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Lecture 2 Dynamics of the universe

In the last lecture we learned that our universe is homogeneous and isotropic and can be
described by the so called FRW metric. Using general relativity one can derive the Friedmann
equations that describe the evolution of the universe for any given energy and matter content
with an energy density given by ρ(t) and a pressure p(t):(

ȧ(t)

a(t)

)2

+
K

a(t)2
=

8πG

3
ρ(t) , (1)

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p(t)) . (2)

From the two Friedmann equations we also derived the continuity equation

ρ̇(t) + 3H(t) (ρ(t) + p(t)) = 0 , (3)

where the Hubble parameter is defined as

H(t) = ȧ(t)/a(t) . (4)

1 The different forms of matter

There are three different forms of matter and energy in our universe and they all satisfy
the relation p(t) = wρ(t), where the constant w is called the equation of state parameter.
Plugging this into the continuity equation (3) we can derive the following

0 = ρ̇(t) + 3
ȧ(t)

a(t)
(1 + w)ρ(t)

0 =
ρ̇(t)

ρ(t)
+ 3(1 + w)

ȧ(t)

a(t)

0 =
d

dt
ln ρ(t) + 3(1 + w)

d

dt
ln a(t)

0 = ln (ρ(t)) + 3(1 + w) ln (a(t)) + const.
0 = ln (ρ(t)) + ln

(
a(t)3(1+w)

)
+ const.

1 = ρ(t) · a(t)3(1+w) · econst.
⇒ ρ(t) ∝ a(t)−3(1+w) . (5)

Thus we see that the function ρ(t) and therefore p(t) = wρ(t) are related to a(t) in a rather
simple way. This means, as we will see below, that as long as a single matter component is

1



dominating, we can solve the equations that determine the evolution of our entire universe
analytically!

Before we do that let us discuss what kind of matter and energy we expect to have in
our universe and derive the corresponding equation of state parameter w.

• Non-relativistic matter

The matter we are most familiar with are stars and galaxies that we can observe at
night in the sky. This form of matter has a velocity that is much smaller than the
speed of light so that we can neglect its kinetic energy. In a given box in which each
side has the initial length a(tin)l, we have a certain number of stars and galaxies with
a mass M . The energy density is then given by ρ = E/(a(tin)l)3 = M/(a(tin)l)3, where
we used E = M in units where c = 1. Now when the universe evolves, the box will
change its volume to a(t)3l3 as is shown in figure 1.

Figure 1: Non-relativistic matter in an expanding universe.

Since the mass M stays the same we find the following scaling

ρm(t) ∝ a(t)−3 ⇔ w = 0 ⇔ pm(t) = 0 . (6)

So we see that non-relativistic matter has an equation of state parameter w = 0 and
therefore vanishing pressure, which makes sense since the matter inside our box should
not exert any pressure on the walls.

As we will discuss below the largest fraction of cold matter is in the form of an unknown
so called dark matter.

• Radiation

Another form of energy in the universe is radiation (like for example light). The energy
of light in units where c = ~ = 1 is given by E = 2π/(a(tin)λ), where a(tin)λ is the
wavelength. If we have a certain number of photons inside a big volume of initial
size (a(tin)l)3, then the energy density gets again diluted due to the increase in the
volume of the box as above. Additionally due to the expansion of the space the initial
wavelength a(tin)λ increase to a(t)λ, as shown in figure 2,

so that we find for radiation

ρr(t) ∝ a(t)−4 ⇔ w =
1

3
⇔ pr(t) =

1

3
ρr(t) . (7)
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Figure 2: Radiation in an expanding universe.

As we will learn later, our universe is filled with the cosmic microwave background,
which is thermal radiation left over from the big bang. Its spectrum is the best mea-
sured black body in nature.

• The cosmological constant

As we have seen in lecture 1 in equations (16), (17) and (18), we can describe a
cosmological constant by

ρΛ(t) = −pΛ(t) =
Λ

8πG
⇔ w = −1 . (8)

So in this case ρΛ = −pΛ is constant and the energy density does not change in time.
This can be understood as follows: During the expansion of the universe more of the
vacuum is created and this vacuum has a non-zero energy density ρ so that ρ does not
change during the expansion (or contraction).

If you are not too familiar with the theory of general relativity, then you might wonder
about the conservation of energy in the above examples. This is a generic feature of general
relativity. The would be conservation of energy is replaced by the condition that ∇µT

µν = 0,
where ∇µ denotes the covariant derivative. In particular that means that ∂µT

µν + ΓνµσT
µσ +

ΓµµσT
σν = 0. Using the handout that derives Friedmann’s equations you can check that the

above four equations (ν = 0, 1, 2, 3) reduce to the continuity equation (3) for ν = 0 and are
trivial otherwise. If you are confused about how this non-conservation of energy is possible
in a physical theory, recall that the conservation of energy follows via Noether’s theorem
from the time-translational symmetry. So any physical theory that is not invariant under
time translations can and generically will violate the conservation of energy. An expanding
universe is certainly not invariant under time translations so it does violate the standard
conservation of energy but it does satisfy the continuity equation that was implied by the
two Friedmann equations.

2 The dust filled universe

In this section we will study the simple case of a universe which contains non-relativistic
matter, so we set p(t) = 0 and we have ρ(t) ∝ a(t)−3 > 0 from (6). The second Friedmann
equation (2) then immediately tells us that such a universe cannot be static, i.e. ä(t) 6= 0.
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In fact it tells us that the expansion of the universe is decelerating. This is very intuitive
since we know that gravity always attracts. In a universe filled with matter the gravitational
attraction between the matter will slow down any initial expansion. There then seem to be
three possibilities:

1. The universe will keep expanding for ever at a slower and slower rate.

2. The expansion of the universe will eventually come to a stop.

3. The expansion will slow down and then gravitational attraction between the matter
forces the universe to contract and eventually collapse.

We will see that these cases correspond to K = −1, 0, 1. We can write equation (1) as

0 ≤ ȧ(t)2 =
8πG

3
ρm(t)a(t)2 −K =

cm
a(t)
−K , (9)

where we introduced the constant cm > 0 via 8πGρm(t)/3 = cm/a(t)3 and used (6). We
immediately see that for K = −1 the right-hand-side can never vanish so in this universe
any initial expansion ȧ(t) will go on forever. For the case K = 0 the right-hand-side vanishes
for a(t)→∞ so the expansion will eventually come to a stop. Finally, for K = +1 the first
term dominates for very small a(t) but once a(t) = cm/K the expansion will come to a stop
and the universe will then contract (since (1) implies ä(t) < 0). These three scenarios are
shown in figure 3.

Figure 3: An open, flat and closed universe corresponding to K = −1, 0, 1.

We can also rewrite the first Friedmann equation (9) as

1

2
ȧ(t)2 + V (a(t)) = −K

2
, (10)

with V (a(t)) = −cm/(2a(t)). The above equation describes the motion of a 1-dimensional
particle in the potential V and with a total energy E = −K/2. Since V (a(t)) < 0 we can

4



conclude that for E ≥ 0, i.e. K = 0 and K = −1 there exist unbound solutions and the
universe can expand forever. For K = 1 we have E = −1/2 and the trajectories are bound.
This is shown in figure 4.

K<0

K>0

a

V(a)

Figure 4: Unbound trajectories only exist for K = −1 and K = 0, while for K = 1 the
universe expands and then contracts again.

2.1 A static universe?

Note, that independent of the value of K we find that equation (2) does not permit static
solutions for a universe filled with matter. Before the discovery that our universe was expand-
ing, this fact was very troublesome for people like Einstein that imagined our universe to be
time independent. Let us therefore try to construct a static universe with matter by adding
in the cosmological constant Λ. The universe can then be described by ρ(t) = ρm(t) + ρΛ,
p = pΛ = −ρΛ. In a static universe with ȧ(t) = ä(t) = 0, we then find from (2) that

0 = ρ+ 3p = ρm − 2ρΛ ⇔ ρm = 2ρΛ > 0 , (11)

since ρm > 0. Using this in (1) gives

K

a2
=

8πG

3
ρ =

8πG

3
(ρm + ρΛ) = 8πGρΛ = Λ > 0 . (12)

So we have succeeded in finding a static solution provided that K = 1 and Λ > 0. In this
static solution we have a = 1/

√
Λ. The important question to ask is whether such a solution

is stable. To answer that, we can look again at equation (10). The potential now has an
extra contribution from the cosmological constant so that we find for K = 1

1

2
ȧ(t)2 + V (a(t)) =

1

2
ȧ(t)2 − cm

2 a(t)
− 1

6
Λ a(t)2 = −1

2
. (13)

A plot of the potential is shown in figure 5.
We see that our static universe corresponds to a maximum of the potential. This means

this static universe is unstable. If the matter and energy content is the tiniest bit different,
then this universe will either expand forever or collapse. Fortunately our universe is not
static, so that we don’t have to worry about such delicate solutions.

5



-Λ a (t)2

-
cm

a(t )

a=1/ Λ

a

-
1

2

V(a)

Figure 5: The potential for a static universe with K = +1, matter and a cosmological
constant Λ > 0. We see that the static solution with a = 1/

√
Λ is a maximum and therefore

unstable.

2.2 The age of the universe

Since we know that our universe is expanding, let us ask the simple question of how old
our universe would be, if all its energy would be contained in non-relativistic matter. This
is not that bad of an approximation and will give us an age that is of the correct order of
magnitude. Before we start the calculation let us introduce an important convention. We
call our current time t0, i.e. we use a subscript 0 to denote today’s value of the time variable.
Likewise we use a0 = a(t0) and H0 = H(t0) = ȧ(t0)/a(t0) to denote today’s value of the
scale factor and Hubble parameter. Since H0 by definition is a constant, it is usually called
the Hubble constant. There are ever improving measurements of the Hubble constant but
its uncertainty is still somewhat large. For that reason one usually writes

H0 = 100h
km

sMpc
, (14)

where the current experimental value of h is

h = .678± .009 . (15)

Hubble’s original observations led him to h ≈ 5 due to several systematic errors. So over
the last century astrophysicists reduced the error from a few hundred percent to just a few
percent.

Now let us use this value of H0 to determine the age of a universe filled with non-
relativistic matter. We will set K = 0 which, as we will discuss below, is very much consistent
with observation. We then find from (6) that

ρ(t) = ρ0

(
a0

a(t)

)3

, (16)

where ρ0 is the current energy density of the universe. Now we use this in the Friedmann
equation (1)

a(t)ȧ(t)2 =
8πG

3
ρ0a

3
0
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√
a(t) ȧ(t) =

√
8πG

3
ρ0a3

0√
a(t) da =

√
8πG

3
ρ0a3

0 dt , (17)

where in the last line we used ȧ(t) = da/dt. Now we can integrate both sides which leads to

2

3
a(t)

3
2 =

√
8πG

3
ρ0a3

0 t+ const. (18)

By demanding that a(t = 0) = 0 is the initial singularity we find that the integration constant
vanishes. The above equation implies

a(t) = a0

(
t

t0

)2/3

, (19)

since by definition a(t0) = a0 and t0 is implicitly defined in (18) but we will not need this
particular expression. We rather calculate H0 directly

H0 =
ȧ(t0)

a(t0)
=

2
3
a0 t

− 1
3

0 /t
2
3
0

a0

=
2

3

1

t0
. (20)

So we have found the age of a matter filled universe in terms of the Hubble constant today

t0 =
2

3

1

H0

=
2

3

sMpc

100h km
≈ 2

300h
3× 1019 s ≈ 9.6× 109 yr = 9.6 Gyr . (21)

While this is pretty close to the age of our universe which is roughly 13.8 × 109 years, it is
inconsistent with the observation of the oldest stars that are as old as 13× 109 years.

3 Time evolution of the universe

As we have seen above, a matter dominate universe gives us the right order of magnitude
for the age of the universe but the answer is inconsistent with observations. The reason for
that is that our universe contains other forms of energy as well. At different points of time
different forms of energy density dominate the evolution of the universe. Let us therefore
also determine the time dependence of the scale factor for the other cases. We start with
the general expression (5) which is equal to

ρ(t) = ρ0

(
a(t)

a0

)−3(1+w)

. (22)

Using this in the Friedmann equation (1) and assuming a negligible curvature contribution
(K = 0), we can repeat the above calculation(

ȧ(t)

a(t)

)2

=
8πG

3
ρ0

(
a(t)

a0

)−3(1+w)

7



a(t)
1+3w

2 ȧ(t) =

√
8πG

3
ρ0a

3(1+w)
0

a(t)
1+3w

2 da =

√
8πG

3
ρ0a

3(1+w)
0 dt

2

3(1 + w)
a

3(1+w)
2 =

√
8πG

3
ρ0a

3(1+w)
0 t+ const. (23)

We can again set the constant to zero by choosing a(t = 0) = 0 and fix the factor of
proportionality by demanding that a(t0) = a0 and get

a(t) = a0

(
t

t0

) 2
3(1+w)

, w 6= −1 . (24)

The above derivation doesn’t apply to the case of a cosmological constant but in that case
one has simply ρ(t) = const. and finds from (1) that

a(t) = a0e
H0(t−t0) . (25)

Note that in this case the ‘beginning’ of the universe is not at t = 0 but rather at t = −∞.
So such a universe is infinitely old. This case is also special since the Hubble parameter H(t)
is actually constant (since ρ is constant), while in all other cases it changes with time as

H(t) =
2

3(1 + w) t
, w 6= −1 . (26)

Our derivation above also applies to the case of a negatively curved universe with K = −1
and ρ(t) = 0, since this can be thought of as a fluid with energy density ρ ∝ a(t)−2 which is
equal to w = −1/3. Let us summarize the different scalings we found

a(t) = a0

(
t
t0

) 1
2
, for a radiation dominated universe, i.e. w =

1

3
, (27)

a(t) = a0

(
t
t0

) 2
3
, for a matter dominated universe, i.e. w = 0, (28)

a(t) = a0
t
t0
, for a curvature dominated universe with K = −1, i.e. w = −1

3
, (29)

a(t) = a0e
H0(t−t0) , for a universe dominated by Λ, i.e. w = −1. (30)

It is also interesting to look at the time dependence of the ρ(t) (and therefore also of p(t) =
wρ(t)). From equation (26) we find that

ρ(t) =
3

8πG
H(t)2 =

3

8πG

(
2

3(1 + w)

)2
1

t2
, w 6= −1 . (31)

This means that in an expanding universe the energy density is diluted as t−2 independently
of which kind of fluid dominates the energy density.
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4 Fun fact

Let us conclude with one non-trivial observation. A universe with a flat geometry K = 0 is
special in the sense that it can lead to critical evolution (see figure 3) but it also is special since
our universe seems to have a very small (or even vanishing) curvature |K/a2

0| � (ȧ(t0)/a0)2.
We have seen in the first lecture that the spatial part of such a universe could be simple
the flat space R3. This is however not the entire truth. It is also possible that one, two or
all of the three xi directions are periodic, i.e. they are circles. This would mean, if these
circles wouldn’t be too large, we could see ourselves in the sky or we could see the same
galaxy twice in the universe by looking in opposite directions. However, up to date there is
no evidence of such a non-trivial topology so if the spacial part of our universe is finite (or
periodic in any one direction), then the corresponding radius has to be very large and we
might never be able to observe this. However, it is interesting to know that our universe (or
more precisely a universe with K = 0) does not necessarily have to be spatially infinite.
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