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Lecture 11 Inflation - part III

Last time we discussed the relevant equations for slow-roll inflation as well as a few concrete
slow-roll models. This time we discuss a little bit the experimental status of these models,
the reheating process and for the first time in this course the deviation from a completely
homogeneous universe.

1 Experimental constrains on inflationary models

As we mentioned last time and as you have seen in the homework, experiments place bounds
on existing inflationary models. Several models have already been excluded and future
experiments will tighten the bounds and further shrink the parameter space for inflationary
models. Ideally this will ultimately single out one particular model of inflation.

There are several ground based experiments that observe a small patch on the sky and
have provided lots of important data that constraints the cosmological parameters. Satellites
on the other hand have access to most of the sky, however they require that the entire
measuring apparatus can be transported into space where it has to work without being
maintained or upgraded. Currently the most stringent bounds on inflationary models where
released by the Planck collaboration in February 2015 and the BICEP2 and Keck array in
October 2015. The Planck satellite has measured the black body spectrum from the CMB
at several different frequencies and also the polarization of the photons. Its data tightens
most bounds and favors simple single field slow-roll inflationary models. Furthermore, by
constraining the slow-roll parameters
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it tells us about the form of the potential at a time of 50-60 e-folds before the end of inflation.
The experimental data is usually presented in terms of constrains on the so called spectral

index ns = 1− 6εV + 2ηV and the tensor-to-scalar ratio r = 16εV . While inflationary models
generically predict values of ns 6= 1, these values can in principle be larger or smaller than
1. However, the data clearly requires ns < 1. The particular case of εV = 0, ηV > 0 which
gives rise to ns > 1 is experimentally excluded. This case would have corresponded to a
true de Sitter phase, i.e. a positive cosmological constant, instead of a slowly rolling scalar
field. The figure below shows the experimental constraints in the (ns, r)-plane together with
a variety of inflationary models:
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Figure 1: Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in
combination with other data sets, compared to theoretical predictions of selected inflationary
models.

The most stringent bounds are the dark blue region (68% confidence level (CL)) and the
light blue region (95% CL). Usually a model is not considered to be excluded, if it is within
the 2σ (i.e. 95% CL) region. Once it is outside this region it is somewhat or very unlikely
depending on how far outside it is.

Theoretical models are shown in this plots as dots connected by a line or as a band.
The two dots that are shown for particular models, like for example the two black dots for
V ∝ φ2 correspond to Ne = 50 and Ne = 60 and the line connecting the dots correspond to
Ne values between 50 and 60. The reason that this range is shown is that we do not know
for sure the exact number of e-folds Ne that we can observe.

In the sense discussed above, the most simple model of inflation, the m2φ2 model we
discussed last time, just became very unlikely and other models seem favored by the data.
For example, as you have seen in the homework, models with V ∝ φp are more favored for
p < 2. For the model of natural inflation that we discussed last time we see a purple band.
The reason for this is that this model has the free parameter f and depending on the value
of this parameter we get different predictions. So f in this model is constraint by the data
to take certain values. We also see that the purple band is connected to the m2φ2 model
that we discussed last time as limiting case of natural inflation.

Note that the parameter r determines directly the energy scale during inflation via the

equation Vinf ≈ 2 × 1016GeV
(
r
.1

) 1
4 . While experiments so far have only placed an upper

bound r < .07 (95% CL), any future detection of a non-zero r would tells us directly the
energy scale at which inflation took place.
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The figure above shows a few more models of inflation that are just a very small selection
of the actual models that have been proposed. Hopefully in the future the ever improving
observations will narrow the parameter space down to a single model.

2 Beyond slow-roll single field inflation

As you can already guess from the above plot, there are a lot of single field slow-roll models
since we can tune the parameters in many scalar potentials such that they contain sufficiently
flat regions. In addition to these single field slow-roll models there are also multifield models
in which we don’t just have a single scalar field but many. These models are obviously much
more complicated and make a variety of interesting predictions. None of these have been
observed so far so that multifield models are constrained (but by no means excluded).

In addition to these slow-roll models in which a scalar field is rolling very slowly, it is
also possible to get a period of accelerated expansion from a very fast rolling scalar field.
This seemingly counterintuitive statement follows from the fact that we can’t neglect higher
order corrections to the scalar field’s kinetic term, once the field is fast rolling, i.e. terms
like (∂µφ∂

µφ)n for n > 1 become important. If these higher order corrections take a specific
form, then the fast rolling scalar field leads to a period of inflation. This class of models is
usually called K-inflation, where K stands for ‘kinetic’.

3 Reheating

Inflation solves several problems in our universe but it also drastically modifies the evolution
of our early universe. In particular, the rapid expansion during inflation leads to an essen-
tially empty universe since the contributions to the energy density from matter, radiation
and curvature scale with a negative power of the scale factor a(t). Since a(t) grows by a
huge factor, essentially the entire energy density of the universe is given by the contribution
of the scalar field:

ρφ =
1

2
φ̇2 + V (φ) , (3)

Pφ =
1

2
φ̇2 − V (φ) . (4)

At the end of inflation one of the slow-roll parameters becomes of order 1, which is equivalent
to the kinetic term φ̇2 becoming important. If the scalar field would oscillate around the
minimum at which V (φ) ≈ 0, then we would have ρφ ≈ Pφ, i.e. a phase with w = 1. In that
case it follows from equation (5) in the lecture 2 notes that ρφ ∝ a(t)−3(1+w) = a(t)−6. The
universe at this point keeps expanding since the first Friedmann equation becomes(
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)2
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φ̇2
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> 0 . (5)

This would mean that the energy density of the universe would go to zero and we would
be left with a completely empty universe. Likewise, if the inflaton oscillates around the
minimum of the potential and the Hubble friction is negligible (because H becomes small
at the end of inflation), then the kinetic energy and the potential energy are on average the
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same 1
2
〈φ̇2〉 = 〈V (φ)〉 and the inflaton behaves like pressure-less matter 〈Pφ〉 = 0. In this

case we have ρφ ∝ a(t)−3. So what we need is a way to transfer the kinetic energy of the
scalar field into the standard model degrees of freedom so that our hot big bang scenario can
take place.

The period during which this energy transfer is happening is called reheating, since
the universe during inflation has essentially zero temperature 1 and then the universe gets
reheated. This reheating can be accomplished by coupling the inflaton scalar field φ to other
fields like for example the fermions ψ in the standard model via φψ̄ψ Yukawa couplings in
the action. These then lead to an extra term in the equation of motion of the inflaton

φ̈+ 3Hφ̇+ Γφφ̇+ V ′(φ) = 0 . (6)

The additional friction term Γφ is proportional to the decay width of the inflaton that in
turn is determined by the prefactor of the above Yukawa coupling. During inflation we need
H � Γφ so that the above term does not spoil inflation. At the end of inflation H decreases
and then the term Γφ will become important and the energy transfer from the inflaton to
the standard model particles will take place.

This leads then to a reheating of the universe. Note that the spatial inhomogeneities
of the inflaton field ∇2φ/a(t)2 have been sufficiently suppressed during inflation to avoid
the horizon problem and the reheating will naturally lead to a homogeneous temperature
distribution. If the inflaton only couples to some of the standard model particles, then the
ample interactions that take place will lead to the required initial conditions in which all
standard model particles are in thermal equilibrium.

During inflation the scalar field has essentially only potential energy that then gets trans-
ferred into kinetic energy towards the end of inflation. This kinetic energy then gets in turn
transferred into the standard model particles as soon as the Hubble parameter has decreased
sufficiently at the end of inflation so that H . Γφ. This means that the maximum reheating

temperature is set by the energy scale during inflation Treh,max ∼ V
1
4
inf . This energy scale

during inflation is currently constrained by observation to be smaller than roughly the GUT
scale, which is 1016GeV . This means in turn that the reheating temperature cannot be larger
than the GUT scale so that after inflation there is no problem with relics that might appear
during the breaking of the GUT gauge group to the standard model gauge groups.

The lower end for the reheating temperature and therefore also for the energy density
during inflation is essentially only constrained by our observation of the correct amount of
light elements like Helium and Hydrogen. As we discussed, this can be correctly explained by
the nucleosynthesis which starts around a few MeV . So although we in principle understand
physics up to much larger energy scales of 1TeV , it is possible that at the end of inflation the
universe only gets reheated to a temperature of a few MeV and then the thermal evolution

we discussed takes place. This means that there is a huge energy range .001GeV . V
1
4
inf .

1016GeV during which inflation could have happened.
Note that the reheating temperature Treh does not have to be equal to the energy density

at the end of inflation but is only bounded by it from above. It is possible that the reheating

1Based on the stretching of the wavelength λ of photons we argued that T ∝ a(t)−1, so that the temper-

ature will decrease very quickly during inflation and is negligible compared to the inflationary energy V
1
4

inf

which is approximately constant during inflation.
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temperature is lower than the energy density during inflation. However, the exact relation
requires a specific model of inflation with a specific reheating mechanism.

4 The inhomogeneous universe

So far in the course we have restricted ourselves to a completely homogeneous and isotropic
universe. While this is a very good approximation for our universe on large scales, it is
certainly not true on smaller scales like the size of galaxies. How can we explain these
observed inhomogeneities and thereby our very own existence?

A natural thought might be that the unknown initial conditions of our universe were not
perfectly homogeneous and through time gravitational clumping leads to structure forma-
tion. A problem with this is that a sufficiently long period of inflation erases any initial
inhomogeneities. So it seems that a period of inflation seems to make the existence of in-
homogeneities and structure formation more difficult. However, this is not the case. The
reason is Heisenberg’s uncertainty principle that applies to quantum mechanics and also to
quantum field theory. Since our universe is governed by a quantum theory we can not just
treat the inflaton field as a classical scalar field but we have to take quantum mechanics
into account. Heisenberg’s uncertainty principle says that we cannot exactly determine the
value of the field φ and its conjugate momentum. This means that we should allow for small
fluctuations in φ:

φ = φ̄(t) + δφ(t, ~x) . (7)

Here we have decomposed the field φ into a background field φ̄(t) that is homogeneous and
satisfies the classical equations of motion and a small fluctuation that depends on space and
time, i.e. that is not homogeneous. Likewise we can perturb the metric gµν and the energy
density and pressure. As long as these perturbations are small, we can derive their equations
of motion by linearizing the equations of motion. We can then study these linear equations
of motion and quantize the fluctuations. We can track the evolution of these fluctuation
and derive their features. While this is not too complicated it is somewhat technical and a
complete treatment would take several more lectures so we will skip the details and focus on
the results.

The quantum fluctuations of the inflaton field mean that the position of the inflaton field
is different at different points in space (since δφ depends on ~x). This is sketched in figure 2.
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𝑉𝑖𝑛𝑓
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 𝜙 ± 𝛿𝜙

Figure 2: The position φ of the scalar field changes in space and time due to quantum
fluctuations δφ(t, ~x).
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What this means, and what one finds by solving the equations for the perturbations, is
that inflation ends at slightly different times at different points in space. This then leads to
slightly more or less dense regions at the end of inflation. We can explicitly calculate the
evolution of the fluctuations during and after inflation as long as they are small and pertur-
bation theory is applicable. What one finds is that small quantum fluctuations are getting
stretched and amplified during inflation. At the end of inflation the perturbations grow
slowly during the radiation dominated epoch and then more rapidly during the matter dom-
inated epoch. The gravitational attraction will eventually make the perturbations so large
that structures like stars and galaxies will form. At this point the linear perturbation theory
has broken down. However, the density fluctuations lead to small temperature fluctuations
in the cosmic microwave background that we can observe and theoretically calculate using
linearized perturbation theory. The latest experimental observation of these temperature
fluctuations from the Planck satellite is shown in figure 3.

Figure 3: Very small temperature fluctuations in the CMB as observed by the Planck satel-
lite.

The CMB photons that we measure come from a huge sphere that surrounds us and
similar to a map of the surface of the earth we can project this sphere on a 2-dimensional
surface, which is shown in the figure. The temperature T = 2.725K is very homogeneous and
the root mean square variations are only 18µK so that the variations in the temperature are
roughly δT/T ∼ 10−5. These small fluctuations look like random noise and that is exactly
what they are: random quantum noise. This noise nevertheless contains a tremendous
amount of information. For initial quantum noise that evolves during the radiation and
matter dominated era until the release of the CMB 380,000 years after the big bang, one can
derive very precisely the expected 2-point function for the temperature fluctuations. This
2-point function depends only on the angle ϕ between the two points on the sky and we can
expand it therefore in terms of Legendre Polynomials Pl(cos(ϕ)). The resulting theoretical
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curve together with the data is shown in figure 4. We see that the data and theory beautifully
agree with each other and that the random quantum noise indeed contains a structure that
is not visible in figure 3.

Figure 4: The 2-point function of the temperature fluctuations as a function of the multipole
l. The lower part is zoomed in and shows the tiny differences between the red theory curve
and the data with 1σ error bars.

From the measured fluctuations we can determine the ratio of the inflaton potential V (φ)
and the slow-roll parameter εφ 50 to 60 e-folds before the end of inflation. Concretely from
the detailed perturbation theory calculation one finds for slow-roll models that

1

24π2

V (φ)

M4
P

1

εV
≈ 2.2× 10−10 . (8)

This equation allows us to fix a parameter in our inflationary model. For example for
V (φ) = 1

2
m2φ2 we calculated last time for Ne = 60 that φi = 15.6MP and εV = 1

121
, so that

1

24π2

V (φ)

M4
P

1

εV
=

1

48π2

m2(15.6MP )2

M4
P

121 ≈ 62
m2

M2
P

≈ 2.2× 10−10 . (9)

Recalling that MP ≈ 2.4× 1018GeV we find

m ≈ 2.4

√
2.2

62
1013GeV ≈ 4.5× 1012GeV . (10)

So we have found that the inflaton in this model is much heavier than the all the particles
in the standard model that have masses up to only 172GeV .

In addition to the temperature fluctuations in the CMB one can in principle also measure
the polarization of the CMB photons. This would provides us with additional information
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about the perturbations that were generated during inflation. In particular the fluctuations
in the space-time metric that are gravitational waves and that are generated during inflation
give rise to particular patterns in the polarization of the CMB photons, as is shown in figure
5.

Figure 5: During inflation density and metric perturbations are generated. They can indi-
rectly be measured by observing the temperature fluctuations and the polarization of the
CMB photons.

This is particularly interesting because contrary to the density/temperature fluctuations
that are enhanced by a factor 1/εV (see equation 8), the so called tensor perturbations are
not enhanced. Thus they are much smaller and harder to measure but at the same time
any detection would tells us the actual energy scale during inflation (since the unknown
enhancement from 1/εV is absent). However, so far we have not been able to detect this
particular type of polarization in the CMB photons so that we only have an upper bound
on the so called scalar-to-tensor ratio r < .07 (95% CL). The energy scale during inflation
is then determine through this parameter r as

V
1
4
inf ≈ 2

( r
.1

) 1
4

1016GeV . (11)

Future experiments can detect r or lower the bound potentially up to r & 10−4 so that any
future detection of r would corresponds to a very high scale of inflaton. In particular this
scale would be roughly 12 orders of magnitude larger than what can be tested in particle
accelerators! This energy scale would also be very close to the Planck scale which might
allow us to get insights into the theory of quantum gravity that governs our universe. So
the future of theoretical and observational cosmology holds the promise of great discoveries!
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