Deriving the energy momentum tensor for a scalar field

The energy momentum tensor is defined as the variation of the action with respect to
the metric g,,,. For inflation we are interested in the action of a scalar field that is given by
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Before we vary this action with respect to the metric g,, we recall the variations of /—¢g =

\/—det(g,,) and the inverse metric g":
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where in the first line we used Jacobi’s formula 6g = g g""0g,,..
Now we can calculate the energy momentum tensor for a single scalar field
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Lowering the indices we find
T = po= 500000 +V(6) + &%,
Ty = Pagy = (—50000° - V(0)) + 060,0. 5)
Recalling the FRW metric
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we can read of the energy density and pressure for a scalar field [[]
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where (V) = 79,4 9;¢ with v being the inverse of the 7;; defined in equation @ This
is the expected result and we see that a slowly varying scalar field indeed behaves like a
cosmological constant since pg ~ —P.

1To get Py we can use ¢ T;; = g g;j Py = 3P,.



