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Lecture 8 The thermal universe - part IV

In this lecture we discuss the Boltzmann equation that allows one to describe the evolution
of processes in our universe that are not in equilibrium. Then we discuss the formation
of light elements during big bang nucleosynthesis and the recombination of electrons and
protons into neutral hydrogen.

1 The Boltzmann Equation

The number density in the absence of interactions (or in equilibrium) scales like the inverse
volume, i.e. like a−3, since it is a density. This means that it satisfies the equation

0 =
1

a3
d(na3)

dt
=
dn

dt
+ 3

ȧ

a
n =

dn

dt
+ 3Hn . (1)

As we discussed in the previous lectures, there are ample interactions in which two particles
interact and become two new particles. These can be schematically written as

1 + 2↔ 3 + 4 , (2)

which means that particle 1 and 2 annihilate and become particles 3 and 4 (and vice versa).
Such interactions together with decays of single particles are the most relevant processes
in the early universe since the interaction of three or more particles is much more unlikely
because these three or more particles would have to be all very close at the same time.

The Boltzmann equation describes the evolution of the number density n1 of for example
particle 1 in the presence of interactions. Here we focus on the interaction (2), in which case
the Boltzmann equation is given by

1

a3
d(n1a

3)

dt
= −〈σv〉n1n2 + c n3n4 , (3)

where the first term describes the reduction of n1 due to annihilation of particles 1 with
2, while the second term describes the production of 1 particles (and 2 particles) due to
the annihilation of 3 and 4 particles. The free parameter c can be related to the thermally
averaged cross-section 〈σv〉: We know from equation 1 that the right-hand-side of equation
3 has to vanish in thermal equilibrium, i.e. for ni = neqi . This gives

c =
neq1 n

eq
2

neq3 n
eq
4

〈σv〉 . (4)
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The Boltzmann equation then becomes

1

a3
d(n1a

3)

dt
= −〈σv〉

(
n1n2 −

neq1 n
eq
2

neq3 n
eq
4

n3n4

)
. (5)

This can be rewritten as

d log(n1a
3)

d log(a)
= −Γ1

H

(
1− neq1 n

eq
2

neq3 n
eq
4

n3n4

n1n2

)
, (6)

where Γ1 = n2〈σv〉. The above equation determines the evolution of the number density
for particles species 1 as a function of a(t). Since a(t) grows with t in our universe we can
essentially think of the above Boltzmann equation as determining the evolution of species 1
with time. We see that Γ1/H plays a crucial role in determining the evolution of n1a

3. If
the interaction rate Γ1 becomes small compared to the Hubble rate H, we have a freeze out
and the number density of n1 scales like a constant times a−3.

To describe the evolution of all the particles in our early universe one has to solve si-
multaneously all the corresponding coupled Boltzmann equations. This is of course only
possible numerically and goes beyond what we will discuss in class. Here we will focus on
a few simple interesting cases that we can discuss more or less analytically and using the
equilibrium results from the previous lectures. We will henceforth drop the superscript eq
and just write ni for the number densities in equilibrium.

Chemical potentials

Before we discuss big bang nucleosynthesis it is useful to review the effect of a non-zero
chemical potential. In the phase space distribution function (see for example equation (1)
in the lecture 6 notes) a non-zero chemical potential leads to

f±(p) =
1

e(E(p)−µ)/T ± 1
. (7)

While again each particle can have a different chemical potential, chemical equilibrium, which
is reached via interactions, leads to relations between the chemical potentials. For example
interaction like the ones in equation (2) lead to

µ1 + µ2 = µ3 + µ4. (8)

Non-zero chemical potentials will modify the expression for, for example, the number density,
so that for non-relativistic particles in equilibrium it is given by

n = g

(
mT

2π

) 3
2

e
µ−m
T . (9)

However, if we take ratios of number densities in which the chemical potential cancels due
to equation (8), then we don’t really need the values of the chemical potentials.

Note, that photons can interact with electrons via a double Compton scattering

e− + γ ↔ e− + γ + γ , (10)

which leads to µγ = 0.
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2 Big bang nucleosynthesis

Big bang nucleosynthesis refers to the formation of atomic nuclei during the cooling of our
early universe. Recall that after the QCD phase transition around 150MeV quarks form
colorless bound states that include protons and neutrons. During the continuous cooling of
our universe, the number densities of these non-relativistic baryons is exponentially decaying
until, due to the initial antisymmetry between baryons and anti-baryons, we are left with a
residual amount of baryonic matter in the form of protons and neutrons and heavier nuclei.
The protons and neutrons can bind via the strong force into atomic nuclei and via the weak
force neutrons and protons can convert into each other. All these processes are initially in
equilibrium and we want to understand with which relic abundance of nuclei we are left,
once these processes drop out of equilibrium due to the cooling of our universe.

The two reasons why we can actually do that without solving many coupled Boltzmann
equations are firstly that essentially no elements heavier than Helium are created during
big bang nucleosynthesis, so that we can just focus our attention on Hydrogen and Helium
and secondly that initially we have only neutrons and protons in equilibrium without any
relevant amount of heavier nuclei.

2.1 Protons and neutrons

At temperatures above 1MeV protons and neutrons are in equilibrium due to weak interac-
tions of the form

n+ νe ↔ p+ + e− . (11)

The chemical potential is the average energy needed to add an extra particle (“dE = µdN”).
Electrons and neutrinos are much lighter than neutrons and protons and the particles are
non-relativistic so that E ∼ m. We therefore conclude that the chemical potentials for
electrons and neutrinos are negligible small, so that equation (8) tells us that µp = µn.
Taking the ratio of the proton and neutron number densities, the chemical potential then
simply cancels (see equation (9)) and we find

nn
np

=

(
mn

mp

) 3
2

e−
mn−mp

T . (12)

Recalling the proton and neutron masses mp = 938.27MeV and mn = 939.57MeV , we
see that their ratio is very close to 1 and their difference is mn − mp = 1.3MeV . So at
large temperatures T � 1MeV we have the same number of neutrons and protons, while at
energies below T ∼ 1MeV , the ratio of the neutron to proton number density is exponentially
decaying. However, as we have seen last time when we discussed neutrinos, processes that
involve the weak interactions like the one in equation (11) will become irrelevant at energies
below roughly 1MeV , since Γ/H ≈ 1 for T ≈ 1MeV (see equation (14) in the lecture 7
notes). Actually a more careful analysis reveals that the weak interactions become irrelevant
at T ≈ .8MeV which leads to

nn
np

=

(
mn

mp

) 3
2

e−
mn−mp

T ≈ e−
1.3MeV
.8MeV ≈ .2 . (13)
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Once the temperature drops further the finite lifetime of the neutron becomes important. In
particular, a free neutron can decay via

n→ p+ + e− + ν̄e , (14)

which leads to an exponential decay of the neutron number density

nn
np
→ nn

np
e−

t
886s ≈ .2e−

t
886s , (15)

where we used that the mean lifetime of a free neutron is 886s. The decay of the neutrons
stops once they are bound into nuclei which happens around t ≈ 330s which leads to

nn
np

∣∣∣∣
t≈330s

≈ .14 . (16)

2.2 Heavier nuclei

Let us study a process that involves the production of the lightest nucleus that is not just a
proton, i.e. deuterium. One neutron and one proton can form deuterium (and a photon):

n+ p+ ↔ D+ + γ . (17)

As we argued above, the photon’s chemical potential vanishes so that the chemical potentials
cancel in the following ratios

nD
nnnp

=
3

4

(
2π

T

mD

mnmp

) 3
2

e−
mD−mn−mp

T , (18)

where we used gn = gp = 2 and gD = 3.1 The ratio between the masses is approximately
2/mp, however, the difference in the mass of the deuterium and its two constitutions is
the binding energy mn + mp − mD ≈ 2.2MeV . At energies well below the proton and
neutron masses, i.e. at T � 1GeV , the number densities of protons and neutrons are not
exponentially decaying anymore but are determined by the non-zero baryon number in our
universe, i.e. by equation (12) in the lecture 5 notes:

np ∼ nn ∼ nb ∼ 10−9nγ = 10−92ζ(3)

π2
T 3 , (19)

where we used equation (11) in the lecture 6 notes for the photon number density. Using
this in equation (18), we get

nD
np
≈ 8

(
T

mp

) 3
2

e
2.2MeV

T 10−9 . (20)

This implies that for T = 1MeV , we have nD/np ≈ 10−12 and for roughly T ≈ .066MeV
we have nD/np ≈ 1. This means that at temperatures above T ≈ .1MeV the deuterium
abundance is negligible and the same is true for even heavier nuclei.

1Deuterium is the spin 1 combination of the proton and neutron. The corresponding spin 0 particle is
unstable.
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2.3 Nucleosynthesis

Now we have all pieces in place and can discuss the creation of nuclei that are not just a
proton. Our starting point are protons and neutrons. As we mentioned before, processes
involving more than two particles are very rare so that the initial process must be the
formation of deuterium from one proton and one neutron as shown in equation (17). Only
once deuterium is formed, which as we saw above happens around T ≈ .066MeV , can Helium
be produced via

D + p+ ↔ 3He+ γ ,
D + 3He ↔ 4He+ p+ . (21)

The binding energy of 4He, BHe, is larger than that of deuterium BD. This leads to an
enhancement of the number density of Helium compared to that of deuterium

nHe
nD
∝ e

BHe−BD
T . (22)

This is similar to equation (20), where deuterium is favored at low temperatures, except
that here we don’t have a suppression factor. This means that helium is almost immediately
produced after deuterium and that all neutrons end up in 4He nuclei. Since each 4He atom
contains two neutrons, this allows us to easily determine the fraction of helium to hydrogen
in our universe

nHe
nH

=
nHe
np

=
1
2
nn

np
= 7% . (23)

This answer is very close to a full numerical analysis that solves all the coupled Boltzmann
equations and which gives something like 6.2% ≈ 1

16
. Since the mass of a Helium nucleus is

roughly four times as large as the proton mass, we find that roughly one fourth of the mass
of ordinary matter in our early universe is in the form of Helium and the rest in the form of
Hydrogen. This perfectly agrees with observations and is one of the great successes of big
bang nucleosynthesis and shown in figure 1.

Beyond Helium You probably wonder why heavier atomic nuclei don’t form during big
bang nucleosynthesis (and how they appeared in our universe). The reason that they aren’t
formed from protons, neutrons, deuterium and helium is the following: As we have seen
above, before helium can be formed, protons and neutrons need to first combine to form
a substantial amount of deuterium. During this time the universe keeps cooling and the
nuclei loose part of their kinetic energy, which makes it harder to overcome the Coloumb
barrier (i.e. to bring together two positively charge nuclei). More importantly, once a large
amount of 4He is formed, these can only combine to form 8Be which is unstable and decays
faster than it can be formed. Very small amounts of Tritium and 3He that are also created
during big bang nucleosynthesis can combine with 4He to form 7Li of which we observe tiny
amounts today.2 So big bang nucleosynthesis produces only very light elements. As briefly
mentioned last time, the heavier elements that we see today in our universe and that we are

2Actually we observe slightly more Lithium than theoretical predicted (see figure 1) which might require
small modifications of big bang nucleosynthesis.
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Figure 1: The mass fraction of several light nuclei as theoretical predicted (colored band)
and the observational constraints (grey bands).

made of are created in the first stars through nuclear fusions. Once the heaviest of these
stars explode in supernovae, these heavy elements are released into the interstellar medium
and can become part of second generation stars and form planets.

The abundance of the different nuclei in our early universe as a function of time is shown
in figure 2.

3 Recombination and photon decoupling

After nuclei are formed around T ≈ .06MeV , which corresponds roughly to a time of 3
minutes after the big bang, our universe contains a soup of positively charged nuclei, free
electrons and photons (as well as decoupled neutrinos). During the further expansion and
cooling of our universe the energy density of radiation decays like a−4, while the energy
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Figure 2: The mass fraction of several light nuclei as a function of time. Taken from http:

//www.astro.ucla.edu/~wright/BBNS.html.

density in the non-relativistic matter decays like a−3. Roughly 60,000 years after the big
bang the energy densities in radiation and matter are equal and our universe enters its
matter dominated era. Another 200,000 years later electrons and nuclei start to form neutral
atoms, during a period that is usually called recombination.3 Once the recombination ends
and the universe essentially consists of neutral atoms, the photons in the cosmic microwave
background can stream freely until today and tell us about the universe 380,000 years after
the big bang as well as much earlier times.

3.1 The Saha equation

The process that keeps electrons, protons and photons in equilibrium during the first 200,000
years after the big bang is

e− + p+ ↔ H + γ . (24)

At a temperature of T ≈ 1eV all particles except the photons are non-relativistic and they
all are in (chemical and thermal) equilibrium due to the above process. Recalling that the
photon chemical potential vanishes, we can look at the following ratio in which the chemical
potentials cancel4

nH
npne

=

(
mH

memp

2π

T

) 3
2

e
mp+me−mH

T , (25)

where we used that gH = 4 = gegp. Using that mp ≈ mH and that the binding energy of
hydrogen is mp + me −mH = 13.6eV and the fact that our universe is electrically neutral

3A more accurate name would be combination since they have never been combined before.
4Here we use nH to denote the neutral hydrogen only so that np 6= nH .
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which implies ne = np, we find

nH
n2
e

=

(
2π

meT

) 3
2

e
13.6eV
T , (26)

Next we define the free electron fraction as the ratio of free electrons to baryons

Xe ≡
ne
nb
. (27)

As we have seen above in equation (23), more than 90% of the baryon number is due to the
protons, that can be in the form of positively charged nuclei np or in the form of neutral
hydrogen nH , so that

nb ≈ np + nH = ne + nH ≈ 10−92ζ(3)

π2
T 3 , (28)

where we used equation (19). From the definition in equation (27) we then find

1−Xe

X2
e

=
(np + nH)− ne

n2
e

(np + nH) =
nH
n2
e

nb . (29)

Using this in equation (26) we find the Saha equation

1−Xe

X2
e

= 10−92ζ(3)

π2

(
2πT

me

) 3
2

e
13.6eV
T . (30)

3.2 Recombination

The Saha equation allows us to get an estimate for the energies at which recombination
happened. Taking the onset of recombination as the temperature Tbeginning at which Xe = .9
and the end of recombination as the temperature Tend at which Xe = .1, we find from
equation (30) that Tbeginning ≈ .35eV and Tend ≈ .30eV . The reason that these results are so
much smaller than the 13.6eV binding energy is that there are many, many more photons
than baryons and that the black body spectrum of the photons has a tail of high energy
photons that keep the Hydrogen ionized until the average temperature of the photon bath
is well below the binding energy of Hydrogen.

3.3 Photon decoupling

The so called time of last scattering at which the electrons and photons scatter for the last
time via Thompson scattering

e− + γ ↔ e− + γ , (31)

is actually happening even later around a time when Xe ≈ .01. We see this as follows:
The cross-section for Thompson scattering is σT ≈ 2 × 10−3MeV −2 and the corresponding
interaction rate is given by

ΓT ≈ neσT = nbXeσT ≈ 10−92ζ(3)

π2
T 3XeσT . (32)
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In order to determine the temperature at decoupling Tdec we have to check when the above
interaction rate is of the same size as the Hubble expansion rate. During matter domination
the Hubble rate is given by 5

H = H0

(
T

T0

) 3
2

. (33)

This implies

ΓT (TD) = H(TD) ⇔ T
3
2
DXe(TD) = 109 π2

2ζ(3)

H0

σT T
3
2
0

. (34)

We can numerically solve this equation and find TD ≈ .26eV and Xe(TD) ≈ .003. The
temperature TD ≈ .26eV corresponds to a time of 380,000 years after the big bang and a
redshift of z ≈ 1100.

5This follows from the first Friedmann equation

H2 =
8πG

3
ρm ∝

(
a0
a(t)

)3

and the fact that a(t) ∝ 1/T .
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