially alleviated but not completely solved. After inflation ends the
temperature of the universe is essentially zero, because T ∝ a(t)−1 and a(t) grows exponentially during
inflation. However, the inflaton field carries energy that is then used to homogeneously reheat the universe.
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const. ≈ a2rehHinf since a(t) is a smooth function. This then leads to

τ0 − τreh =

∫ τ0

τreh

dτ ′ =

∫ a0

areh

da

a2H
≈ 1

a2rehHinf
(a0 − areh) ≈

a0
a2rehHinf

, (9.9)

where we used that a0 ≫ areh. We then find the constraint

τreh − τi ≳ τ0 − τreh
1

aiHinf
≳

a0
a2rehHinf

areh
ai

≳
a0
areh

≈ Treh
T0

, (9.10)

where we used in the last line that the temperature scales like the inverse of the scale
factor. For example, for inflation with an energy scale of Treh ≈ 1014GeV we then find

areh
ai

≳ 1026 ≈ e60 ≡ eNe . (9.11)

We see that the expansion factor during inflation is gigantic so that one defines the
number of e-folds Ne that is given by the logarithm to basis e of the expansion factor.
The number of e-folds required to solve the horizon problem depends on the energy
scale that we chose to be 1014GeV above and that is not known. For the inflationary
models that are currently being tested the energy scalar is very high 1015 − 1016GeV
and the standard values in the literature are Ne = 50− 60 which nicely matches with
the value derived above.

Worked problem 9.1: The duration of inflation

From figure 41 above, we see that we roughly need to double the age
of the universe in conformal time, since τ0 corresponds to today with
t0 = 13.8Gyr and CMB correspond to 380,000 yrs. Let us determine
how long an additional period of inflation has to last in real time:
From equation (9.11) we see that the universe needs to grow by e60.
Determine the duration of inflation that gives rise to such 60 e-folds for
Hinf = 1014GeV and Hinf = 100TeV .

Solution: During inflation we have an exponential growth a(t) ≈ eHinf t,
so that we find that the time needed for 60 e-folds is simply

t =
60

Hinf
=

60ℏ
Hinf

≈ 4× 10−14eV · s
Hinf

. (9.12)

For Hinf = 1014GeV we find t = 4 × 10−37s and for Hinf = 100TeV we
get t = 4×10−28s. So, the required minimal amount of inflation that leads
to 60 e-folds happens in an incredibly short interval in real time.
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9.2.2 Solving the flatness problem

The flatness problem is solved because during inflation a(t) ∝ ȧ(t). The large grows
of ȧ(t) then suppresses the term K

ȧ(t)2
in equation (9.3). If we would take K

ȧ(t)2
to be

initially some order one number and we want it to be sufficiently small at the end of
inflation to explain the observed value, then we need for example for inflation ending
slightly below the GUT scale around 1014GeV that

K

ȧ(ti)2
≈ 1 , (9.13)

Ωtot(treh)− 1 =
K

ȧ(treh)2
≲ .005

1

3400

(
3400

1015 · 1012

)2

≈ 1.7× 10−53 , (9.14)

⇒ ȧ(treh)

ȧ(ti)
≈ a(treh)

a(ti)
≳
(
1.7× 10−53

)− 1
2 ≈ e60 , (9.15)

where we used that during inflation a(t) ≈ eHinf t with Hinf the constant Hubble pa-
rameter during inflation. We see that we again need roughly 60 e-folds of inflation
to solve the flatness problem and this value is of course related to the energy scale at
which we would like to solve the flatness problem.

Worked problem 9.2: Energy dependence of the number of e-folds

If inflation happens at higher energy scales, we usually need more e-folds
to solve the flatness (and also the horizon problem). How many e-folds
do we require to solve the flatness problem for an energy of 100TeV ?

Solution: We simply repeat the above calculation for 100TeV = 105GeV
instead of 1014GeV and find

K

ȧ(ti)2
≈ 1 ,

Ωtot(treh)− 1 =
K

ȧ(treh)2
≲ .005

1

3400

(
3400

1015 · 103

)2

≈ 1.7× 10−35 ,

⇒ ȧ(treh)

ȧ(ti)
≈ a(treh)

a(ti)
≳
(
1.7× 10−35

)− 1
2 ≈ e40 . (9.16)

So, in order to solve the flatness problem with such low scale inflation we
would only need 40 e-folds of inflation instead of 60.

9.2.3 Solving the monopole problem

It is intuitively clear that a period of inflation will also solve the monopole problem,
provided that the monopoles and other relics are not produced after inflation. If
magnetic monopoles would be produced at the GUT scale, then a period of inflation
that takes places at lower energies dilutes away all the relics and leaves us with an
almost empty universe. The amount of inflation necessary to solve the monopole
problem is usually a little bit lower and roughly 30 e-folds are enough to sufficiently
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dilute the relics so that they don’t have any impact on the cosmological evolution
and wouldn’t be observable today. However, if there is a GUT theory at energies
around 1016GeV then the reheating temperature after inflation has to be lower than
this 1016GeV . The current upper bound on the energy scale during inflation is around
the GUT scale so that the reheating temperature is also bounded from above by the
GUT scale and there is no tension between grand unified theories and inflation.

9.3 A period of inflation from a scalar field

A great problem with a very early period in our universe that is dominated by a large
cosmological constant is that the energy density of the cosmological constant does not
decay during the expansion, while it does so for matter and radiation. This means,
as we discussed previously, that a large cosmological constant is inconsistent with
our observed universe. So, what we need for inflation is a fluid that mimics a large
cosmological constant for a short period of time and then transfers its energy into the
other particles of our universe during a reheating process and afterwards essentially
disappears. This can be accomplished by a scalar field, i.e., a spinless particle similar
to the Higgs field (but most likely not the standard model Higgs particle).

The action for such a scalar field ϕ, that is called the inflaton, is given by

S =

∫
d4x

√
−g
(
−1

2
∂µϕ∂

µϕ− V (ϕ)

)
. (9.17)

Here V (ϕ) is the potential for the scalar field that we leave arbitrary. You can think
of this scalar field as a ‘ball’ rolling in a potential. The only difference here is that
ϕ in principle depends not only on the time t but also on the spatial coordinates xi

so the value of ϕ can change throughout space. You are probably familiar with this
from electrodynamics where the electric and magnetic fields can vary through space
and time.

As derived in appendix B, the variation of the above action with respect to the
metric leads to the following energy density and pressure for a scalar field in the FRW
universe

ρϕ =
1

2
ϕ̇2 +

1

2

(∇ϕ)2

a2
+ V (ϕ) , (9.18)

Pϕ =
1

2
ϕ̇2 − 1

6

(∇ϕ)2

a2
− V (ϕ) . (9.19)

Note, that if the spatial variation ∇ϕ and the time variations ϕ̇ vanish, then we have
ρϕ = V (ϕ) = −Pϕ so that the scalar field behaves exactly like a cosmological constant!
Guth’s original idea was that the scalar field sits at a false minimum of the potential
as shown in figure 42. The scalar field will then lead to an effective large cosmological
constant and a period of inflation. After quantum tunneling through the barrier the
scalar field will roll down the potential to the true minimum and again lead to an
effective cosmological constant that could be the observed value of the cosmological
constant today if Vtoday ≈ 10−120M4

P .
The problem with Guth’s original proposal is that the quantum tunneling will

happen via the nucleation of spatial bubbles. Inside these bubbles the field is on its
way to the true vacuum and outside of the bubbles is the false vacuum. Since the energy
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Figure 42: The scalar field is initially trapped in a false vacuum leading to a period
of inflation with a large cosmological constant proportional to Vinf . After quantum
tunneling the scalar field rolls to the true minimum at which the value of the potential
is tiny Vtoday ∼ 10−120M4

P .

is smaller inside of these bubbles, the bubble walls will expand outwards. However, it
turned out that these bubbles cannot be large enough to contain our entire universe
and the collision of multiple bubbles would lead to inhomogeneities that are larger than
the ones we observe. So, there is no nice way of ending inflation in this case.

However, shortly after Guth’s original idea, Linde, Albrecht and Steinhardt pro-
posed another kind of inflation in which the scalar field is not trapped in a false vacuum
but rather rolls very slowly since the scalar potential is very flat as is shown in fig-
ure 43. When the inflaton reaches a steeper part of the potential, its kinetic energy
becomes important and it does not behave like a cosmological constant anymore and
inflation ends. When the scalar field reaches its true minimum, it will oscillate and
couplings to the standard model particles can transfer the kinetic energy of the inflaton
into standard model particles which leads to a reheating of the universe and the start
of our hot universe that we can describe so well with thermodynamics.

Figure 43: The potential is very flat so that the scalar field rolls very slowly leading
to a period of inflation with a large cosmological constant proportional to Vinf . Once
the potential steepens, inflation ends and the scalar field rolls to its true minimum with
Vtoday ∼ 10−120M4

P .
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Summary: Problems in the early universe

We have seen in this section that our very early universe is highly fine-
tuned. Light from the CMB, arriving at the earth from opposite directions,
has exactly the same temperature although the light originates from places
that should have never been in causal contact. A period of inflation, during
which our universe grows in size by potentially a factor of 1023 cubed, can
solve this and other problems like the flatness problem. Such a period of
inflation would need to last only for a split second and require the existence
of a new particle called the inflaton. Such a particle can give rise to an
exponentially expanding universe during the very early universe as well
as today, i.e., it could also be the underlying explanation behind the dark
energy that we observe in our current universe.

10 Slow-roll inflation

In the previous section we showed how a period of inflation can solve several problems
that we encounter in our very early universe. In this section we are studying the
relevant equations for inflation as well as a few exemplary models.

10.1 A scalar field

As we have seen in the previous section, a new scalar field, called the inflaton, can
lead to a temporary phase of inflation. To make this precise we vary the action for the
scalar field

S =

∫
d4x

√
−g
(
−1

2
∂µϕ∂

µϕ− V (ϕ)

)
, (10.1)

with respect to the scalar field to derive its equation of motion. In order to do this
recall that the FRW metric takes the form

ds2 = gµνdx
µdxν = −dt2+a(t)2γijdxidxj ≡ −dt2+a(t)2

(
dx2i +K

x2i dx
2
i

1−Kx2i

)
. (10.2)

This then leads to

δS =

∫
d4xa(t)3

(
−gµν∂µϕ∂νδϕ− V ′(ϕ)δϕ

)
=

∫
d4x

[
∂ν
(
a(t)3gµν∂µϕ

)
− a(t)3V ′(ϕ)

]
δϕ

=

∫
d4x

[
−∂t

(
a(t)3∂tϕ

)
+ ∂i

(
a(t)γij∂jϕ

)
− a(t)3V ′(ϕ)

]
δϕ

=

∫
d4x

[
−3ȧ(t)a(t)2ϕ̇− a(t)3ϕ̈+ a(t)∇2ϕ− a(t)3V ′(ϕ)

]
δϕ

=

∫
d4x

(
−a(t)3

) [
ϕ̈+ 3

ȧ(t)

a(t)
ϕ̇− ∇2ϕ

a(t)2
+ V ′(ϕ)

]
δϕ , (10.3)
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where we used the short-hand notation V ′(ϕ) = ∂ϕV (ϕ). So, the equation of motion
for a scalar field in an FRW universe is given by

ϕ̈+ 3Hϕ̇− ∇2ϕ

a(t)2
+ V ′(ϕ) = 0 . (10.4)

Once inflation starts, a(t) grows exponentially so that the term with the spatial deriva-
tives of ϕ quickly becomes unimportant and the above equation reduces to

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 . (10.5)

Worked problem 10.1: Scalar field EOM from continuity equation

Derive the above scalar field equation of motion in equation (10.5) from
the continuity equation. Use that

ρϕ =
1

2
ϕ̇2 + V (ϕ) , (10.6)

Pϕ =
1

2
ϕ̇2 − V (ϕ) . (10.7)

Solution: We simply plug in the above into the continuity equation (cf.
equation (1.34))

ρ̇ϕ + 3H(ρϕ + Pϕ) = 0
ϕ̇ϕ̈+ ϕ̇V ′(ϕ) + 3Hϕ̇2 = 0

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 . (10.8)

Note that equation (10.5) that describes the evolution of a homogeneous scalar field
is very similar to a harmonic oscillator.27 The derivative of the scalar potential acts
like a driving force and the expansion of our universe leads to the friction term 3Hϕ̇.

10.2 Slow-roll inflation

As we discussed in the previous section, the successful models of inflation have a very
flat potential along which the scalar field rolls down towards a minimum of the poten-
tial. If the scalar field rolls so slow, that we can neglect ϕ̇2 compared to the potential
value V (ϕ), then the scalar field behaves approximately like a cosmological constant,
ρϕ ≈ −Pϕ, and the universe undergoes a period of exponential expansion. This is called
slow-roll inflation since the inflaton is rolling down the potential very slowly. Because
matter and radiation will be diluted away due to this exponential expansion, we can
neglect any other source of energy density and simply focus on the scalar field. We will
get back to setting the initial conditions for our hot big bang scenario in subsection
11.3, when we discuss the end of inflation and the reheating of our universe.

There are two small (dimensionless) parameters that allow us to make the condition
of a slowly rolling scalar field more precise. Recall that the first Friedmann equation

27If we choose V (ϕ) = 1
2m

2ϕ2, then the equation of motion is identical to a harmonic oscillator with
friction.
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sourced by a homogeneous scalar field takes the form(
ȧ(t)

a(t)

)2

= H2 =
8πG

3
ρϕ =

1

3M2
P

(
1

2
ϕ̇2 + V (ϕ)

)
. (10.9)

So, we see that for ϕ̇2 ≪ V (ϕ) we have a nearly constant potential V (ϕ) value since the
scalar field is only changing very slowly in time. This then implies a nearly constant
Hubble parameter, so that it is very useful to introduce the dimensionless slow-roll
parameter

ϵ ≡ − Ḣ

H2
. (10.10)

Note that during a period of almost exponential expansion Ḣ < 0 so that ϵ > 0 (see
equation (10.16) below). A period of inflation requires ϵ ≪ 1. Since we need inflation
to last sufficiently long, we need ϵ not to change that quickly which is captured by the
second dimensionless slow-roll parameter

η ≡ ϵ̇

Hϵ
. (10.11)

This parameter keeps track of the relative change ϵ̇/ϵ per Hubble time and also needs
to be small for an extended period of inflation.

Last time we have already used the idea of e-folds that measure the number of
exponential expansions (to basis e) of our universe. We already defined the total
number of e-folds as Ne but it is often more useful to measure time in terms of the
number of e-folds. To this end we define

dN ≡ d ln(a) = Hdt . (10.12)

The total number of e-folds Ne is then given by

Ne =

∫ af

ai

d ln a = ln

(
af
ai

)
=

∫ tf

ti

Hdt ≈ Hinf (tf − ti) , (10.13)

where Hinf is the approximately constant Hubble parameter during inflation.
The second Friedmann equation

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3P (t)) = − 1

6M2
P

(ρ(t) + 3P (t)) , (10.14)

in the presence of only a homogeneous scalar field gives

Ḣ +H2 = − 1

3M2
P

(ϕ̇2 − V (ϕ)) . (10.15)

Using equation (10.9) we then get

Ḣ = − ϕ̇2

2M2
P

. (10.16)

Plugging this into the definition of ϵ we find

ϵ =
ϕ̇2

2M2
PH

2
. (10.17)

104



Taking the time derivative gives

ϵ̇ =
ϕ̈ϕ̇

M2
PH

2
− ϕ̇2Ḣ

M2
PH

3
. (10.18)

We can use this to rewrite η

η ≡ ϵ̇

Hϵ
=

(
ϕ̈ϕ̇

M2
PH

2
− ϕ̇2Ḣ

M2
PH

3

)
2M2

PH

ϕ̇2
= 2

ϕ̈

ϕ̇H
− 2

Ḣ

H2
= 2

ϕ̈

ϕ̇H
+ 2ϵ . (10.19)

10.2.1 The slow-roll equations

So far, we have not really made any approximations but since during inflation ϵ and
η are very small we can calculate them and everything else to leading order to get
rather simple expressions. For example, a small ϵ ≪ 1 (see eq. (10.17)) implies that
ϕ̇2/(2M2

P ) ≪ H2. It then follows from equation (10.9) that during slow-roll inflation

H2 ≈ V

3M2
P

. (10.20)

This means that the Hubble constant during inflation is set by the value of the scalar
potential. Since the scalar field is slowly rolling the value of the potential is only
changing very slowly and therefore the Hubble constant is approximately constant
during inflation. Similarly, a small |η| and ϵ implies due to equation (10.19) that
ϕ̈≪ ϕ̇H. It then follows from equation (10.5) that

3Hϕ̇ ≈ −V ′(ϕ) . (10.21)

Taking the time derivative of the above equation we get

3Ḣϕ̇+ 3Hϕ̈ ≈ −ϕ̇V ′′(ϕ) . (10.22)

Using the equations (10.20), (10.21) and (10.22), we find the following approximate
expression for ϵ and η

ϵ =
ϕ̇2

2M2
PH

2
≈ (V ′)2

18M2
PH

4
=
M2

P

2

(
V ′

V

)2

,

η = 2
ϕ̈

ϕ̇H
+ 2ϵ ≈ 2

ϕ̇H

(
− ϕ̇V

′′

3H
− Ḣϕ̇

H

)
+ 2ϵ = −2M2

P

V ′′

V
+ 2M2

P

(
V ′

V

)2

.(10.23)

So, we see that we can express ϵ and η entirely in terms of the scalar potential. It is
convenient to introduce the slow-roll parameters ϵV and ηV that are defined by

ϵV ≡
M2

P

2

(
V ′(ϕ)

V (ϕ)

)2

≈ ϵ , (10.24)

ηV ≡ M2
P

V ′′(ϕ)

V (ϕ)
≈ −1

2
η + 2ϵ . (10.25)

The smallness of ϵV is equivalent to the condition that the first derivative of the po-
tential is small compared to the value of the potential, while the smallness of |ηV | is
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equivalent to the smallness of the second derivative of the potential. It follows from the
equations (10.23), that the slow-roll conditions ϵ, |η| ≪ 1 are equivalent to ϵV , |ηV | ≪ 1.

We can also express the number of e-folds of inflation in terms of the slow-roll
parameter ϵV . Using equation (10.17) we can rewrite

Hdt =
H

ϕ̇
dϕ =

1√
2ϵ

|dϕ|
MP

≈ 1√
2ϵV

|dϕ|
MP

. (10.26)

Now we use this in the definition of the number of e-folds given in equation (10.13) to
get

Ne =

∫ tf

ti

Hdt ≈
∫ ϕf

ϕi

1√
2ϵV

|dϕ|
MP

=
1

M2
P

∣∣∣∣∫ ϕf

ϕi

V (ϕ)

V ′(ϕ)
dϕ

∣∣∣∣ . (10.27)

10.3 Examples of inflationary models

10.3.1 Natural inflation

After discussing all the relevant equations, let us now discuss a concrete model of
inflation that is called natural inflation. In this model the inflaton field has a discrete
shift symmetry ϕ→ ϕ+ 2πf . The potential that respects this shift symmetry is given
by

V (ϕ) = λ4
[
1 + cos

(
ϕ

f

)]
. (10.28)

Here we have set the minimum value of the potential equal to zero since the current
cosmological constant is so small that it would not matter for the period of inflation,
if we add to this potential a constant that is 10−120M4

P or not. One period of the
potential is shown in figure (44).

π

2
π

3π

2
2 π

ϕ

f

0.5

1.0

1.5

2.0

V (ϕ)

λ4

Figure 44: The scalar potential for natural inflation.
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Now we calculate the slow-roll parameters

ϵV =
M2

P

2f2

 sin
(
ϕ
f

)
1 + cos

(
ϕ
f

)
2

, (10.29)

ηV = −
M2

P

f2

cos
(
ϕ
f

)
1 + cos

(
ϕ
f

) . (10.30)

Since the scalar potential is zero (or very small) at the minimum of the potential, while
the second derivative is large, we see that we cannot satisfy |ηV | ≪ 1 near the minimum
of the potential.28 Away from the minimum at ϕ = πf , there is no enhancement of ϵV
and ηV from the denominator but we don’t have any substantial suppression from the
nominator either, since it is not possible to have | sin(ϕ/f)| ≪ 1 and at the same time
| cos(ϕ/f)| ≪ 1. So, the only way to get small ϵV and |ηV | in this model is by choosing
f ≫ MP . This automatically suppresses both slow-roll parameters and allows for a
period of slow-roll inflation.

We can calculate the number of e-folds in this model using equation (10.27)

Ne ≈
∫ ϕf

ϕi

1√
2ϵV

|dϕ|
MP

=
f

M2
P

∫ ϕf

ϕi

∣∣∣∣∣∣
1 + cos

(
ϕ
f

)
sin
(
ϕ
f

)
∣∣∣∣∣∣ |dϕ| = 2

f2

M2
P

∣∣∣∣∣∣log
sin

(
ϕf

2f

)
sin
(

ϕi

2f

)
∣∣∣∣∣∣ .
(10.31)

We see, probably as one would expect, that the number of e-folds diverges as one moves
the starting point ϕi closer and closer to a maximum ϕ ∈ 2πnf , n ∈ Z.

The end of inflation is defined as the point at which one of the slow-roll parameters
becomes equal to 1. Usually, the expansion after that point can only add some order
one number of e-folds. So, this end of inflation is not the exact end of the exponential
expansion but a rough guide. In our example ϵV and |ηV | are of the same order and
which one is bigger depends on how close to the minimum we are. For simplicity we
just focus on ϵV = 1. One finds that

ϵV (ϕf ) = 1 ⇔ ϕf = f

[
π ± arctan

(
2
√
c

c− 1

)]
, (10.32)

where c =
√
2f/MP . Since a period of slow-roll requires f ≫MP , we have that c≫ 1

and we can approximate

arctan

(
2
√
c

c− 1

)
≈ 2√

c
= 2

3
4

√
MP

f
. (10.33)

Now if we take for example f = 100MP ≫ MP , then we have ϕf ≈ 2.97f = 297MP

(or ϕf ≈ 2πf − 2.97f ≈ 3.31f = 331MP ) and we find for the number of e-folds

Ne ≈ 2× 104

∣∣∣∣∣∣∣∣log
sin

(
π
2 ± 2

3
4

20

)
sin
(

ϕi

200MP

)

∣∣∣∣∣∣∣∣ ≈ −2× 104 log

∣∣∣∣sin( ϕi
200MP

)∣∣∣∣− 71 . (10.34)

28The second derivative of the scalar potential at the minimum determines the mass of the inflaton today.
Since we don’t observe any very light scalar fields, the second derivative at the minimum has to be much
larger than the value of the potential.
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If we want to get 60 e-folds, then we can numerically solve for ϕi and find ϕi ≈
2.91f = 291MP (or ϕi ≈ 2πf − 2.91f ≈ 337MP ). We see that in this example ϕ
travels a distance in field space that is larger than MP . Models of this type in which
∆ϕ ≡ |ϕi−ϕf | ≳MP are called large field models. Such large field models are currently
being tested by observations and are already highly constrained. Constructing these
models in a controlled way provides many theoretical challenges (and ideally requires
a full-fledged theory of quantum gravity). In these large field models ϵV is much larger
than in small field models. This in turn implies that large field models require less
tuning of the scalar potential in order to get a period of inflation.

10.3.2 m2ϕ2 inflation

As we also see from above, since ϕi ≈ 2.91f and ϕf ≈ 2.97f , the inflaton field does
not really explore much of the potential but stays very close to the minimum. In such
cases we can just expand the potential around the minimum and find

V (ϕ) = λ4
[
1 + cos

(
ϕ

f

)]
≈ λ4

2f2
(
(ϕ− πf)2 +O

(
(ϕ− πf)4

))
. (10.35)

Keeping only the leading term, defining m2 = λ4/f2 and shifting ϕ → ϕ+ πf we find
the potential

V (ϕ) =
1

2
m2ϕ2 . (10.36)

This is arguably the simplest potential for large field inflation and it is very generic
in the sense that for every massive scalar field the potential around the minimum is
quadratic (since m2 ∝ V ′′(ϕ)).

In this simple model the slow-roll parameters are

ϵV = ηV = 2

(
MP

ϕ

)2

. (10.37)

So, as long as ϕ≫MP we have slow-roll inflation and inflation ends when ϕ ≈
√
2MP .

The number of e-folds in this model is given by

Ne ≈
∫ ϕf

ϕi

1√
2ϵV

|dϕ|
MP

=

∣∣∣∣∣
∫ √

2MP

ϕi

ϕdϕ

2M2
P

∣∣∣∣∣ = ϕ2i
4M2

P

− 1

2
. (10.38)

For sixty e-folds we need

ϕi = 2MP

√
60.5 ≈ 15.6MP . (10.39)

Plugging this into ϵV we find

ϵV (ϕi) = 2

(
MP

ϕi

)2

=
1

121
≈ .0083 . (10.40)

The bound from the Planck satellite from February 2015 excluded this model at the
2σ confidence level by providing the upper bound ϵV ≤ .0069.

The above more general model of natural inflation has essentially also been excluded
at the 2σ level by the Planck 2018 data release that is based on a refined analysis and the
combination with other experiments like BICEP and the Keck array. This shows that
this a very active research field with constantly improving observational constraints.
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10.3.3 Small field models of inflation

By definition small field models of inflation satisfy ∆ϕ = |ϕi − ϕf | ≪ MP . As an
example, let us again return to the model above and now focus on the region near
a maximum, for example near ϕ = 0. In this case we can expand all the equations
around ϕ = 0 and keep the leading terms. This gives us an example of so-called
hilltop inflation, in which the period of inflation happens near an unstable point of the
potential.

The potential becomes

V (ϕ) = λ4

[
2− 1

2

(
ϕ

f

)2
]
, (10.41)

which is unbounded from below but we of course only consider it as an approximation
near the ϕ values for which inflation takes place. This potential is then only valid
for ϕ/f ≪ 1 and does not need to be completed to a full cosine but can rather have
arbitrary higher order corrections of O

(
(ϕ/f)3

)
.

The slow-roll parameters are

ϵV =
M2

P

2

( ϕ
f2

2

)2

=
M2

Pϕ
2

8f4
, (10.42)

ηV = −
M2

P

2f2
. (10.43)

We see that both are small as long as MP , ϕ ≪ f . We assume that corrections to the
potential will modify ϵV and ηV near ϕ ∼ f/100 and that inflation ends around this
point. The number of e-folds is then given by

Ne ≈
∫ ϕf

ϕi

1√
2ϵV

|dϕ|
MP

=
2f2

M2
P

∫ f/100

ϕi

dϕ

ϕ
=

2f2

M2
P

log

(
f

100ϕi

)
. (10.44)

For example, for concreteness we can choose f = 5MP so that 60 e-folds require

Ne = 60 ≈ 50 log

(
MP

20ϕi

)
⇔ ϕi ≈ .015MP ≪MP . (10.45)

This leads to

ϵV (ϕi) ≈ 5× 10−8 ⇔ MP |V ′(ϕi)| ≈ 2× 10−4 V (ϕi) , (10.46)

which is a larger fine tuning of the potential as one would require in large field models.

Summary: Inflation

In this section we have learned about single field, slow-roll inflation that
is currently the most promising candidate of inflation. In particular, we
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have seen that slow-roll inflation is tied via the slow-roll parameters

ϵV ≡
M2

P

2

(
V ′(ϕ)

V (ϕ)

)2

, (10.47)

ηV ≡ M2
P

V ′′(ϕ)

V (ϕ)
, (10.48)

to the scalar potential V (ϕ). Slow-roll inflation takes place whenever
ϵV , ηV ≪ 1.
We have seen that there exist so-called large field and small field infla-
tionary models. The large field inflationary models are currently being
tested by experiments and the probably simplest model, V (ϕ) = 1

2m
2ϕ2,

has been excluded only a few years ago. However, there are many more
possible shapes for the inflationary potential and currently experiments
are restricting the possible scalar potentials further and further, as we will
discuss more in the next section.

11 Experimental constraints and reheating

In the previous section we discussed the relevant equations for slow-roll inflation as
well as a few concrete slow-roll models. In this section we discuss a little bit the
experimental status of these models, the reheating process and for the first time in this
course the deviation from a completely homogeneous universe.

11.1 Experimental constraints on inflationary models

As we mentioned in the previous section and as you have seen in the homework, ex-
periments place bounds on existing inflationary models. Several models have already
been excluded and future experiments will tighten the bounds and further shrink the
parameter space for inflationary models. Ideally this will ultimately single out one
particular model of inflation.

There are several ground-based experiments that observe a small patch on the sky
and have provided lots of important data that constraints the cosmological parameters.
Satellites on the other hand have access to most of the sky, however they require that the
entire measuring apparatus can be transported into space where it has to work without
being maintained or upgraded. We focus here on the bounds on inflationary models
that were released by the Planck collaboration in February 2015 and the BICEP2
and Keck array in October 2015. The Planck satellite has measured the black body
spectrum from the CMB at several different frequencies and also the polarization of
the photons. Its data tightens most bounds and favors simple single field slow-roll
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inflationary models. Furthermore, by constraining the slow-roll parameters

ϵV ≡
M2

P

2

(
V ′(ϕ)

V (ϕ)

)2

, (11.1)

ηV ≡ M2
P

V ′′(ϕ)

V (ϕ)
, (11.2)

it tells us about the form of the potential at a time of 50-60 e-folds before the end of
inflation.

The experimental data is usually presented in terms of constrains on the so-called
spectral index ns = 1 − 6ϵV + 2ηV and the tensor-to-scalar ratio r = 16ϵV . While
inflationary models generically predict values of ns ̸= 1, these values can in principle
be larger or smaller than 1. However, the data clearly requires ns < 1. The particular
case of ϵV = 0, ηV > 0 which gives rise to ns > 1 is experimentally excluded. This case
would have corresponded to a true de Sitter phase, i.e., a positive cosmological con-
stant, instead of a slowly rolling scalar field. The figure below shows the experimental
constraints in the (ns, r)-plane together with a variety of inflationary models:

Figure 45: Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck
2015 in combination with other data sets, compared to theoretical predictions of se-
lected inflationary models.

The most stringent bounds are the dark blue region (68% confidence level (CL))
and the light blue region (95% CL). Usually, a model is not considered to be excluded,
if it is within the 2σ (i.e., 95% CL) region. Once it is outside this region it is somewhat
or very unlikely depending on how far outside it is.

Theoretical models are shown in this plot as dots connected by a line or as a band.
The two dots that are shown for particular models, like for example the two black dots
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for V ∝ ϕ2 correspond to Ne = 50 and Ne = 60 and the line connecting the dots
correspond to Ne values between 50 and 60. The reason that this range is shown is
that we do not know for sure the exact number of e-folds Ne that we can observe.

In the sense discussed above, the simplest model of inflation, the m2ϕ2 model we
discussed in subsection 10.3.2, became very unlikely in 2015 and other models seem
favored by the data. For example, as you have seen in the homework, models with
V ∝ ϕp are more favored for p < 2. For the model of natural inflation that we
discussed in subsection 10.3.1 we see a purple band. The reason for this is that this
model has the free parameter f and depending on the value of this parameter we get
different predictions. So, f in this model is constraint by the data to take certain
values. We also see that the purple band is connected to the m2ϕ2 model that we
discussed previously as a limiting case of natural inflation.

Note that the parameter r determines directly the energy scale during inflation via

the equation Vinf ≈ 2 × 1016GeV
(
r
.1

) 1
4 . While experiments so far have only placed

an upper bound r < .07 (95% CL), any future detection of a non-zero r would tell us
directly the energy scale at which inflation took place.

The figure above shows a few more models of inflation that are just a very small
selection of the actual models that have been proposed. Hopefully in the future the
ever-improving observations will narrow the parameter space down to a single model.

11.2 Beyond slow-roll single field inflation

As you can already guess from the above plot, there are a lot of single field slow-roll
models since we can tune the parameters in many scalar potentials such that they
contain sufficiently flat regions. In addition to these single field slow-roll models there
are also multifield models in which we don’t just have a single scalar field but many.
These models are obviously much more complicated and make a variety of interesting
predictions. None of these have been observed so far so that multifield models are
constrained (but by no means excluded).

In addition to these slow-roll models in which a scalar field is rolling very slowly,
it is also possible to get a period of accelerated expansion from a very fast rolling
scalar field. This seemingly counterintuitive statement follows from the fact that we
can’t neglect higher order corrections to the scalar field’s kinetic term, once the field
is fast rolling, i.e., terms like (∂µϕ∂

µϕ)n for n > 1 become important. If these higher
order corrections take a specific form, then the fast-rolling scalar field leads to a period
of inflation. This class of models is usually called K-inflation, where K stands for
‘kinetic’.

11.3 Reheating

Inflation solves several problems in our universe but it also drastically modifies the
evolution of our early universe. In particular, the rapid expansion during inflation
leads to an essentially empty universe since the contributions to the energy density
from matter, radiation and curvature scale with a negative power of the scale factor
a(t). Since a(t) grows by a huge factor, essentially the entire energy density of the
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universe is given by the contribution of the scalar field:

ρϕ =
1

2
ϕ̇2 + V (ϕ) , (11.3)

Pϕ =
1

2
ϕ̇2 − V (ϕ) . (11.4)

At the end of inflation one of the slow-roll parameters becomes of order 1, which is
equivalent to the kinetic term ϕ̇2 becoming important. If the scalar field would oscillate
around the minimum at which V (ϕ) ≈ 0, then we would have ρϕ ≈ Pϕ, i.e., a phase
with w = 1. In that case it follows from equation (2.1) that ρϕ ∝ a(t)−3(1+w) = a(t)−6.
The universe at this point keeps expanding since the first Friedmann equation becomes(

ȧ(t)

a(t)

)2

=
ϕ̇2

6M2
P

> 0 . (11.5)

This would mean that the energy density of the universe would go to zero and we would
be left with a completely empty universe. Likewise, if the inflaton oscillates around the
minimum of the potential and the Hubble friction is negligible (because H becomes
small at the end of inflation), then the kinetic energy and the potential energy are on
average the same 1

2⟨ϕ̇
2⟩ = ⟨V (ϕ)⟩ and the inflaton behaves like pressure-less matter

⟨Pϕ⟩ = 0. In this case we have ρϕ ∝ a(t)−3. So, what we need is a way to transfer the
kinetic energy of the scalar field into the standard model degrees of freedom so that
our hot big bang scenario can take place.

The period during which this energy transfer is happening is called reheating, since
the universe during inflation has essentially zero temperature and then the universe
gets reheated.

Worked problem 11.1: Temperature decrease during inflation

Assume our universe undergoes a phase of inflation which increases its size
by 60 e-folds and that starts at T = 1016GeV . What is the temperature
at the end of inflation?
Solution: We know that T ∝ 1/a(t). So, if a(t) grows by e60 ≈ 1023

then the temperature reduces to T ≈ 10−7GeV = 102eV . This is much
smaller than the temperature we need to establish thermal equilibrium due
to ample interaction, i.e., T ≫ 100GeV . It is also smaller than the tem-
perature of 1MeV around which nucleosynthesis happens. We therefore
expect the reheating that is described in this section to have taken place.
Compared to the reheating temperature .01GeV < Treh < 1016GeV the
above temperature is essentially zero.

The reheating of the universe can be accomplished by coupling the inflaton scalar
field ϕ to other fields like for example the fermions ψ in the standard model via ϕψ̄ψ
Yukawa couplings in the action. These then lead to an extra term in the equation of
motion of the inflaton

ϕ̈+ 3Hϕ̇+ Γϕϕ̇+ V ′(ϕ) = 0 . (11.6)
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The additional friction term Γϕ is proportional to the decay width of the inflaton that
in turn is determined by the prefactor of the above Yukawa coupling. During inflation
we need H ≫ Γϕ so that the above term does not spoil inflation. At the end of inflation
H decreases and then the term Γϕ will become important and the energy transfer from
the inflaton to the standard model particles will take place.

This leads then to a reheating of the universe. Note that the spatial inhomogeneities
of the inflaton field ∇2ϕ/a(t)2 have been sufficiently suppressed during inflation to
avoid the horizon problem and the reheating will naturally lead to a homogeneous
temperature distribution. If the inflaton only couples to some of the standard model
particles, then the ample interactions that take place will lead to the required initial
conditions in which all standard model particles are in thermal equilibrium.

During inflation the scalar field has essentially only potential energy that then
gets transferred into kinetic energy towards the end of inflation. This kinetic energy
then gets in turn transferred into the standard model particles as soon as the Hubble
parameter has decreased sufficiently at the end of inflation so that H ≲ Γϕ. This
means that the maximum reheating temperature is set by the energy scale during

inflation Treh,max ∼ V
1
4
inf . This energy scale during inflation is currently constrained by

observation to be smaller than roughly the GUT scale, which is 1016GeV . This means
in turn that the reheating temperature cannot be larger than the GUT scale so that
after inflation there is no problem with relics that might appear during the breaking
of the GUT gauge group to the standard model gauge groups.

The lower end for the reheating temperature and therefore also for the energy
density during inflation is essentially only constrained by our observation of the correct
abundance of light elements like Helium and Hydrogen. As we discussed, this can
be correctly explained by the nucleosynthesis which starts around a few MeV . So,
although we in principle understand physics up to much larger energy scales of 1TeV ,
it is possible that at the end of inflation the universe only gets reheated to a temperature
of a few MeV and then the thermal evolution we discussed takes place. This means

that there is a huge energy range .001GeV ≲ V
1
4
inf ≲ 1016GeV during which inflation

could have happened.
Note that the reheating temperature Treh does not have to be equal to the energy

density at the end of inflation but is only bounded by it from above. It is possible
that the reheating temperature is lower than the energy density during inflation. How-
ever, the exact relation requires a specific model of inflation with a specific reheating
mechanism.

11.4 The inhomogeneous universe

So far in these lecture notes we have restricted ourselves to a completely homogeneous
and isotropic universe. While this is a very good approximation for our universe on
large scales, it is certainly not true on smaller scales like the size of galaxies. How can
we explain these observed inhomogeneities and thereby our very own existence?

A natural thought might be that the unknown initial conditions of our universe were
not perfectly homogeneous and through time gravitational clumping leads to structure
formation. A problem with this is that a sufficiently long period of inflation erases
any initial inhomogeneities. So, it seems that a period of inflation seems to make the
existence of inhomogeneities and structure formation more difficult. However, this is
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not the case. The reason is Heisenberg’s uncertainty principle that applies to quantum
mechanics and also to quantum field theory. Since our universe is governed by a
quantum theory, we cannot just treat the inflaton field as a classical scalar field but we
have to take quantum mechanics into account. Heisenberg’s uncertainty principle says
that we cannot exactly determine the value of the field ϕ and its conjugate momentum.
This means that we should allow for small fluctuations in ϕ:

ϕ = ϕ̄(t) + δϕ(t, x⃗) . (11.7)

Here we have decomposed the field ϕ into a background field ϕ̄(t) that is homogeneous
and satisfies the classical equations of motion and a small fluctuation that depends on
space and time, i.e., that is not homogeneous. Likewise, we can perturb the metric
gµν and the energy density and pressure. As long as these perturbations are small,
we can derive their equations of motion by linearizing the equations of motion. We
can then study these linear equations of motion and quantize the fluctuations. We can
track the evolution of these fluctuation and derive their features. While this is not too
complicated it is somewhat technical and a complete treatment would take a few more
sections so we will skip the details and focus on the results.

The quantum fluctuations of the inflaton field mean that the position of the inflaton
field is different at different points in space (since δϕ depends on x⃗). This is sketched
in figure 46.

𝑉(𝜙)

𝜙

𝑉𝑖𝑛𝑓

𝑉𝑡𝑜𝑑𝑎𝑦

 𝜙 ± 𝛿𝜙

Figure 46: The position ϕ of the scalar field changes in space and time due to quantum
fluctuations δϕ(t, x⃗).

What this means, and what one finds by solving the equations for the perturba-
tions, is that inflation ends at slightly different times at different points in space. This
then leads to slightly more or less dense regions at the end of inflation. We can ex-
plicitly calculate the evolution of the fluctuations during and after inflation as long
as they are small and perturbation theory is applicable. What one finds is that small
quantum fluctuations are getting stretched and amplified during inflation. At the end
of inflation, the perturbations grow slowly during the radiation dominated epoch and
then more rapidly during the matter dominated epoch. The gravitational attraction
will eventually make the perturbations so large that structures like stars and galaxies
will form. At this point the linear perturbation theory has broken down. However, the
density fluctuations lead to small temperature fluctuations in the cosmic microwave
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background that we can observe and theoretically calculate using linearized pertur-
bation theory. The latest experimental observation of these temperature fluctuations
from the Planck satellite is shown in figure 47.

Figure 47: Very small temperature fluctuations in the CMB as observed by the Planck
satellite.

The CMB photons that we measure come from a huge sphere that surrounds us and
similar to a map of the surface of the earth we can project this sphere on a 2-dimensional
surface, which is what is shown in the figure 47. The temperature T = 2.725K is
very homogeneous and the root mean square variations are only 18µK so that the
variations in the temperature are roughly δT/T ∼ 10−5. These small fluctuations look
like random noise and that is exactly what they are: random quantum noise. This
noise nevertheless contains a tremendous amount of information. For initial quantum
noise that evolves during the radiation and matter dominated era until the release of
the CMB 380,000 years after the big bang, one can derive very precisely the expected
2-point function for the temperature fluctuations. This 2-point function depends only
on the angle φ between the two points on the sky and we can expand it therefore in
terms of Legendre Polynomials Pl(cos(φ)). The resulting theoretical curve together
with the data is shown in figure 48. We see that the data and theory beautifully agree
with each other and that the random quantum noise indeed contains a structure that
is not immediately visible in figure 47.

From the measured fluctuations we can determine the ratio of the inflaton potential
V (ϕ) and the slow-roll parameter ϵϕ 50 to 60 e-folds before the end of inflation. Con-
cretely from the detailed perturbation theory calculation one finds for slow-roll models
that

1

24π2
V (ϕ)

M4
P

1

ϵV
≈ 2.2× 10−10 . (11.8)

This equation allows us to fix a parameter in our inflationary model. For example, for
V (ϕ) = 1

2m
2ϕ2 we calculated in subsection 10.3.2 for Ne = 60 that ϕi = 15.6MP and
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Figure 48: The 2-point function of the temperature fluctuations as a function of the
multipole l. The lower part is zoomed in and shows the tiny differences between the
red theory curve and the data with 1σ error bars.

ϵV = 1
121 , so that

1

24π2
V (ϕ)

M4
P

1

ϵV
=

1

48π2
m2(15.6MP )

2

M4
P

121 ≈ 62
m2

M2
P

≈ 2.2× 10−10 . (11.9)

Recalling that MP ≈ 2.4× 1018GeV we find

m ≈ 2.4

√
2.2

62
1013GeV ≈ 4.5× 1012GeV . (11.10)

So, we have found that the inflaton in this model is much heavier than the all the
particles in the standard model that have masses up to only 173GeV .

In addition to the temperature fluctuations in the CMB one can in principle also
measure the polarization of the CMB photons. This would provide us with additional
information about the perturbations that were generated during inflation. In particular
the fluctuations in the space-time metric that are gravitational waves and that are
generated during inflation give rise to particular patterns in the polarization of the
CMB photons, as is shown in figure 49.

This is particularly interesting because contrary to the density/temperature fluc-
tuations that are enhanced by a factor 1/ϵV (see equation (11.8)), the so called tensor
perturbations are not enhanced. Thus, they are much smaller and harder to measure
but at the same time any detection would tell us the actual energy scale during inflation
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Figure 49: During inflation density and metric perturbations are generated. They can
indirectly be measured by observing the temperature fluctuations and the polarization
of the CMB photons.

(since the unknown enhancement from 1/ϵV is absent). However, so far, we have not
been able to detect this particular type of polarization in the CMB photons so that
we only have an upper bound on the so-called scalar-to-tensor ratio r < .07 (95% CL).
The energy scale during inflation is then determine through this parameter r as

V
1
4
inf ≈ 2

( r
.1

) 1
4
1016GeV . (11.11)

Future experiments can detect r or lower the bound potentially up to r ≳ 10−4 so
that any future detection of r would corresponds to a very high scale of inflaton. In
particular this scale would be roughly 12 orders of magnitude larger than what can
be tested in particle accelerators! This energy scale would also be very close to the
Planck scale which might allow us to get insights into the theory of quantum gravity
that governs our universe. So, the future of theoretical and observational cosmology
holds the promise of great discoveries!
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Summary: Reheating and quantum fluctuations

We started out by looking at some of the experimental bounds that are
constraining large field models of slow-role inflation. There are ongoing
and future experiments that constantly restrict the parameters further
and further and hopefully will eventually zoom in on a particular model.
We also discussed the requirement for reheating the universe at the end
of inflation. The reheating process transfers kinetic energy from the in-
flaton particle to the particles in the standard model of particle physics.
Since inflation has smoothed out any inhomogeneities the reheated uni-
verse is homogeneous and isotropic and from there our usual hot big bang
description can take off.
Lastly, we discussed that quantum fluctuations of the inflaton field leads
to inhomogeneities in the cosmic microwave background that we have ob-
served after inflation was invented. This means that quantum fluctuations
are the seeds for the first stars and galaxies in our universe!
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12 Summary: Our universe

In this section we quickly summarize the important events during the evolution of
our universe from its beginning until today. While this section contains nothing new,
it provides a concise time-line of our universe and a summary of everything we have
learned.

Event Time Redshift Temperature

Planck era 10−43s ? 2× 1018GeV

GUT scale 10−40s ? 1016GeV

Inflation unclear: 10−38 − 10−14s ? ? -

Baryogenesis ? ? ?

EW phase transition 2× 10−11s 1015 100GeV

QCD phase transition 2× 10−5s 1012 150MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1s 6× 109 1MeV

Electron-positron annihilation 6s 2× 109 500keV

Big bang nucleosynthesis 3min 4× 108 100keV

Matter-radiation equality 60× 103yrs 3400 .75eV

Recombination 260− 380× 103yrs 1100-1400 .26− .33eV

CMB 380× 103yrs 1100 .26eV

Reionization (first stars) 200× 106yrs 19 4.7meV

Accelerated expansion starts 7.6× 109yrs .65 .4meV

Formation of solar system 9.2× 109yrs .42 .34meV

Dark energy-matter equality 10.2× 109yrs .31 .31meV

Today 13.8× 109yrs 0 .24meV

The beginning (Planck era): General relativity inevitably breaks down near the
Planck scale. At this point we need a UV complete theory of quantum gravity. Our
best contender, string theory, is currently not well enough understood to understand
a space-like singularity like the big bang. Even if we would get a theoretical handle
on such a singularity, it would be very hard to test this theory since inflation is very
successful at erasing any information about the universe before inflation started.

GUT scale: The interaction strengths of the strong, weak and electromagnetic
forces are functions of the energy scale. At the grand unified theory (GUT) energy
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scale of 1016GeV all three are almost the same. Many people believe that the three
forces get unified to a single grand unified force, since it is non-trivial that three lines
intersect in a point. Breaking of this single force into the three forces we observe can
lead to relics like magnetic monopoles that could overclose the universe (Ω ≫ 1). A
period of inflation with a reheating temperature below the GUT scale would solve this
problem.

Inflation: Inflation is a period of exponential expansion of our universe. The lower
bound on the expansion of the scale factor during (high scale) inflation is 50-60 e-folds,
i.e., af/ai ≥ e50− e60. Such a period solves the horizon and flatness problem but more
interestingly it provides the inhomogeneities needed to explain the structure in our uni-
verse. The inflaton undergoes quantum fluctuations that get stretched during the rapid
expansion and after inflation get converted into small mass density inhomogeneities.
These inhomogeneities are then being enhanced due to the gravitational attraction.
So, slightly denser regions will become galaxies and galaxy clusters while less dense
region will become emptier voids. Thus, quantum fluctuations during inflation provide
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the seeds for our galaxies!

Baryogenesis: There is an asymmetry between baryons and anti-baryons (and
more general between particles and anti-particles) that cannot be explained by the
standard model of particle physics. Thus, at energies above 10TeV there must be
some new physics that generates this asymmetry. While there are many different the-
oretical ideas, there is no experimental test of any of these. So, we cannot associate a
time to baryogenesis. Since the observed universe is neutral under the electric charge,
there must be a similar asymmetry between electrons and positrons so that after their
annihilation we are left with one electron for each proton. The ample interactions in
our early universe ensure that any baryon asymmetry leads automatically to a lep-
ton asymmetry and vice versa. Therefore, it is also possible that our early universe
underwent leptogenesis instead of baryogenesis or both.

Electroweak-phase transition: During this phase transition particles get their
mass due to the so-called Higgs effect. Once the standard model particles are massive,
they start to drop out of equilibrium whenever the temperature of the universe (i.e.,
the thermal bath) becomes smaller than their mass. Then the particles start to anni-
hilate with their anti-particles and their number densities decrease exponentially. The
remaining matter in our observed universe is due to the matter-anti-matter asymmetry
mentioned above.

QCD phase transition: The strong force is weaker at higher energies (tempera-
tures) and becomes stronger and stronger during the cooling of the universe. Around
150MeV the strong force is so strong that free gluons and quarks cannot exist any-
more and all the quarks are bound into so called baryons and mesons. These are bound
states that are neutral under the strong force. The lightest baryons are the familiar
proton and neutron. There are also heavier baryons and mesons that can be lighter
than the proton and neutron but all of these are unstable and quickly decay. So, a
little bit after the QCD phase transition we are left with essentially only protons and
neutrons that are the building blocks for the atomic nuclei.

Dark matter freeze-out: If we assume that the unknown dark matter (DM)
is a very weakly interacting, massive particle that was initially in equilibrium with
the standard model particles, then it should freeze-out around or before the neutrino
decoupling to give the correct relic abundance that we observe today, i.e., to provide
a contribution to the energy density today that is roughly five times as large as the
contribution of the regular matter (RM) (ΩDM ≈ .25 ≈ 5ΩRM ).

Neutrino decoupling: Around 1MeV the weak interaction becomes so weak that
particles that are only charged under the weak force, i.e., the neutrinos, decouple from
the thermal plasma. These neutrinos, similarly to the photons in the CMB, give rise to
a cosmic neutrino background that is slightly colder than the CMB and very difficult
to observe directly. At the time of decoupling the three neutrinos are still relativistic
and during the cooling of the universe they become non-relativistic whenever their
temperature becomes smaller than their respective mass. Note however that this does
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not mean that their number density will decay exponentially, since the neutrinos are
decoupled from themselves so that they cannot annihilate with each other.

Electron-positron annihilation: Around T ∼ me ≈ 511keV the electrons and
positrons become non-relativistic and transfer their energy and entropy into the pho-
tons only (since the neutrinos are decoupled already). This slows down the decrease in
the temperature of the photons a little bit so that the photons today have a temperature
that is a little bit larger than the neutrino background.

Big bang nucleosynthesis: One of the greatest successes of the big bang cosmol-
ogy is that it correctly predicts the observed abundance of elements in our universe.
Using nuclear physics, we can predict the amounts of different elements in the early
universe and these predictions agree with what we observe, in particular besides traces
of heavier elements our universe consists of 93% Hydrogen and 7% Helium. Any kind
of new physics that can appear beyond the standard model is severely constrained by
this success.

Recombination: Once the average energy of the photons drops below .33eV the
tail of high energy photons is sufficiently small to allow for neutral atoms to form.
This process in which electrons and protons combine takes roughly 100,000 years and
at its end the universe is filled with clouds of neutral atoms and the cosmic microwave
background.

The cosmic microwave background (CMB): Once the electrons and nuclei
combine into neutral atoms, the photons can stream freely until today. The observation
of this cosmic microwave background does not only tell us about the universe 380,000
years after the big bang but the incredible homogeneity of the CMB also strongly
motivates a phase of inflation in our very early universe. The small deviations from
homogeneity in the CMB photons we observe together with their polarization provide
detailed information about this period of inflation.

Reionization (first stars): The formation of the first stars leads to the release of
large amounts of energy from the nuclear fusion in the stars. This energy is emitted
from the stars via photons and these photons reionize the neutral atoms in the universe
that are in large clouds and which will provide the fuel for future generations of stars.
(Star formation should end around 1014 years from now, so there is still plenty of fuel
out there.) The nuclear fusion in the first stars also creates the heavy elements that
we observe in our universe and that were not created during big bang nucleosynthesis.

Accelerated expansion starts: The standard forms of energy density like radia-
tion and non-relativistic matter lead to a deceleration of the expansion of our universe,
i.e., ä(t) < 0. This means that since the end of inflation our universe is expanding
but at a decelerating rate. Due to the presence of a positive cosmological constant our
universe started to expand at an accelerating rate roughly 6.2 Gyrs ago. Since matter
gets diluted away during the further expansion of our universe, while the energy den-
sity due to the cosmological constant remains constant our universe is asymptotically
approaching a de Sitter phase in its future.
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Formation of the solar system: As a reference point, I included the age of the
solar system which formed around 4.6Gyrs ago. Our milky way contains much older
stars and its age is believed to be around 13.2Gyrs. The presence of older stars in our
vicinity is required in order to explain the abundance of heavy elements in our solar
system. These heavier elements are created via nuclear fusion in the first stars and
then released during supernovae.

Dark energy-matter equality: Our current universe consists of roughly 70%
dark energy and 30% matter (out of which roughly 25% is dark matter and 5% is
regular matter like Hydrogen and Helium). Matter gets diluted during the expansion
of the universe while the energy density of the cosmological constant does not. This
means that in the not too distant past, roughly 3.6Gyrs ago, the energy density of the
universe was consisting to 50% of dark energy and to 50% of matter. Note that the
accelerated expansion due to the cosmological constant did start earlier.

Today: The age of our universe is roughly 13.8Gyrs where the last digit can still
change due to the uncertainty in the Hubble parameter. However, there are a variety
of different experiments that all place mutually consistent bounds on the age of the
universe so that the age of our universe is undoubtedly finite.
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A Deriving the Friedmann equations from gen-

eral relativity

The FRW metric in Cartesian coordinates is

ds2 = gµνdx
µdxν = −dt2 + gijdx

idxj = −dt2 + a(t)2
(
dx2i +K

(xidxi)
2

1−Kx2i

)
, (A.1)

where Greek letters run over µ, ν, . . . = 0, 1, 2, 3 and latin letters i, j, . . . = 1, 2, 3. The
Christoffel symbol Γρ

µν is given by

Γρ
µν =

1

2
gρσ

[
∂gσµ
∂xν

+
∂gσν
∂xµ

− ∂gµν
∂xσ

]
. (A.2)

For the metric (A.1) we find the following non-zero components

Γ0
ij =

ȧ(t)

a(t)
gij , (A.3)

Γi
0j =

ȧ(t)

a(t)
δij , (A.4)

Γi
jk =

Kxigjk
a(t)2

. (A.5)

From these we can calculate the Riemann curvature tensor

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ . (A.6)

I will not list all non-zero components here since this is not overly illuminating and we
are only interested in the Ricci curvature tensor and the Ricci scalar

Rµν = Rα
µαν , R = gµνRµν . (A.7)

The components of the Ricci tensor are

R00 = −3
ä(t)

a(t)
, (A.8)

R0i = 0 , (A.9)

Rij =
ä(t)a(t) + 2ȧ(t)2 + 2K

a(t)2
gij , (A.10)

where as expected the isotropy and homogeneity of our metric leads to the vanishing
of the vector Ri0 = 0 and forces the spacial part to be proportional to the metric
Rij ∝ gij . The Ricci scalar is given by

R =
6
(
a(t)ä(t) + ȧ(t)2 +K

)
a(t)2

. (A.11)

We recall from subsection 1.3 that the energy momentum tensor Tµν is similarly con-
straint as the Ricci scalar. It can only contain two independent functions of t and its
components are

T00 = ρ(t) , (A.12)

T0i = 0 , (A.13)

Tij = p(t)gij . (A.14)
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Now we can solve Einstein’s equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (A.15)

First let us look at the (00) component

−3
ä(t)

a(t)
+

3
(
a(t)ä(t) + ȧ(t)2 +K

)
a(t)2

− Λ = 8πGρ(t)

3
(
ȧ(t)2 +K

)
a(t)2

− Λ = 8πGρ(t) . (A.16)

Dividing both sides by 3 leads to the first Friedmann equations as given in equation
(1.24)

ȧ(t)2 +K

a(t)2
− Λ

3
=

8πG

3
ρ(t) . (A.17)

The mixed components (0i) all vanish and the pure spacial part takes the form

ä(t)a(t) + 2ȧ(t)2 + 2K

a(t)2
gij −

3
(
a(t)ä(t) + ȧ(t)2 +K

)
a(t)2

gij + Λgij = 8πGp(t)gij(
−2

ä(t)

a(t)
− ȧ(t)2 +K

a(t)2
+ Λ

)
gij = 8πGp(t)gij . (A.18)

Since the metric gij ̸= 0 we can drop it and plug in (A.17) to get

−2
ä(t)

a(t)
− 8πG

3
ρ(t)− Λ

3
+ Λ = 8πGp(t) (A.19)

−2
ä(t)

a(t)
+

2

3
Λ = 8πGp(t) +

8πG

3
ρ(t) . (A.20)

Dividing by -2 leads to the second Friedmann equation as given in (1.25)

ä(t)

a(t)
− 1

3
Λ = −4πG

3
(ρ(t) + 3p(t)) . (A.21)

B Deriving the energy momentum tensor for a

scalar field

The energy momentum tensor is defined as the variation of the action with respect to
the metric gµν . For inflation we are interested in the action of a scalar field that is
given by

S =

∫
d4x

√
−gL =

∫
d4x

√
−g
(
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
. (B.1)

Before we vary this action with respect to the metric gµν we recall the variations of√
−g =

√
−det(gµν) and the inverse metric gµν :

δ
√
−g = − 1

2
√
−g

δg =
1

2

√
−g gµνδgµν , (B.2)

δgµν = −gµαgνβδgαβ , (B.3)
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where in the first line we used Jacobi’s formula δg = g gµνδgµν .
Now we can calculate the energy momentum tensor for a single scalar field

Tµν =
2√
−g

δ(
√
−gL)
δgµν

=
2√
−g

(
1

2

√
−g gµνL+

√
−g δL

δgµν

)
= gµν

(
−1

2
gαβ∂αϕ∂βϕ− V (ϕ)

)
+ gµαgνβ∂αϕ∂βϕ

= gµν
(
−1

2
∂αϕ∂

αϕ− V (ϕ)

)
+ ∂µϕ∂νϕ . (B.4)

Lowering the indices, we find

T00 = ρϕ =
1

2
∂αϕ∂

αϕ+ V (ϕ) + ϕ̇2 ,

Tij = Pϕgij = gij

(
−1

2
∂αϕ∂

αϕ− V (ϕ)

)
+ ∂iϕ∂jϕ . (B.5)

Recalling the FRW metric

ds2 = gµνdx
µdxν = −dt2+a(t)2γijdxidxj ≡ −dt2+a(t)2

(
dx2i +K

x2i dx
2
i

1−Kx2i

)
, (B.6)

we can read of the energy density and pressure for a scalar field 29

ρϕ =
1

2
ϕ̇2 +

1

2

(∇ϕ)2

a2
+ V (ϕ) , (B.7)

Pϕ =
1

2
ϕ̇2 − 1

6

(∇ϕ)2

a2
− V (ϕ) , (B.8)

where (∇ϕ)2 = γij∂iϕ∂jϕ with γij being the inverse of the γij defined in equation (??).
This is the expected result and we see that a slowly varying scalar field indeed behaves
like a cosmological constant since ρϕ ≈ −Pϕ.

Note that you can derive the full Einstein’s equations from the action

S =

∫
d4x

√
−gL =

∫
d4x

√
−g
(

1

16πG
(R− 2Λ)− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
. (B.9)

when using equation (B.2) and the fact that (up to a total derivative) δR = Rµνδg
µν .

29To get Pϕ we can use gijTij = gijgijPϕ = 3Pϕ.
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