Deriving the Friedmann equations from general relativity

The FRW metric in Cartesian coordinates is

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+g_{i j} d x^{i} d x^{j}=-d t^{2}+a(t)^{2}\left(d x_{i}^{2}+K \frac{x_{i}^{2} d x_{i}^{2}}{1-K x_{i}^{2}}\right) \tag{1}
\end{equation*}
$$

where Greek letters run over $\mu, \nu, \ldots=0,1,2,3$ and latin letters $i, j, \ldots=1,2,3$. The Christoffel symbol $\Gamma_{\mu \nu}^{\rho}$ is given by

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\rho}=\frac{1}{2} g^{\rho \sigma}\left[\frac{\partial g_{\sigma \mu}}{\partial x^{\nu}}+\frac{\partial g_{\sigma \nu}}{\partial x^{\mu}}-\frac{\partial g_{\mu \nu}}{\partial x^{\sigma}}\right] . \tag{2}
\end{equation*}
$$

For the metric (1) we find the following non-zero components

$$
\begin{align*}
\Gamma_{i j}^{0} & =\frac{\dot{a}(t)}{a(t)} g_{i j}, \tag{3}\\
\Gamma_{0 j}^{i} & =\frac{\dot{a}(t)}{a(t)} \delta_{j}^{i} \tag{4}\\
\Gamma_{k j}^{i} & =\frac{K x^{i} g_{k l}}{a(t)^{2}} . \tag{5}
\end{align*}
$$

From these we can calculate the Riemann curvature tensor

$$
\begin{equation*}
R_{\nu \rho \sigma}^{\mu}=\partial_{\rho} \Gamma_{\nu \sigma}^{\mu}-\partial_{\sigma} \Gamma_{\nu \rho}^{\mu}+\Gamma_{\alpha \rho}^{\mu} \Gamma_{\nu \sigma}^{\alpha}-\Gamma_{\alpha \sigma}^{\mu} \Gamma_{\nu \rho}^{\alpha} . \tag{6}
\end{equation*}
$$

I will not list all non-zero components here since this is not overly illuminating and we are only interested in the Ricci curvature tensor and the Ricci scalar

$$
\begin{equation*}
R_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha}, \quad R=g^{\mu \nu} R_{\mu \nu} . \tag{7}
\end{equation*}
$$

The components of the Ricci tensor are

$$
\begin{align*}
R_{00} & =-3 \frac{\ddot{a}(t)}{a(t)} \tag{8}\\
R_{0 i} & =0 \tag{9}\\
R_{i j} & =\frac{\ddot{a}(t) a(t)+2 \dot{a}(t)^{2}+2 K}{a(t)^{2}} g_{i j} \tag{10}
\end{align*}
$$

where as expected the isotropy and homogeneity of our metric leads to the vanishing of the vector $R_{i 0}=0$ and forces the spacial part to be proportional to the metric $R_{i j} \propto g_{i j}$. The Ricci scalar is given by

$$
\begin{equation*}
R=\frac{6\left(a(t) \ddot{a}(t)+\dot{a}(t)^{2}+K\right)}{a(t)^{2}} . \tag{11}
\end{equation*}
$$

We recall from lecture 1 that the energy momentum tensor $T_{\mu \nu}$ is similarly constraint as the Ricci scalar. It can only contain two independent functions of t and its components are

$$
\begin{align*}
T_{00} & =\rho(t) \tag{12}\\
T_{0 i} & =0 \tag{13}\\
T_{i j} & =p(t) g_{i j} \tag{14}
\end{align*}
$$

Now we can solve Einstein's equations

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu} \tag{15}
\end{equation*}
$$

First let us look at the (00) component

$$
\begin{align*}
-3 \frac{\ddot{a}(t)}{a(t)}+\frac{3\left(a(t) \ddot{a}(t)+\dot{a}(t)^{2}+K\right)}{a(t)^{2}}-\Lambda & =8 \pi G \rho(t) \\
\frac{3\left(\dot{a}(t)^{2}+K\right)}{a(t)^{2}}-\Lambda & =8 \pi G \rho(t) . \tag{16}
\end{align*}
$$

Dividing both sides by 3 leads to the first Friedmann equations as given in equation (16) in the Lecture 1 notes

$$
\begin{equation*}
\frac{\dot{a}(t)^{2}+K}{a(t)^{2}}-\frac{\Lambda}{3}=\frac{8 \pi G}{3} \rho(t) . \tag{17}
\end{equation*}
$$

The mixed components ($0 i$) all vanish and the pure spacial part takes the form

$$
\begin{align*}
\frac{\ddot{a}(t) a(t)+2 \dot{a}(t)^{2}+2 K}{a(t)^{2}} g_{i j}-\frac{3\left(a(t) \ddot{a}(t)+\dot{a}(t)^{2}+K\right)}{a(t)^{2}} g_{i j}+\Lambda g_{i j} & =8 \pi G p(t) g_{i j} \\
\left(-2 \frac{\ddot{a}(t)}{a(t)}-\frac{\dot{a}(t)^{2}+K}{a(t)^{2}}+\Lambda\right) g_{i j} & =8 \pi G p(t) g_{i j} \tag{18}
\end{align*}
$$

Since the metric $g_{i j} \neq 0$ we can drop it and plug in (17) to get

$$
\begin{align*}
-2 \frac{\ddot{a}(t)}{a(t)}-\frac{8 \pi G}{3} \rho(t)-\frac{\Lambda}{3}+\Lambda & =8 \pi G p(t) \tag{19}\\
-2 \frac{\ddot{a}(t)}{a(t)}+\frac{2}{3} \Lambda & =8 \pi G p(t)+\frac{8 \pi G}{3} \rho(t) \tag{20}
\end{align*}
$$

Dividing by -2 leads to equation (17) in the lecture notes and the second Friedmann equation

$$
\begin{equation*}
\frac{\ddot{a}(t)}{a(t)}-\frac{1}{3} \Lambda=-\frac{4 \pi G}{3}(\rho(t)+3 p(t)) \tag{21}
\end{equation*}
$$

