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Motivation for Topology-based Heuristics

• Single-planner approach to humanoid planning [Dornbush et al., ICRA’18]
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Waseda/Mitsubishi robot
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Waseda/Mitsubishi robot
What path to take? What gait to use and 

when? Which limbs to exercise? What support 

surfaces to use? What limb motion to utilize? 

Decomposition into a whole bunch of 

planners/decision trees is brittle. 

Solving it as a single search is intractable. 
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Waseda/Mitsubishi robot
What path to take? What gait to use and 

when? Which limbs to exercise? What support 

surfaces to use? What limb motion to utilize? 

Decomposition into a whole bunch of 

planners/decision trees is brittle. 

Solving it as a single search is intractable. 

Heuristics allow us to “softly” decompose the problem 

without loosing guarantees on global 

completeness/bounded sub-optimality
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What are Heuristic Functions?

• Heuristic values in A*-like planning =  estimates of the cost-to-goal

• A*-like planning (e.g., weighted A*, etc.) biases its search efforts 

along the gradient given by the heuristic function while maintaining 

guarantees on completeness and bounded sub-optimality
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such heuristic function guides planning along a topological 

class corresponding to an optimal 2D solution

But what if this class is infeasible?
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such heuristic function guides planning along a topological 

class corresponding to an optimal 2D solution

But what if this class is infeasible?

The planner needs to be capable of using 

multiple heuristic functions simultaneously!
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Use of Multiple Topology-based Heuristics
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Multi-Heuristic A* (MHA*)

[Aine et al., IJRR’15]

computed plan

Computation of 

Topology-based Heuristics

multiple heuristic functions, 

one per topology class

specification of topology 

classes to consider during 

planning (optional)
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Multi-Heuristic A* (MHA*)

[Aine et al., IJRR’15]

computed plan

Computation of 

Topology-based Heuristics

multiple heuristic functions, 

one per topology class

specification of topology 

classes to consider during 

planning (optional)

Use Beams [Tovar et al., ‘09] to define topology signature in 2D
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Multi-Heuristic A* (MHA*)

[Aine et al., IJRR’15]

computed plan

Computation of 

Topology-based Heuristics

multiple heuristic functions, 

one per topology class

specification of topology 

classes to consider during 

planning (optional)

Use Beams and Gates [Ranganeni et al., in submission] to define topology signature in 2.5D
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Multi-Heuristic A* (MHA*)

[Aine et al., IJRR’15]

computed plan

Computation of 

Topology-based Heuristics

multiple heuristic functions, 

one per topology class

specification of topology 

classes to consider during 

planning (optional)

Runs a single Dijkstra’s search backwards 

from the goal on graph G, where each vertex 

v is defined by (x,y,h(γ))
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Use of Multiple Topology-based Heuristics
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Multi-Heuristic A* (MHA*)

[Aine et al., IJRR’15]

computed plan

Computation of 

Topology-based Heuristics

multiple heuristic functions, 

one per topology class

specification of topology 

classes to consider during 

planning (optional)

Runs MHA* search forward (from start) 

guided by computed heuristic functions on:

- original graph where each vertex v is 

defined by qfull

OR

- augmented graph where each vertex v is 

defined by (qfull,h(γ))
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Benefits of Topology-based Heuristics

• Footstep planning for humanoid [Ranganeni et al., ICAPS‘18]
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planning with one topology-based heuristic function (sec)

Speedups of using topology-based heuristics
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planning with three topology-based heuristic functions (sec)

Speedups of using topology-based heuristics
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Potential Future Directions

• Automatically figuring out what topology classes to consider for 

computing heuristics

• Dynamically instantiating new topology-based heuristics

• Understanding when planning hits a local minimum and a new 

topological class needs to be explored
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