Topological aspects in Information-Theoretic Belief Space Planning
Andréj Kitanov and Vadim Indelman
Faculty of Aerospace Engineering

Belief Space Planning (BSP)

- BSP determines optimal non-myopic control action \(U_{t+1} = \arg \min_{U} J(U) \) over the prediction horizon \(t \) at planning time \(k \) with respect to a given objective function \(J \) related to the design task
 \[
 J(U) = \frac{1}{2} \sum_{s} \mathbb{E}[h(X_{s+1}|U_k)] + t_{2} \mathbb{E}[h(X_{t+1})]
 \]
 \(h(X_{t+1}) \) future posterior belief at time \(t + 1 \) based on observations \(Z_{t+1} \) until that time
 \(U_{t+1} \) control applied at time \(t + 1 \)
- Instantiation of a Partially-Observable Markov Decision Process (POMDP)
- Finding optimal solution to POMDP in the most general form is computationally intractable
- In information-theoretic BSP, \(J \) is a function of state uncertainty

Key insight: Any topological representation \(T \) and derived metric which preserves action ordering (the best action) can be used to solve BSP. Exact value of the objective function is not necessary.

Topological BSP (t-BSP)

- We introduce a novel concept, topological belief space planning (t-BSP), that uses topological properties of the underlying factor graph representation of future posterior beliefs to direct a search for an optimal BSP solution
- Topological space is often less dimensional then the embedded state space
- We look for topological representation of the belief and a metric that is highly correlated to \(J \) but much easier to calculate
- No explicit inference required in optimization nor partial state covariance recovery
- Enables planning in high dimensional state spaces

Information-theoretic objective

Minimizing Shannon joint entropy of the posterior Gaussian belief

\[
J(U) = \frac{N}{2} \ln(2\pi\epsilon) + \frac{1}{2} \ln(\mathbb{E}[X_{t+1}])
\]

Proposed topological metrics

- Von Neumann graph entropy and its approximation by a function of node degrees \(d \) (see [1]) faster to calculate, effectively \(O(1) \), worst \(O(n) \)

\[
\Sigma_{VN}(G) = \sum_{i=1}^{n} \frac{d_i}{2} \ln \left(\frac{d_i}{2} \right)
\]

- Function of the number of spanning trees \(\tau(G) \) of a graph motivated by [2] more accurate, computational complexity depends on the graph sparsity and the number of states

\[
\Sigma_{TBSP}(G) = \frac{3}{2} \ln(\tau(G)) - n/2 \ln(N) - \ln(2\pi\epsilon)^2
\]

\(t-BSP \) error \(e(f, s) \) can be calculated from topological metric \(\Sigma_{TBSP} \) and prior maximum likelihood estimate [3]

\[
e(f, s) \leq \Sigma_{max} \text{ where } \Sigma_{max} = \tau(G)\left(\hat{U}(U)\right) - \min_{\alpha} CBF(%) \text{ and } \left\{\begin{array}{l}
\hat{U}(U) = -\Sigma_{TBSP}(U) \text{ and } CBF(%) = -\Sigma_{TBSP}(U) + \frac{1}{2}\tau(U) - \sum_{j=2}^{n} d_j(t_j) - \Psi(U) \end{array}\right\}
\]

Conclusion

topological properties of factor graphs dominantly determine estimation accuracy and enable efficient information-theoretic BSP decision making under some conditions (e.g. linear observation models, large diversity among candidate actions, certain noise properties)
action consistent in other cases, t-BSP enables eliminating sub-optimal actions

References