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Lecture 10 Inflation - part II

Last time we discussed how a period of inflation can solve several problems that we encounter
in our very early universe. In this lecture we are studying the relevant equations for inflation
as well as a few exemplary models.

1 A scalar field

As we have seen last time, a new scalar field, called the inflaton, can lead to a temporary
phase of inflation. To make this precise we vary the action for the scalar field

S =

∫
d4x
√
−g
(
−1

2
∂µφ∂

µφ− V (φ)

)
, (1)

with respect to the scalar field to derive its equation of motion. In order to do this recall
that the FRW metric takes the form

ds2 = gµνdx
µdxν = −dt2 + a(t)2γijdx

idxj ≡ −dt2 + a(t)2
(
dx2i +K

x2i dx
2
i

1−Kx2i

)
. (2)

This then leads to

δS =

∫
d4xa(t)3 (−gµν∂µφ∂νδφ− V ′(φ)δφ)

=

∫
d4x

[
∂ν
(
a(t)3gµν∂µφ

)
− a(t)3V ′(φ)

]
δφ

=

∫
d4x

[
−∂t

(
a(t)3∂tφ

)
+ ∂i

(
a(t)γij∂jφ

)
− a(t)3V ′(φ)

]
δφ

=

∫
d4x

[
−3ȧ(t)a(t)2φ̇− a(t)3φ̈+ a(t)∇2φ− a(t)3V ′(φ)

]
δφ

=

∫
d4x

(
−a(t)3

) [
φ̈+ 3

ȧ(t)

a(t)
φ̇− ∇

2φ

a(t)2
+ V ′(φ)

]
δφ , (3)

where we used the short-hand notation V ′(φ) = ∂φV (φ). So the equation of motion for a
scalar field in an FRW universe is given by

φ̈+ 3Hφ̇− ∇
2φ

a(t)2
+ V ′(φ) = 0 . (4)

Once inflation starts, a(t) grows exponentially so that the term with the spatial derivatives
of φ quickly becomes unimportant and the above equation reduces to

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (5)
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We can also simply derive this equation for a spatially homogeneous scalar field from the
continuity equation ρ̇+ 3H(ρφ + Pφ) = 0 by plugging in the energy density and pressure for
a homogeneous scalar field

ρφ =
1

2
φ̇2 + V (φ) , (6)

Pφ =
1

2
φ̇2 − V (φ) . (7)

Note that equation (5) that describes the evolution of a homogeneous scalar field is very
similar to a harmonic oscillator. 1 The derivative of the scalar potential acts like a driving
force and the expansion of our universe leads to the friction term 3Hφ̇.

2 Slow-roll inflation

As we discussed last time, the successful models of inflation have a very flat potential along
which the scalar field rolls down towards a minimum of the potential. If the scalar fields rolls
so slow, that we can neglect φ̇2 compared to the potential value V (φ), then the scalar field
behaves approximately like a cosmological constant, ρφ ≈ −Pφ, and the universe undergoes
a period of exponential expansion. This is called slow-roll inflation since the inflaton is
rolling down the potential very slowly. Because matter and radiation will be diluted away
due to this exponential expansion, we can neglect any other source of energy density and
simply focus on the scalar field. We will get back to setting the initial conditions for our hot
big bang scenario next time, when we discuss the end of inflation and the reheating of our
universe.

There are two small (dimensionless) parameters that allow us to make the condition of a
slowly rolling scalar field more precise. Recall that the first Friedmann equation sourced by
a homogeneous scalar field takes the form(

ȧ(t)

a(t)

)2

= H2 =
8πG

3
ρφ =

1

3M2
P

(
1

2
φ̇2 + V (φ)

)
. (8)

So we see that for φ̇2 � V (φ) we have a nearly constant potential V (φ) value since the
scalar field is only changing very slowly in time. This then implies a nearly constant Hubble
parameter, so that it is very useful to introduce the dimensionless slow-roll parameter

ε ≡ − Ḣ

H2
. (9)

Note that during a period of almost exponential expansion Ḣ < 0 so that ε > 0 (see equation
(15) below). A period of inflation requires ε� 1. Since we need inflation to last sufficiently
long, we need ε not to change that quickly which is captured by the second dimensionless
slow-roll parameter

η ≡ ε̇

Hε
. (10)

1If we choose V (φ) = 1
2m

2φ2, then the equation of motion is identical to a harmonic oscillator with
friction.
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This parameter keeps track of the relative change ε̇/ε per Hubble time and also needs to be
small for an extended period of inflation.

Last time we have already used the idea of e-folds that measure the number of exponential
expansions (to basis e) of our universe. We already defined the total number of e-folds as Ne

but it is often more useful to measure time in terms of the number of e-folds. To this end
we define

dN ≡ d ln(a) = Hdt . (11)

The total number of e-folds Ne is then given by

Ne =

∫ af

ai

d ln a = ln

(
af
ai

)
=

∫ tf

ti

Hdt ≈ Hinf (tf − ti) , (12)

where Hinf is the approximately constant Hubble parameter during inflation.
The second Friedmann equation

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3P (t)) = − 1

6M2
P

(ρ(t) + 3P (t)) , (13)

in the presence of only a homogeneous scalar field gives

Ḣ +H2 = − 1

3M2
P

(φ̇2 − V (φ)) . (14)

Using equation (8) we then get

Ḣ = − φ̇2

2M2
P

. (15)

Plugging this into the definition of ε we find

ε =
φ̇2

2M2
PH

2
. (16)

Taking the time derivative gives

ε̇ =
φ̈φ̇

M2
PH

2
− φ̇2Ḣ

M2
PH

3
. (17)

We can use this to rewrite η

η ≡ ε̇

Hε
=

(
φ̈φ̇

M2
PH

2
− φ̇2Ḣ

M2
PH

3

)
2M2

PH

φ̇2
= 2

φ̈

φ̇H
− 2

Ḣ

H2
= 2

φ̈

φ̇H
+ 2ε . (18)

2.1 The slow-roll equations

So far we have not really made any approximations but since during inflation ε and η are
very small we can calculate them and everything else to leading order to get rather simple
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expressions. For example, a small ε � 1 (see eq. (16)) implies that φ̇2/(2M2
P ) � H2. It

then follows from equation (8) that during slow-roll inflation

H2 ≈ V

3M2
P

. (19)

This means that the Hubble constant during inflation is set by the value of the scalar
potential. Since the scalar field is slowly rolling the value of the potential is only changing
very slowly and therefore the Hubble constant is approximately constant during inflation.
Similarly, a small |η| and ε implies due to equation (18) that φ̈� φ̇H. It then follows from
equation (5) that

3Hφ̇ ≈ −V ′(φ) . (20)

Taking the time derivative of the above equation we get

3Ḣφ̇+ 3Hφ̈ ≈ −φ̇V ′′(φ) . (21)

Using the equations (19), (20) and (21), we find the following approximate expression for ε
and η

ε =
φ̇2

2M2
PH

2
≈ (V ′)2

18M2
PH

4
=
M2

P

2

(
V ′

V

)2

,

η = 2
φ̈

φ̇H
+ 2ε ≈ 2

φ̇H

(
− φ̇V

′′

3H
− Ḣφ̇

H

)
+ 2ε = −2M2

P

V ′′

V
+ 2M2

P

(
V ′

V

)2

. (22)

So we see that we can express ε and η entirely in terms of the scalar potential. It is convenient
to introduce the slow-roll parameters εV and ηV that are defined by

εV ≡ M2
P

2

(
V ′(φ)

V (φ)

)2

≈ ε , (23)

ηV ≡ M2
P

V ′′(φ)

V (φ)
≈ −1

2
η + 2ε . (24)

The smallness of εV is equivalent to the condition that the first derivative of the potential is
small compared to the value of the potential, while the smallness of |ηV | is equivalent to the
smallness of the second derivative of the potential. It follows from the equations (22), that
the slow-roll conditions ε, |η| � 1 are equivalent to εV , |ηV | � 1.

We can also express the number of e-folds of inflation in terms of the slow-roll parameter
εV . Using equation (16) we can rewrite

Hdt =
H

φ̇
dφ =

1√
2ε

|dφ|
MP

≈ 1√
2εV

|dφ|
MP

. (25)

Now we use this in the definition of the number of e-folds given in equation (12) to get

Ne =

∫ tf

ti

Hdt ≈
∫ φf

φi

1√
2εV

|dφ|
MP

=
1

M2
P

∣∣∣∣∫ φf

φi

V (φ)

V ′(φ)
dφ

∣∣∣∣ . (26)
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3 Examples of inflationary models

3.1 Natural inflation

After discussing all the relevant equations, let us now discuss a concrete model of inflation
that is called natural inflation. In this model the inflaton field has a discrete shift symmetry
φ→ φ+ 2πf . The potential that respects this shift symmetry is given by

V (φ) = λ4
[
1 + cos

(
φ

f

)]
. (27)

Here we have set the minimum value of the potential equal to zero since the current cosmo-
logical constant is so small that it would not matter for the period of inflation, if we add to
this potential a constant that is 10−120M4

P or not. One period of the potential is shown in
figure (1).
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Figure 1: The scalar potential for natural inflation.

Now we calculate the slow-roll parameters

εV =
M2

P

2f 2

 sin
(
φ
f

)
1 + cos

(
φ
f

)
2

, (28)

ηV = −M
2
P

f 2

cos
(
φ
f

)
1 + cos

(
φ
f

) . (29)

Since the scalar potential is zero (or very small) at the minimum of the potential, while the
second derivative is large, we see that we can not satisfy |ηV | � 1 near the minimum of the
potential. 2 Away from the minimum at φ = πf , there is no enhancement of εV and ηV from
the denominator but we don’t have any substantial suppression from the nominator either,

2The second derivative of the scalar potential at the minimum determines the mass of the inflaton today.
Since we don’t observe any very light scalar fields, the second derivative at the minimum has to be much
larger than the value of the potential.
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since it is not possible to have | sin(φ/f)| � 1 and at the same time | cos(φ/f)| � 1. So the
only way to get small εV and |ηV | in this model is by choosing f �MP . This automatically
suppresses both slow-roll parameters and allows for a period of slow-roll inflation.

We can calculate the number of e-folds in this model using equation (26)

Ne ≈
∫ φf

φi

1√
2εV

|dφ|
MP

=
f

M2
P

∫ φf

φi

∣∣∣∣∣∣
1 + cos

(
φ
f

)
sin
(
φ
f

)
∣∣∣∣∣∣ |dφ| = 2

f 2

M2
P

∣∣∣∣∣∣log

sin
(
φf
2f

)
sin
(
φi
2f

)
∣∣∣∣∣∣ . (30)

We see, probably as one would expect, that the number of e-folds diverges as one moves the
starting point φi closer and closer to a maximum φ ∈ 2πnf , n ∈ Z.

The end of inflation is defined as the point at which one of the slow-roll parameters
becomes equal to 1. Usually the expansion after that point can only add some order one
number of e-folds. So this end of inflation is not the exact end of the exponential expansion
but a rough guide. In our example εV and |ηV | are of the same order and which one is bigger
depends on how close to the minimum we are. For simplicity we just focus on εV = 1. One
finds that

εV (φf ) = 1 ⇔ φf = f

[
π ± arctan

(
2
√
c

c− 1

)]
, (31)

where c =
√

2f/MP . Since a period of slow-roll requires f � MP , we have that c � 1 and
we can approximate

arctan

(
2
√
c

c− 1

)
≈ 2√

c
= 2

3
4

√
MP

f
. (32)

Now if we take for example f = 100MP � MP , then we have φf ≈ 2.97f = 297MP (or
φf ≈ 2πf − 2.97f ≈ 3.31f = 331MP ) and we find for the number of e-folds

Ne ≈ 2× 104

∣∣∣∣∣∣∣log

sin
(
π
2
± 2

3
4

20

)
sin
(

φi
200MP

)

∣∣∣∣∣∣∣ ≈ −2× 104 log

∣∣∣∣sin( φi
200MP

)∣∣∣∣− 71 . (33)

If we want to get 60 e-folds, then we can numerically solve for φi and find φi ≈ 2.91f = 291MP

(or φi ≈ 2πf − 2.91f ≈ 337MP ). We see that in this example φ travels a distance in field
space that is larger than MP . Models of this type in which ∆φ ≡ |φi − φf | &MP are called
large field models. Such large field models are currently being tested by observations and are
already highly constrained. Constructing these models in a controlled way provides many
theoretical challenges (and ideally requires a full fledged theory of quantum gravity). In
these large field models εV is much larger than in small field models. This in turn implies
that large field models require less tuning of the scalar potential in order to get a period of
inflation.

3.2 m2φ2 inflation

As we also see from above, since φi ≈ 2.91f and φf ≈ 2.97f , the inflaton field does not really
explore much of the potential but stays very close to the minimum. In such cases we can
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just expand the potential around the minimum and find

V (φ) = λ4
[
1 + cos

(
φ

f

)]
≈ λ4

2f 2

(
(φ− πf)2 +O

(
(φ− πf)4

))
. (34)

Keeping only the leading term, defining m2 = λ4/f 2 and shifting φ → φ + πf we find the
potential

V (φ) =
1

2
m2φ2 . (35)

This is arguably the simplest potential for large field inflation and it is very generic in the
sense that for every massive scalar field the potential around the minimum is quadratic (since
m2 ∝ V ′′(φ)).

In this simple model the slow-roll parameters are

εV = ηV = 2

(
MP

φ

)2

. (36)

So as long as φ�MP we have slow-roll inflation and inflation ends when φ ≈
√

2MP . The
number of e-folds in this model is given by

Ne ≈
∫ φf

φi

1√
2εV

|dφ|
MP

=

∣∣∣∣∣
∫ √2MP

φi

φdφ

2M2
P

∣∣∣∣∣ =
φ2
i

4M2
P

− 1

2
. (37)

For sixty e-folds we need
φi = 2MP

√
60.5 ≈ 15.6MP . (38)

Plugging this into εV we find

εV (φi) = 2

(
MP

φi

)2

=
1

121
≈ .0083 . (39)

The current bound from the Planck satellite from February 2015 just excluded this model
at the 2σ confidence level by providing the upper bound εV ≤ .0069.

The above more general model of natural inflation has not yet been excluded but its
parameter space is highly constraint and it is one of the models that will be excluded or
confirmed in the near future.

3.3 Small field models of inflation

By definition small field models of inflation satisfy ∆φ = |φi − φf | � MP . As an example
let us again return to the model above and now focus on the region near a maximum, for
example near φ = 0. In this case we can expand all the equations around φ = 0 and keep the
leading terms. This gives us an example of so called hilltop inflation, in which the period of
inflation happens near an unstable point of the potential.

The potential becomes

V (φ) = λ4

[
2− 1

2

(
φ

f

)2
]
, (40)
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which is unbounded from below but we of course only consider it as an approximation near
the φ values for which inflation takes place. This potential is then only valid for φ/f � 1
and does not need to be completed to a full cosine but can rather have arbitrary higher order
corrections of O ((φ/f)3).

The slow-roll parameters are

εV =
M2

P

2

(
φ
f2

2

)2

=
M2

Pφ
2

8f 4
, (41)

ηV = −M
2
P

2f 2
. (42)

We see that both are small as long as MP , φ � f . We assume that corrections to the
potential will modify εV and ηV near φ ∼ f/100 and that inflation ends around this point.
The number of e-folds is then given by

Ne ≈
∫ φf

φi

1√
2εV

|dφ|
MP

=
2f 2

M2
P

∫ f/100

φi

dφ

φ
=

2f 2

M2
P

log

(
f

100φi

)
. (43)

For example, for concreteness we can choose f = 5MP so that 60 e-folds require

Ne = 60 ≈ 50 log

(
MP

20φi

)
⇔ φi ≈ .015MP �MP . (44)

This leads to

εV (φi) ≈ 5× 10−8 ⇔ MP |V ′(φi)| ≈ 2× 10−4 V (φi) , (45)

which is a larger fine tuning of the potential as one would require in large field models.
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