Matrikelnummer:

Homework - 4

1. In lecture 3 we defined the redshift parameter $z \equiv \frac{a\left(t_{0}\right)}{a\left(t_{1}\right)}-1$. We also discussed that our universe has roughly $\Omega_{\Lambda, 0} \approx .7, \Omega_{m, 0} \approx .3$ and $\Omega_{r, 0} \approx 10^{-4}$.
(a) Use the scaling of the Ω_{i} with $a(t)$ to determine the redshift parameter at the time of matter- Λ equality: $\Omega_{\Lambda}=\Omega_{m}$. As you have seen in the previous homework this was roughly 3.6×10^{9} years ago.
(b) Use the scaling of the Ω_{i} with $a(t)$ to determine the redshift parameter at the time of matter-radiation equality: $\Omega_{m}=\Omega_{r}$. This was roughly 7.5×10^{4} years after the big bang.
2. Calculate the particle horizon and the event horizon in a curvature dominated universe with $K=-1$ and $a(t)=a_{0} \frac{t}{t_{0}}$.
3. The big rip: Observations are compatible with an equation of state parameter $w<-1$ for the dark energy in our universe. Take $K=0$ and a universe filled with matter with density parameter $\Omega_{m, 0}$ and phantom energy $\Omega_{p, 0}=1-\Omega_{m, 0}$ with $w_{p}<-1$.
(a) At what scale factor $a_{m p}$ are the matter energy density and the phantom energy density equal?
(b) Write down the first Friedmann equation for such a universe in the limit $a(t) \gg$ $a_{m p}$. Integrate it for an expanding universe and show that $a(t)$ goes to infinity at a finite cosmic time $t_{r i p}$ given by the relation

$$
\begin{equation*}
H_{0}\left(t_{r i p}-t_{0}\right) \approx \frac{2}{3\left|1+w_{p}\right| \sqrt{1-\Omega_{m, 0}}} \tag{1}
\end{equation*}
$$

(c) The inverse Hubble parameter $1 / H(t)$ controls the size of causally connected patches. What happens to the size of such patches for $t \rightarrow t_{\text {rip }}$?
4. Let us get a rough estimate for the time at which the CMB was released:
(a) The Boltzmann constant is $k_{B}=8.6 \times 10^{-5} \mathrm{eV} / \mathrm{K}$. Since the photon spectrum has a tail of photons with higher energy, assume that neutral hydrogen could form, when $k_{B} T_{C M B} \approx .3 \mathrm{eV}$ (instead of the familar 13.6 eV ionization energy). Calculate the value of the scale factor $a(t)$ at this time.
(b) The hydrogen recombination happens still in the matter dominated era. Assume a matter dominated universe $a(t)=a_{0}\left(\frac{t}{t_{0}}\right)^{\frac{2}{3}}$ and determine the time of 'last scattering', after which the CMB photons could stream freely.

