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A Topological Approach to Workspace and Motion
Planning for a Cable-controlled Robot in Cluttered

Environments
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Abstract—There is a rising demand for multiple-cable con-
trolled robots in stadiums or warehouses due to its low cost,
longer operation time, and higher safety standards. In a cluttered
environment, the cables can wrap around obstacles, but careful
choice needs to be made for the initial cable configurations
to ensure that the workspace of the robot is optimized. The
presence of cables makes it imperative to consider the homotopy
classes of the cables both in the design and motion planning
problems. In this paper, we study the problem of workspace
planning for multiple-cable controlled robots in an environment
with polygonal obstacles. This paper’s goal is to establish a
relationship between the boundary of the workspace and cable
configurations of such robots and solve related optimization
and motion planning problems. We first analyze the conditions
under which a configuration of a cable-controlled robot can
be considered valid, discuss the relationship between cable
configuration, the robot’s workspace and its motion state, and
using graph search based motion planning in h-augmented graph
perform workspace optimization and compute optimal paths for
the robot. We demonstrated the algorithms in simulations.

Index Terms—Motion and Path Planning, Industrial Robots,
Collision Avoidance.

I. INTRODUCTION
A. Literature Review

DESPITE the advances in mobile and aerial robotics, there
are various applications in which cable-controlled robots

are better suited. A robotic system controlled by varying-
length cables anchored to fixed control points provide greater
reliability (less prone to environmental noise such as wind
gusts [1] since the robot is tethered), has less onboard power
consumption (since the actuation is done by the external
cables [2]) and does not rely on onboard sensors for local-
ization and control (thus works in GPS-denied and featureless
environments).

Robots attached to passive cables for power supply and
communication have been extensively used for many real-
world applications [3], [4]. For such robots, the main challenge
is to avoid entanglement of the cable with obstacles and
to ensure that the tether does not violate any geometric
constraints [5]–[8]. The use of cables to manipulate objects
in an environment has also been studied extensively [9]–[11].

Active control of robots using cables, on the other hand,
has gained relatively less attention in robotics literature. The
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typical controllers for such robots are designed for obstacle-
free environments where the inverse-kinematics problem can
be solved in a closed form [12]. However, the problem of
negotiating obstacles for a cable-controlled robot requires
significant additional consideration. With the recent advent
of topological path planning techniques [6], [10], [13], it
has become possible to compute optimal solutions to motion
planning problems for systems involving flexible cables by
reasoning about topological classes (homotopy and homology
classes) of paths and cables in a cluttered configuration space.
This paper uses these recent developments in the field of
topological path planning to design algorithms for cable-
controlled robots in environments with polygonal obstacles.

B. Problem Statement and Motivation

Fig. 1: A wire camera (Skycam,
source: Wikimedia Commons)

We consider a planar
environment cluttered by
polygonal obstacles. This is
a model for robots that can
be used to transport goods
in a warehouse or to move
overhead cameras in a sta-
dium (Fig. 1) – attached and
controlled by cables that are
driven by motors at the boundaries of the environment (roof
or walls). The obstacles which cables cannot penetrate would
inevitably make some of the regions inaccessible to the robot.
The initial cable configuration of the system influences the
shape and size of the workspace (see the difference between
Fig. 2a and Fig. 2b). It is thus important to choose the
best cable configurations of optimizing workspace’s area and
ensuring that the robot is able to reach the desired locations.
We need a method to search for a boundary of robot’s
workspace corresponding to its initial cable configuration. A
related application is that of sea farming, where a net needs
to be anchored at certain points on its boundary, ensuring that
the net does not get tangled with obstacles, such as boats or
buoys, while maximizing the area covered by the net (which
is used for farming of marine species).

C. Outline of the Paper
In this paper, we start by presenting some of the preliminary

backgrounds including visibility graph, homotopy/homology
class and h-augmented graph. Following that we analyze the
properties of the workspace of a multiple-cable controlled
robot and its boundary, and propose an algorithm for com-
puting the boundary for which workspace’s area is optimized
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(a) Original cables (orange solid) can be seen as
a whole (green solid) which can deforming con-
tinuously into a closed boundary (blue solid).
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(b) Another initial configuration of cables. The
cables can deform continuously into a valid
boundary of its workspace as well.
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(c) An arbitrary combination of shortest paths
between neighboring control points do not nec-
essarily enclose a valid workspace.

Fig. 2: Same environment, different workspaces enclosed by shortest paths in some homotopy classes.

or certain specific points fall within the workspace. Finally,
we describe the algorithms for robot motion planning and
cable velocity control and apply these to several example
applications.

II. PRELIMINARIES
A. Construction of Visibility Graph

Consider a rectangular planar environment with

Fig. 3: A visibility graph
(green line segments are edges,
blue/red dots are vertices)

polygonal obstacles. We es-
tablish a visibility graph of
the environment with vertices,
v ∈ V , consisting of the ver-
tices of the polygonal obsta-
cles, the control points (points
on the environment boundary
at which the cables are at-
tached to the robot), robot
point as well as start and end
vertices of a trajectory, and the
edges, {v → v′} ∈ E , con-
sisting of line segments that
connect vertices with direct line of sight. When dealing with
the concave polygon, we select shortcuts between corners.

B. Brief Introduction of Homotopy and Homology Class [14]
Definition 1: (Homotopy classes [13]) Two trajectories τ1

and τ2 connecting the same start and end points, vs and vg
respectively, are homotopic or belong to the same homotopy
class iff one can be continuously deformed into the other
without intersecting any obstacle.

Definition 2: (Homology classes [13]) Two trajectories τ1
and τ2 connecting the same start and end points, vs and vg
respectively, are homologous or belong to the same homology
class iff τ1 together with τ2 (the later with opposite orientation)
forms the complete boundary of a 2-dimensional manifold not
containing/intersecting any of the obstacles.

C. h-signature and H-signature
Assuming that all obstacles and ends of trajectories are

fixed, h-signature and H-signature are respectively homotopy
and homology invariants of trajectories – two trajectories con-
necting same start and end points have the same h- (or H-)
signatures iff they are in the same homotopy (or homology)

(a) τ1 is homotopic to τ2 since there is
a continuous deformation from one to
the other, but not τ3.

(b) τ1 is homologous to τ2 since
they bound an area, A, but τ3 be-
longs to a different homology class.

Fig. 4: Illustration of homotopy and homology equivalences. In this
example τ1 and τ2 are both homotopic and homologous

class [15]. Function h(·) is for denoting h-signature of a
trajectory. We use representative points (obstacles), ζi, and
the non-intersecting rays ri emanating from the representative
points for constructing h-signature. We form a word by tracing
τ , and consecutively placing the letters of the rays that it
crosses, with a superscript of +1 if the crossing is from right
to left, and -1 if the crossing is from left to right. For example,
in Fig. 5a, if τ first crosses rb right to left then ra from right
to left as well, the h-signature is ‘ba’(short for ‘b+1a+1’);
if τ first crosses ra left to right then rb from left to right
too, the h-signature is ‘a−1b−1’. If in an h-signature ‘a−1’
appears next to ‘a’, indicating that the trajectory crosses ra
followed by crossing back, these two letters can cancel each
other, like the trajectory never crosses ra. We use simplified
h-signatures. For instance, in Fig. 5a the empty h-signature
of the upper curve was simplified from the initial ‘baa−1b−1’
to ‘bb−1’, then from ‘bb−1’ to ‘ ’(empty). The h-signature
is internally non-commutative. The direction of a curve is
important, for the same path in reverse direction will result
in an inverse h-signature where both the order of letters and
superscripts of letters are opposite [10]. If a curve is a closed
loop and it encloses no representative points (obstacles), it is
null homotopic with an empty h-signature. More examples are
shown in Fig. 5a.

Likewise, H(·) is a function for denoting H-signature of a
trajectory. H-signature is a vector, the ith element of which
has the simple interpretation of counting the number of times
the curve, τ , intersects the ray emanating from ζi (see Fig.
5b). In particular, define #iτ = (Number of times τ crosses
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Fig. 5: h- and H-signatures of different trajectories connecting two
same points

the ray ri emanating from ζi from left to right) − (Number
of times τ crosses the ray ri emanating from ζi from right to
left). Then, H(τ) = [#1τ,#2τ, . . . ,#nτ ]

ᵀ [10]. For instance,
3 obstacles in the environment, if the H-signature of trajectory
τ is H(τ) = [1, 0, 1]ᵀ, it shows that after all τ cross ray r1
once and r3 once from left to right, not crossing r2. If τ is a
closed loop, H(τ) = [1, 0, 1]ᵀ shows that ζ1 and ζ3 are inside
the loop and ζ2 is outside.

D. The h-signature Augmented Graph [13]
In order to keep track of the homotopy invariants, we define

an h-augmented graph, Gh = (Vh, Eh), based on a visibility
graph, G = (V, E), such that a vertex in Gh contains the
additional information of the h-signature of the trajectory
leading from a start vertex vs up to this vertex besides its
coordinate. A transition from vertex (v, h) to vertex (v′, h′)
means that the h-signature, h′, is a concatenation of h and the
h-signature of trajectory from v to v′.
1)

Vh =

(v, h)

∣∣∣∣∣∣
v ∈ V, and,
h = h(ṽsv) for some trajectories from

the start vertex vs to this vertex v


2) An edge {(v, h) → (v′, h′)} is in Eh for (v, h) ∈ Vh and

(v′, h′) ∈ Vh, iff (v → v′) ∈ E , and, h′ = h ◦ h(v → v′),
where, “◦” is a concatenate operator.

3) The cost associated with an edge {(v, h)→ (v′, h′)} ∈ Eh is the
same as that associated with edge {v→ v′} ∈ E .

The h-augmented graph is unbounded. Its vertices are
generated on-the-fly and as required during the execution of
Dijkstra’s/A* search on the graph, which we describe later.

III. ALGORITHM DESIGN FOR WORKSPACE COMPUTATION

In this section, we describe some specific features, prop-
erties and algorithms related to the cable configurations and
the workspace of the cable-driven robot. These include the
topological properties of workspace’s boundary and algorithms
for obtaining all valid workspaces from given obstacle config-
urations.

A. Definition of Boundary of a Workspace
The configurations of a cable-robot system in which the

robot is capable of moving in any direction are called an
interior point (Fig. 6a). On the contrary, a boundary point
is a configuration where the robot can move only in some
specific directions. These directions can constitute a half plane
(Fig. 6b) or more generally union of cones (Fig. 6d). All the
boundary points constitute a boundary of the workspace.

B. Force Analysis
The physical constraint of the cable is that there can only

be tensions but no pressure acting on the cable and that the
net force on the robot must be zero to make it stay at a certain
position (see Fig. 6a), denoted as 0 =

∑
i
Fiêi, i = 1, 2, . . . , n,

where Fi ≥ 0 is a non-negative scalar of tension, êi is a unit
vector of the direction in which the ith cable points at the
location of the robot and n is the number of cables. When
the robot is maneuverable, not all of the cables can be slack,
that is,

∑
i
Fi 6= 0. To make the net force zero with some taut

cables, there must exist at least two of them and they must lie
in different half-planes to counteract each other. If all cables
are pointing in the same half-plane, the robot cannot go any
further towards the other half-plane (Fig. 6b and 6c). We call
this case the boundary state in the open area.

C. Boundary State
There are two kinds of boundary states.
1) In the Open Area: If êi of all taut cables span a one-

dimensional line, it is a boundary state and the robot is located
at the boundary of the workspace (see Fig. 6b and 6c).

2) Touching an Obstacle: When the robot driven by cables
touches an obstacle, the robot is in touching-obstacle boundary
state and the obstacle’s edge or/and corner that is touched is
a part of boundary of the workspace, where the net force of
cables may not be zero, shown in Fig. 6d.

D. Shortest Paths and Boundary
Lemma: The workspace boundary curve connecting a pair

of neighboring control points is the shortest path in the same
homotopy class connecting that pair (by “neighboring” we
refer to adjacent control points encountered as we trace the
boundary of the environment).

Sketch of Proof: When in boundary state, if we remove all
slack cables, the robot’s position and taut cables will keep
stable. We can regard the pair of taut cables as a whole which
is also taut, going from one control point to a neighboring one
though the robot which can be regarded as a mass point on
that whole cable. This whole taut cable is the shortest path in
current homotopy class connecting those two control points,
shown as blue curves in Fig. 2a and 2b.

E. Boundary’s Features
When the robot is at an interior point, we can move the robot

along arbitrary trajectories inside the boundary. As the robot
is moving toward a part of boundary, a pair of neighboring
cables can deform continuously into that part of boundary,
without interfering with any obstacle, shown in Fig. 2a and
2b. This deformation from the initial configuration into a part
of boundary holds for any pair, which indicates that all cables
pairs can deform into a complete and closed-loop boundary.
Since no obstacles are crossed during this deformation, there
must be no obstacles inside the boundary. Just for comparison,
Fig. 2c shows an invalid boundary, even if it is made of shortest
paths.

Proposition 1: The closed-loop formed by the boundary of
a workspace is null homotopic (i.e. its h-signature is ‘empty’
word), stated in Section II-C.
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Fig. 6: Robot states and cable configuration

F. Shortest Paths Searching
After constructing the visibility graph, we use Dijkstra’s

search in the h-augmented graph to get the shortest paths
with various h-signatures. We construct n threads for multi-
threading search, Ti, where i = 1, 2, . . . , n and n is the
number of control points. Each thread contains a Dijkstra
search returning paths connecting a pair of neighboring control
points which are indexed along clockwise or anticlockwise
direction. For example, T1 is for paths connecting control
point c1 and c2, namely T2 for c2 and c3, . . . , Tn for cn
and c1, as shown in Fig. 2a. We insert the output τ into
n corresponding sets of shortest paths, Pi = {τi1, τi2, . . . }.
These n threads keep searching till the length of boundary
(consist of n paths, one from each set) must exceed a limit L
we properly preset.

Algorithm 1 Shortest path searching in the ith thread Ti

Input: The h-augmented graph, Gh = {Vh, Eh}; the set of
control points for start vertices and goal vertices, C =
{c1, c2, . . . , cn}; a limit of boundary cost L.

Output: Set of shortest paths in different homotopy classes,
Pi = {τi1, τi2, . . . }; set of h-signatures of paths, Hi =
{hi1, hi2, . . . }.

1: k ← 1
2: loop
3: τik ← a shortest path, in the kth homotopy class

connecting {ci, ‘ ’} and {ci+1, h} for some h
4: li ← C(τik) +

∑
j
C(τj1), j = 1, 2, . . . , n, j 6= i

5: if (li > L) then
6: break loop
7: end if
8: Insert τik into Pi
9: hik ← h(τik)

10: Insert hik into Hi
11: k ← k + 1
12: end loop

Since there are only n control points, the indices of control
points in Algorithm 1 can run from 1 to n, thus in Line 3, if
i = n, then by i + 1th we refer to 1st control point (i.e.: we
take the modulo with respect to n with shift of 1). Hereafter
whenever we refer to i+1 for a control point index, we assume
this convention. The paths returned from Dijkstra’s search are
in an order from least cost to higher cost. Thus the 1st path,

τi1, in every thread’s outcome is of the least cost. In Line 4-
7, length l is the sum of the latest path in the current thread
and the 1st paths from other threads, a possible least boundary
cost for this latest outcome. If li is greater than L, indicating
all subsequent outcomes of the current thread must form a
boundary that has a length greater than L, thus we stop this
thread. Function C is for obtaining the cost of path. In Line
10, h-signatures of all shortest paths in different homotopy
classes are stored in the set Hi for later boundary validation.
Here we introduce a function P for later use to get a part of
the boundary such that P (vs,vg, hig) returns the shortest path
from {vs, ‘ ’} to {vg, hig}.

G. Valid Boundary Construction
After we finished searching in all threads, we need to find

out all proper combinations that have an empty concatenation
of h-signatures. Algorithm 2 retrieves one path’s h-signature
at a time from each h-signature set Hi, n h-signatures in total,
to check whether their full concatenation is empty in Line 6
and 7. If so, we store the whole boundary, ω, into the set of all
boundaries,W , shown in Line 11. Although the complexity of
the algorithm rises exponentially with the number of control
points or the size of set Hi, we have limited number of control
points and the upper bound of the length of cables during the
search hence make it computationally feasible.

H. Area Computation
Every boundary is made up of a few vertices, ω =
{v1,v2, . . . ,vn}, where vertex, vi = {xi, yi}, is either a con-
trol point or a vertex of the polygon obstacles. We use the fol-
lowing formula to compute the area of the workspace: A(ω) =
1
2 |(x1y2 − y1x2) + (x2y3 − y2x3) + · · ·+ (xny1 − ynx1)|.

IV. WORKSPACE OPTIMIZATION

The methods described in this paper was implemented in
C++ and Discrete Optimal Search Library (DOSL) [16]. In
the sections below we mostly use 200 × 200 environment
with two convex and one concave polygon as obstacles. Four
control points are placed at each corner of the environment.

A. Computing Workspace’s Boundary and Area from Initial
Cable Configuration

If we have the initial cable configuration, we are able to
compute the corresponding workspace. The cable bi is given
in form of vertices in visibility graph, going from the robot
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Algorithm 2 Getting valid closed boundary

Input: Set of shortest paths in different homotopy classes,
Pi = {τi1, τi2, . . . }; set of h-signatures, Hi =
{hi1, hi2, . . . }, hij = h(τij);

Output: Set of valid closed boundary, W;
1: m← 1
2: for all h1i in H1 do
3: for all h2j in H2 do
4: . . .
5: for all hnk in Hn do
6: q ← h1i ◦ h2j ◦ · · · ◦ hnk
7: if q = ‘ ’ then
8: if (any of τ1i, τ2j , . . . , τnk self-tangles) then
9: continue loop

10: end if
11: Insert ωm = {τ1i, τ2j , . . . , τnk} into W
12: m← m+ 1
13: end if
14: end for
15: . . .
16: end for
17: end for

(a) Input: initial cable configuration and
robot, control points and obstacles

(b) Output: closed boundary and
the area: 16200

Fig. 7: The workspace from given cable configuration

to the ith control point. We need goal h-signatures hig of
pairs of cables for searching for corresponding boundaries.
We concatenate the inverse of the ith cable’s h-signature with
the i+1th cable’s, hig = (h(bi))

−1◦h(bi+1), where superscript
“−1” indicates inverse operation explained in Section II-C.

Use function P (ci, ci+1, h
i
g) to get all corresponding short-

est paths, then concatenate them into a closed boundary ω.
For we have shown that cables can deform continuously into
a closed boundary, no need to check the concatenation of goal
h-signatures. In the end compute the area of this boundary,
A(ω). An example is shown in Fig. 7.

B. Maximization of the Workspace Covering Multiple Task
Points

If we expect the robot to perform multiple tasks at static
points in the environment, we should choose an appropriate
initial cable configuration which can generate a workspace
covering all task points. For this kind of problem, we need
to use H-signature (homology signature) to check if all the
task points are inside the workspace. If the components in
the H-signature of boundary corresponding to task points are
non-zero, that vertex is inside the boundary. If we get an H-
signature that does not have any zero component, all task

(a) Input: task points (in purple), control
points (in red) and obstacles

(b) Output: only one valid boundary
when L = 900

Fig. 8: Planning of the workspace that covers multiple task points

points are enclosed. After getting all workspaces that satisfy
the criteria and the areas of them, the algorithm returns the
one that has the largest area. A case is shown in Fig. 8.

C. Maximization of Expected Workspace’s Area in an Envi-
ronment with Moving Obstacle

In real-world scenarios, despite fixed control points, there
could be moving obstacles. Although uncertain about the
future locations of the obstacles, if we have prior knowledge of
probabilities associated with different configurations of obsta-
cles in the environment, we can choose a cable configuration
with the max expectation of workspace’s area.

1) Boundaries Change upon Obstacle Reconfiguration:
If the current workspace’s boundary is ωm, the mth one in
set W we previously established, when the obstacles move
from current configuration to the jth potential configuration,
ωm deforms as well into a new boundary ωjm , where
ωm = {τm1, τm2, . . . , τmn} and ωjm = {τ jm1, τ

j
m2, . . . , τ

j
mn}

(for example, the initial configuration of Fig. 10a deforms
into Fig.s 10b, 10c and 10d when the obstacles move).
Because control points do not move and cables do not intersect
obstacles, τmk has the same start and end vertices as τ jmk
and is homotopic to τ jmk, where τmk ∈ ωm, τ jmk ∈ ωjm, and
k = 1, 2, . . . , n. Based on the homotopy invariants, we are
able to search for τ jmk,

τ jmk = P (ck, ck+1, Rj(h(τmk))) (1)
thus the new boundary in the jth obstacle configuration is

ωjm = Pj(ωm) =

ß
τ

∣∣∣∣ τ = P (ck, ck+1, Rj(h(τmk))),

where τmk ∈ ωm, k = 1, 2, . . . , n

™
(2)

where function Rj(·) is for revising h-signatures for the jth

potential configuration. We use Rj(h(τmk)) instead of h(τmk)
because sometimes h(τ jmk) = h(τmk) may not hold (Fig. 9).
The motion of obstacles could be so significant that the rays
emanating from obstacles interchange of their coordinates. As
a result, although τ jmk and τmk belong to the same homotopy
class, the h-signatures of them in terms of crossing rays may
be different. Hence we need to revise h-signatures.

2) Revision of h-signatures: We revise h-signatures de-
pending on how the obstacles move. The revision applies
in four steps: add/remove, interchange, insert and simplify.
The following is an example of revision triggered by the
representative point ζα crossing the ray of the representative
point ζβ from left to right, namely, the trajectory along which
ζα moves has an h-signature of ‘β−1’, shown in Fig. 9.
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(a) Current configuration, area:
16200, max cable length sum:
1138.39

(b) Potential configuration 1, p1 =
0.5, area: 10250, max cable length
sum: 2155.56

(c) Potential configuration 2, p2 =
0.3, area: 11400, max cable length
sum: 1241.1

(d) Potential configuration 3, p3 =
0.2, area: 9450, max cable length
sum: 1364.59

Fig. 10: Boundary of Fig. 7b changes in potential configurations, expectation: 10435, max cable length sum: 2155.56

(a) Current configuration, area:
19300, max cable length sum:
1435.66

(b) Potential configuration 1, p1 =
0.5, area: 19300, max cable length
sum: 1488.13

(c) Potential configuration 2, p2 =
0.3, area: 20100, max cable length
sum: 1374.21

(d) Potential configuration 3, p3 =
0.2, area: 22925, max cable length
sum: 1283.95

Fig. 11: A boundary with max expectation (20265) in an environment with moving obstacles, max cable length sum: 1488.13

ζ
α

ζ
β

α

βα
(empty)

r
β

r
α

τ
1

τ
2

τ
3

(a) Before significant motion of
obstacle

ζ
α

ζ
β

β-1αβ

ζ
α

β-1

αβ
α

r
β

r
α

τ
1

τ
2

τ
3

r
α

(b) Obstacle ζα right crosses ζβ ’s
ray rβ along trajectory of ‘β−1’

Fig. 9: h-signature revision

a) Add/remove: When the representative point ζα’s ray
rα moves from the left of the end vertex of one path to its
right, we add a corresponding letter ‘α’ at the back of the
path’s h-signature, like τ1 in Fig. 9. Likewise, if it is the start
vertex that any representative point’s ray crosses, add/remove
that letter at the front of path’s h-signature.

b) Interchange: In the h-signature of the path, when ‘α’
is next to ‘β’, we interchange positions of ‘α’ and ‘β’, like
τ2 in Fig. 9. Likewise, if ‘α−1’ is next to ‘β−1’, interchange
positions of ‘α−1’ and ‘β−1’.

c) Insert pair: If ‘α’ or ‘α−1’ appears alone (its previous
and next letters are not ‘β’ or ‘β−1’), insert ‘β−1’ into its left
and ‘β’ into its right, like τ3 in Fig. 9.

d) Simplify: Check if a letter and its inverse appear side-
by-side. If so, cancel both of them. Keep checking until there
is no such a case.

On the contrary, when representative point ζα crossed rβ’s
right to left, going along ‘β’, do “add/remove”, “interchange”
and “simplify” in the same way described above; but when
coming to “insert pair”, if there is an lone ‘α’ or ‘α−1’, we
insert ‘β’ into its left and ‘β−1’ into its right.

A representative point may cross multiple rays. Thus we
have to decompose the crossing into several stages of coor-
dinates interchanges, then revise h-signatures stage by stage
till reaching the final configuration. E.g. in Fig. 11, we can
split the transformation from Fig. 11a to 11b into two stages:
firstly ζα going along a trajectory ‘β−1’, secondly ζα going
along ‘γ−1’; transformation from Fig. 11a to 11b in two
stages: ζβ going along ‘γ−1’, then ζα going along ‘γ−1’;
transformation from Fig. 11a to 11d in one stage: ζβ going
along ‘α’. Here we use the boundary in Fig. 7b as a current
configuration to illustrate how h-signatures are revised for
potential configurations, shown in TABLE I, and how the
boundary changes accordingly in Fig. 10.

TABLE I: Stage-by-stage h-signature revision for paths in Fig. 10

Cfg Stg c̃1c2 c̃2c3 c̃3c4 c̃4c1

Cur. N/A α α−1β−1γ−1 γβγ−1 γ

P. 1 1 β−1αβ β−1α−1γ−1 γβγ−1 γ
2 β−1γ−1αγβ β−1γ−1α−1 γβγ−1 γ

P. 2 1 α α−1γ−1β−1 β* γ
2 γ−1αγ γ−1α−1β−1 β γ

P. 3 1 α β−1α−1γ−1 γαβα−1γ−1 γ
* Initially it was ‘βγγ−1’ before simplification.
3) Expectation Computation: The probability of the ith

potential configuration is denoted as pi, i = 1, 2, . . . , ρ,
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where ρ is the number of potential configurations and∑ρ
i=1 pi = 1. The area expectation of the mth valid bound-

ary, ωm = {τm1, τm2, . . . , τmn} ∈ W , is E(ωm) =∑ρ
j=1A(Pj(ωm))pj . Next we can choose a valid boundary

with the max expectation from set W .
4) Maximum Cable Length Computation: In order to en-

sure that cables are long enough for all potential config-
urations, we need to know the maximum length of each
cable. Since the workspace is a polygon that must have
convex vertices at control points, the max length from the ith

control point is used when it reaches one of the other control
points. In a particular obstacle and workspace configuration,
that is max{C(ficic1), C(ficic2), ..., C(‡cici−1), C(‡cici+1), ...,
C(ficicn)}, where ficicj is the shortest path between the ith

and the jth control points inside the workspace. To get goal
h-signatures for searching, we concatenate the h-signatures
tracing the boundary from the ith control point to the jth

in clockwise or counterclockwise direction. For instance, if
j > i, the shortest path between ci and cj is ficicj =
P (ci, cj , h(τi) ◦ h(τi+1) ◦ · · · ◦ h(τj−1)). In Fig. 10 and Fig.
11, the sum of four maximum cable lengths were calculated
for each configuration.

V. ALGORITHM DESIGN FOR ROBOT PATH PLANNING
WITHIN THE WORKSPACE

We move a robot from one point to another by controlling
the motors to change the cables’ lengths at each one’s desired
speed. The cable control algorithm has the following inputs:
h-augmented graph of environment, coordinate of start and
goal vertices, vs and vg , coordinate of control points (xic, y

i
c),

initial cable configuration bi, and desired robot speed vr; and
outputs: shortest trajectory from the start vertex to the end
vertex, velocities of each cable vic over time.

A. h-signature of Shortest Trajectory within Boundary
With a correct h-signature of the desired trajectory, we

can ensure the search outcome is within the workspace. We
chose a path constituting of parts of the boundary (see Fig.
12) that can be easily obtained from the said inputs and can
be continuously deformed into (homotopic to) the desired
shortest path connecting the start and goal points. If both
start and goal vertices are at the boundary, we can directly
construct the h-signature of a trajectory between two vertices
along the boundary. If they are inside the workspace, we can
use alternative vertices – points on the boundary adjacently
above (v′s, v′g) or below (v′′s , v′′g ) start and goal vertices,
shown in Fig. 12. fivsvg inside the workspace can continuously
deform into „�vsv′sv

′
gvg partially at the boundary – they are

in identical homotopy class: h(fivsvg) = h(„�vsv′sv
′
gvg) =

h(fivsv′s)+h(fiv′sv′g)+h(flv′gvg). Since path fivsv′s and flv′gvg are
vertical, they do not cross any rays, having empty h-signatures.
Hence, h(fivsvg) = h(fiv′sv′g). Also, we can use v′′s and v′′g
(below vs and vg , respectively) instead. See more in Fig. 12.
In addition, we can apply this method for obtaining cables’
new h-signatures in the next subsection while the robot is
moving, where vs = ci and vg = vr (the robot’s location).
The shortest trajectory from start vertex vs to goal vertex vg
is fivsvg = P (vs,vg, h(fiv′sv′g)).

v
s

α

β

γ

v
g

v’
g

v’’
g

v’
s

v’’
s

c
2

c
3

c
4

c
1

Fig. 12: Shortest path searching within the workspace by using
alternative vertices (v′s, v′′s , v′g, v′′g ) at the boundary instead of
start and goal vertices (vs, vg) to get the goal h-signature.

(a) Input (b) Output
Fig. 13: Goal-directed path planning within the workspace. Path is
colored in green. Alternative points at the boundary in black.

B. Cable Velocity
The cable velocity is the projection of the robot’s velocity

in the cable’s direction. Denote coordinates of the ith control
point and robot as (xic, y

i
c) and (xr, yr), and the speed of robot

as (vxr , v
y
r ). The velocity of cable attached to the ith control

point is
vic =

(xic − xr)vxr + (yic − yr)vyr√
(xic − xr)2 + (yic − yr)2

.

where vic is a scalar and its positive direction is from the
robot to the ith control point, and robot coordinates (xr, yr)
are integrals of its velocity over time plus start coordinates.
Sometimes the cable may go around an obstacle, which makes
it no longer straight. Instead we use a temporary control point
which is at the nearest turn of cables to the robot. Thus we
search for a new cable configuration based on the robot’s
position. We construct h-signatures from robot’s alternative
vertex v′r to each control point along the boundary in a same
direction. In the test shown in Fig. 13, we got h(fiv′rc3) first,
and then got h(fiv′rc4), h(fiv′rc1) and h(fiv′rc2).
VI. PATH PLANING FOR MULTI-TASK ACCOMPLISHMENT

Suppose the cable-controlled robot needs to execute M un-
ordered tasks, each described as static points in the workspace,
before it arrives at the goal vertex. We need to solve the
traveling salesman problem – find the shortest trajectory that
goes through these static task points. One way to accomplish

this is to construct a task indicator augmented graph and search
in it [17]. A task indicator is a string of M binary digits,
denoted by β, in which each bit is a flag or indicator of whether
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Fig. 14: The task graph Y showing the possible transitions of the
task indicator, β, for 4 tasks.

(a) Input: 12 tasks to be finished (b) Output: a shortest trajectory

Fig. 15: Using t-augmented graph for multi-task planning within
the workspace in a non-convex environment. The robot returns to the
start after finishing all tasks. A shortest path is colored in green.

the corresponding task has been completed. For example, if
there are 4 tasks to be finished, ‘0101’ means that the 1st and
the 3rd task is finished while others are not. The robot must
set off at the start vertex with β = 0000 and arrive at goal
vertex with β = 1111. The task indicator augmented graph
Gt = (Vt, Et) is defined as
1) Vt = {(v, β)|v ∈ V, β ∈ Y}
2) An edge {(v, β) → (v′, β′)} = P (v,v′, h(‚�(v)′(v′)′)) is

in Et for (v, β) ∈ Vt and (v′, β′) ∈ Vt, (v)′ and (v′)′

being alternative vertices of v and v′ respectively, iff one
of the followings holds

a) The edge {(v, β)→ (v′, β′)} ∈ E , and v′ /∈ {τl| the lth

bit of β is 0}, and β = β′

b) The edge {(v, β)→ (v′, β′)} ∈ E , and v′ ∈ {τl| the lth

bit of β is 0}, with v′ = τλ, and β → β′ ∈ Y such that
the λth bit of β′ is 1.

3) The cost associated with an edge {(v, β)→(v′, β′)} is the
same as that associated with edge {v→v′} ∈ E .

In the example of Fig. 15 we place 12 task points inside the
workspace, the start vertex in the middle overlapping the end
vertex. We find the workspace first then build the t-augmented
graph to find the shortest path that visits all the task points.

VII. CONCLUSION

In this paper we have introduced a novel and efficient
method for workspace planning for a cable-control robot in a
cluttered environment, using the h-signature augmented graph.
We have presented algorithms for workspace planning and tra-
jectory planning based on it. Also, we have developed several
applications and demonstrated those through simulations in
both static and changing environment. More applications such

as optimization of location of control points and extension to
a full 3-D workspace are within the scope of future research.
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