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Abstract Multi-robot coverage and exploration is a fundamental problem in robotics.
A widely-used, efficient and distributable algorithm for achieving coverage of a con-
vex environment with Euclidean metric is that proposed by Cortes, et al., which is
based on the discrete-time Lloyd’s algorithm. It is significantly difficult to achieve
the same in non-convex environments and with non-Euclidean metrics. In this paper
we generalize the control law based on minimization of the coverage functional to
spaces that are inherently non-Euclidean and are punctured by obstacles. We also
propose a practical discrete implementation based on standard graph search-based
algorithms. We demonstrate the applicability of the proposed algorithm by solving
efficient coverage problems on a sphere and exploration problems in highly non-
convex indoor environments. †

1 Introduction

The geometry underlying configuration spaces of multiple robots is a critical fea-
ture implicit in several important challenges in planning and coordination. Met-
ric considerations are fundamental to problems of coverage [12, 6, 7, 3], explo-
ration [16, 15, 14], and more. A well-know approach to solving coverage prob-
lems with n robots involve partitioning the appropriate configuration space into
n-tessellations (a partition of the configuration space into simply-connected do-
mains) [12, 6]. In particular, this method requires a Voronoi tessellation that impli-
cates the configuration space geometry. While such a tessellation is easy to achieve
in a convex environment with Euclidean metric, it becomes increasingly difficult in
environments with obstacles and non-Euclidean metrics. The ubiquitous presence
of obstacles removes all hope of convexity. Non-Euclidean metrics can arise in the
geometry of a configuration space as inherited from the structure of the underlying
domain (e.g., from irregular terrain), or via direct manipulation of the configura-
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tion space geometry for problem goals (e.g., in multi-robot cooperative exploration
problems [2]).

The problem of attaining balanced coverage of an environment is fundamental
to many practical multi-robot problems. One common coverage control approach
— efficient and distributable — is through the definition of feedback control laws
defined with respect to the centroids of Voronoi cells resulting from the Voronoi
tessellation of the domain. Lloyd’s algorithm [12] is a discrete-time algorithm that
minimizes a coverage functional. A continuous-time version of the algorithm is de-
scribed in [5], where the authors propose gradient descent-based individual robot
control laws that guarantee optimal coverage of a convex environment given a den-
sity function which represents the desired coverage distribution. To address the lim-
itation of requiring a convex environment, the authors of [13] propose the use of
geodesic Voronoi tessellations determined by the geodesic distance rather than the
Euclidean distance. However such a method both involves computationally diffi-
cult geometric computations and is still limited to Euclidean environments with
polygonal obstacles. Recent work [2] has used a graph search-based approach to
develop tools for solving the coverage problem in non-convex environments with
a non-Euclidean metric. However, in order to explicitly compute an analogue of a
generalized centroid in non-convex tessellations, an approximate method involving
centroid projection was used. Such a method is, admittedly, ad hoc, gives weak guar-
antees, and is difficult to implement when the configuration space is not sufficiently
topologically simple (equivalent to a punctured simply-connected domain). There
exists search-based discrete-time algorithms that explicitly searches every vertex in
a tessellation to find the best position for the robot in every time-step (as in [10]). Al-
though such a controller can solve the problem of multi-robot decentralized cover-
age on arbitrary metric graphs, the high computational complexity of this approach
makes it impractical for fine discretization or large graphs.

In this paper we generalize the method for computing the control law that is
described in [13] and adapt it to non-Euclidean metric spaces with obstacles that
are not necessarily polygonal. The principal theoretical tools are Proposition 1 and
Corollary 1, which relate geodesics, distance derivatives, and the metric tensor. This
inspires the use of the control law in concert with a graph search-based methods
to achieve an efficient discrete implementation. Our results are supported by the
following demonstrations:
1. Coverage problems on non-Euclidean Riemannian manifolds with boundaries;
2. Multi-robot cooperative exploration; and
3. Human-robot interaction in exploration.

2 Background: Coverage Functional, Voronoi Tessellation and
Continuous-time Lloyd’s Algorithm

In this section we discuss the basic concepts behind deriving the control laws in
the continuous-time version of the Lloyd’s algorithm [12, 13]. Let Ω be a path-
connected metric space that represents the environment, equipped with a distance
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function, d. In [12, 13] Ω is assumed to be a subset of RD and is equipped with
the Euclidean metric tensor (a Riemannian metric) at every point. However, in the
present scenario we will relax d to a more general class of distance functions (for
example, the path metric induced by general Riemannian metric – i.e. the length of
the shortest rectifiable path [11]. For Corollary 1, we will in fact be able to consider
more general Finsler metrics.).

There are n mobile robots in the environment, and in particular the position of
the kth robot is represented by pk ∈Ω and the tessellation [12, 13] associated with it
by Wk, ∀k = 1, 2, . . . , n (Thus, {Wk}k=1,··· ,n is a cover of Ω ). By definition, the tes-
sellations are such that Int(Wk)∩ Int(Wl) = /0,∀k 6= l, and ∪n

k=1Wk = Ω . For a given
set of robot positions P = {p1, p2, . . . , pn} and tessellations W = {W1,W2, . . . ,Wn}
such that pk ∈ Int(Wk),∀k = 1, 2, . . . , n, the coverage functional is defined as:

H (P,W ) =
n

∑
k=1

H (pk,Wk) =
n

∑
k=1

∫
Wk

fk(d(q,pk))φ(q) dq (1)

where fk : R+ → R are smooth and strictly increasing functions, φ : Ω → R is a
weight or density function, and dq represents an infinitesimal volume element.

The name “coverage functional” is indicative of the fact that H measures how
bad the coverage is. In fact, for a given set of initial robot positions, P, the eventual
aim of the algorithm is to devise a control law that minimizes the function H̃ (P) :=
min

W H (P,W ) (i.e. the best value of H (P,W ) for a given P). It is easy to show [12,
13] that H̃ (P) = H (P,V ), where V = {V1,V2, · · · ,Vn} is the Voronoi tessellation
given by Vk = {q ∈Ω | fk(d(q,pk))≤ fl(d(q,pl)),∀l 6= k} (2)

Thus the control law for minimizing H̃ (P) = ∑
n
k=1

∫
Vk

fk(d(q,pk))φ(q) dq can
be reduced to the problem of following its gradient. Although Vk are functions of P,
it can be shown using methods of differentiation under integration [13] that

∂H̃ (P)
∂pk

=
∫

Vk

∂

∂pk
fk(d(q,pk)) φ(q) dq (3)

In practice, it is adequate to choose fk(x) = x2 for most practical implemen-
tations. However, a variation of the problem for taking into account finite sensor
footprint of the robots, constructs a power Voronoi tessellation [13], in which one
chooses fk(x) = x2−R2

k , where Rk can represent, for example, the radius of the sen-
sor footprint of the kth robot. In this paper we will be working with the following
form for fk fk(x) = x2 + ck (4)

2.1 Euclidean and Non-Euclidean Metric Spaces

Until now we haven’t made any major assumption on the distance function d. How-
ever, if the space Ω is convex, and the metric η is Euclidean, then d is the Euclidean
distance given by d(x,y) = ‖x−y‖2. Under this assumption, and using the form of
fk in (4), the formula of (3) can be simplified to obtain

∂H̃ (P)
∂pk

= 2Ak(pk−p∗k) (5)
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(a) Voronoi tessellation of a convex
Ω (rectangular region) with n = 10
robots (blue circles). The red line seg-
ments show the boundary of the tes-
sellations. Note how a boundary seg-
ment is the perpendicular bisector of
the cyan line joining the robots shar-
ing the boundary segment.

x

y

O

(b) Presence of holes/punctures (due to
obstacles) in the Euclidean space changes
the distance function in the punctured
space. For example, in this figure, d(x,y)
is the length (induced by the Euclidean
metric) of the thicker curve that is the
shortest connecting x and y and lying en-
tirely in (R2−O).

Fig. 1 Voronoi tessellation in a convex environment, and the difficulty in computing it in non-
convex environments.

where, Ak =
∫

Vk
φ(q)dq is the weighted volume of Vk, and p∗k =

∫
Vk

qφ(q)dq
Ak

is the
weighted centroid of Vk. Moreover, the Euclidean distance function makes compu-
tation of the Voronoi tessellation very easy: V , due to Equation (2), can be con-
structed from the perpendicular bisectors of the line segments pkpl , ∀k 6= l, thus
making each Vk a convex polygon, which are also simply connected (Figure 1(a)).
This also enable closed-form computation of the volume, Ak, and the centroid, p∗k
when the weight function φ is uniform. Equation (5) yields the simple control law in
continuous-time Lloyd’s algorithm: uk = −κAk(pk−p∗k), with some positive gain,
κ . Lloyd’s algorithm [12] and its continuous-time asynchronous implementations
[5] are distributed algorithms for minimizing H (P,W ) with guarantees on com-
pleteness and asymptotic convergence to a local optimum, when Ω is convex Eu-
clidean.

However, the above simplification does not work when the distance function is
not Euclidean. In robot configuration spaces punctured by obstacles, non-Euclidean
distance functions can appear in the computations in two primary ways: i. Due to the
presence of holes/obstacles, even when the path-metric is locally Euclidean in the
interior of the domain, the global distance function is not Euclidean (Figure 1(b)),
and ii. Locally non-Euclidean metric (e.g. in the case of a sphere, or a topologi-
cally Euclidean space with non-zero curvature). This makes the computation of the
Voronoi tessellation in Equation (2) as well as the gradient of H̃ in Equation (3)
significantly difficult.

In Equation (3), with fk(x) = x2 + ck, we observe that
∂

∂pk
fk(d(q,pk)) = 2 d(q,pk)

∂

∂pk
d(q,pk)
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Thus, our first step will be to find an efficient way for computing ∂

∂pk
d(q,pk). In Sec-

tion 3 we will show that in arbitrary metric spaces (satisfying certain conditions) this
gradient of the distance function can be expressed in terms of tangents to geodesics.
In Section 5 we will demonstrate how the later is computationally more favorable
in a graph search-based algorithm for developing a generalized continuous-time
Lloyd’s algorithm.

3 Gradient of Distance Function in Non-Euclidean Metric Spaces

For computing ∂

∂pk
d(q,pk) we have the following proposition and corollary, which

together gives a generalization of Proposition 4 of [13]. In the discussions that fol-
low, we will assume summation over repeated indices, i and j, following the Einstein
summation convention.

In Proposition 1 we essentially establish a relationship between gradient of the
distance function and the tangent to a geodesic, provided the distance function
satisfies some very restricted conditions (geodesics being unique and induced by
Riemannian metric). In most robot configuration spaces, due to presence of non-
convexity and obstacles, this proposition will not be sufficient. Thus we devise
Corollary 1 to encompass a wider class of distance functions.

q

w
z*

qw

{ u | g(u) = g(w) }

?

γ*qw

φ(U)

(a) Illustration for Proposition 1. It es-
tablishes a relation between the tangent
to the geodesic γ∗qw at w, and the normal
to the surface {u|g(u) = g(w)} at w.

q

w

{ u | g(u) = g(w) }

zqw

u1

u2

(b) Illustration with a simple non-Euclidean,
anisotropic metric. Note that the normal to the
ellipse is not parallel to the tangent to the geodesic,
zwq. It is however parallel to the cotangent, z∗wq, with
coefficients z∗j,qw = ηi j(w) z j

qw.

Fig. 2 Relationship between tangent to a geodesic and the derivative of the distance function.

Proposition 1. Let C = (U,φ) be a coordinate chart on a open subset U of a D-
dimensional manifold, Ω with coordinate variables u1,u2, · · · ,uD. Suppose U is
Riemannian everywhere, equipped with a metric η , and the geodesic connecting
any two points in U lies entirely in U.

Let d :RD×RD→R be the distance function in U ⊆Ω in terms of the coordinate
chart C (i.e. d(q,w), for q,w ∈ Img(φ) ⊆ RD, is the length of the shortest path
connecting φ−1(q) and φ−1(w) in U ⊆Ω .). Suppose inside Img(φ), the distance d
is induced by the Riemannian metric η , is smooth everywhere, and suppose there
exists a unique geodesic of length d(q,w) connecting any two points q,w ∈ Img(φ).
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Then the following is true for every q,w ∈ Img(φ) ⊆ RD and every coordinate
chart, C, defined on U (Figure 2(a)),[

∂

∂u
d(q,u)

∣∣∣∣
u=w

]
i
≡ ∂

∂ui d(q,u)
∣∣∣∣
u=w

=
ηi j(w) z j

qw√
ηmn(w) zm

qwzn
qw

where, zqw = [z1
qw,z

2
qw, · · · ,zD

qw]
T is a normalized coefficient vector of the tangent

vector at w to the shortest geodesic connecting q to w, and by
[

∂ f
∂u

]
i

we mean the

ith component of
[

∂ f
∂u1 ,

∂ f
∂u2 , · · · , ∂ f

∂uD

]
.

Proof. This result follows from well-known theorems in Riemannian geometry. A
detailed proof is provided in [1]. ut

If we define g(u) := d(q,u), ∀u ∈ Img(φ) (i.e., g(w) is the length of the shortest
geodesic connecting q to w), the statement of the proposition essentially implies
that the normals to the constant g surfaces in RD are parallel to the cotangents to
the geodesics. This is illustrated in Figure 2(a). The statement of the proposition
essentially expresses the gradient of the distance function d (with respect to one of
its arguments) in terms of the tangent to the geodesic connecting two points.

Examples:

1. We note that when the metric is Euclidean in the given chart (i.e. ηi j = δi j ev-
erywhere as was the case in [13]), the result of the proposition simply reduces
to ∂

∂ui d(q,u)
∣∣∣
u=w

= zi
qw. This is no surprise since we know that the vector

∂

∂u d(q,u)
∣∣∣
u=w

is essentially a unit normal to the sphere with center q (which

is the surface of constant d(q,u)) at the point u = w, which is well-known to be
parallel to the straight line connecting q to w (a radial line of the sphere).

2. If the metric is locally isotropic in the given chart (i.e. if the matrix representation
of the metric is a multiple of the identity matrix at every point), and can be written
as ηi j(q) = ζ (q)δi j for some ζ : RD → R, then the result of the proposition

reduces to ∂

∂u d(q,u)
∣∣∣
u=w

=
√

ζ (w) zT
qw (where, zT

qw = [z1
qw,z

2
qw, · · · ,zD

qw] is the
transpose of the coefficient vector, zqw, of the tangent to the geodesic).

3. Finally, we consider a simple, yet nontrivial, example of a non-Euclidean, anisotropic

metric. Consider the metric η•• =

[
1 0
0 4

]
. Since the Christoffel symbols van-

ish in this coordinate chart, one can infer from the geodesic equation that the
geodesics are essentially represented by straight lines when plotted with ui as
orthogonal axes (Figure 2(b)). However, the curves of constant distance from q
become ellipses centered at q and with aspect ratio of 2. Now consider the point
w = q+ [1,1]T . A direct computation of the normal at this point to the ellipse,
(u1−q1)2/4+(u2−q2)2 = c, passing through this point, reveals the coefficient
co-vector of ∂

∂u d(q,u)
∣∣∣
u=w

to be parallel to [ 1
2 ,2]. However, the coefficient vec-

tor of the tangent to the geodesic is zqw = [ 1√
2
, 1√

2
]T . This gives the following:
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ηmn(w) zm

qwzn
qw =

√
5
2 , z1,qw = ∑ j η1 j z j

qw = 1√
2
, z2,qw = ∑ j η2 j z j

qw = 2
√

2.

Thus, the coefficient co-vector of z∗qw is parallel to [ 1√
2
,2
√

2]. This indeed is par-

allel to [ 1
2 ,2]. The exact computation of the scalar multiple will require a more

careful computation of ∂

∂u d(q,u).

q0

q1

w0
ψ(V)

Bw0

(a) Illustration for Corollary 1. The patholo-
gies outside Bw0 do not effect the result of
Proposition 1 holding for q0 and w0.

q0

w0

z*
q0w0{ u | g(u) = g(w0) }

v

(b) The simplest example is that of a space
that is equipped with Euclidean metric every-
where, but is punctured by a polygonal obsta-
cles. This was the case considered in [13].

q0

w0

z*
q0w0{ u | g(u) = g(w0) }

x

y

θ

(c) A more interesting case is that of invo-
lutes generated in locally Euclidean space
using the boundaries of arbitrary obstacles
as the generating curves.

Fig. 3 Corollary 1 and examples demonstrating it.

Corollary 1. Let C = (V,ψ) be a coordinate chart on a open subset V of a D-
dimensional manifold, Ω . Let d : RD×RD → R be the distance function on V in
terms of the coordinate chart C (i.e. d(q,w), for q,w ∈ Img(ψ) ⊆ RD, is the dis-
tance between ψ−1(q) and ψ−1(w) in V ⊆Ω ).

We are given q0,w0 ∈ Img(ψ)⊆ RD. Suppose there exists a open neighborhood
Bw0 ⊆ RD of w0 (Figure 3(a)) such that,

a. g(·) := d(q0, ·) is smooth everywhere in Bw0 ,
b. The distance function restricted to Bw0 ×Bw0 is induced by a Riemannian met-

ric, η , such that for any two u,v ∈Bw0 , there is a unique shortest geodesic γuv
of length d(u,v).

c. A shortest path (of length d(q0,w0)) is defined between q0 and w0, such that the
part of the shortest path connecting q0 and w0 that lies inside Bw0 is unique,
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Then the following holds,[
∂

∂u
d(q0,u)

∣∣∣∣
u=w0

]
i

≡ ∂

∂ui d(q0,u)
∣∣∣∣
u=w0

=
ηi j(w0) z j

q0w0√
ηmn(w0) zm

q0w0
zn

q0w0

Note that the derivative ∂

∂u d(q0,u)
∣∣∣
u=w0

is defined due to assumption ‘a.’, and the

tangent zq0w0 exists due to assumptions ‘b.’ and ‘c.’.

Proof. This result follows from well-known theorems in Riemannian geometry and
from Proposition 1. A detailed proof is provided in [1]. ut

The statement of this Corollary encompasses a significantly wider class of met-
ric spaces than Proposition 1. Here we only need to assume a Riemannian metric
in the neighborhood of w0 (Figure 3(a)). This will enable us to use the result for
locally Riemannian manifolds with pathologies outside local neighborhoods (e.g.
boundaries/holes/punctures/obstacles – the kind of spaces we are most interested
in), as well as opens up possibilities for more general metric spaces that may not
be Riemannian outside Bw0 (e.g. Manhattan metric in M ⊂Ω , Riemannian metric
elsewhere).

Examples:

1. The simplest example is that of a space that is locally Euclidean (i.e. equipped
with a Euclidean metric everywhere), but is punctured by polygonal obstacles
(Figure 3(b)). Due to the ‘pointedness’ of the obstacles, the constant-g manifolds
are essentially circular arcs centered at q0 or a vertex v of a polygon. Thus, as
illustrated by Figure 3(b), the normals to the arcs are parallel to the tangent to the
segment joining v to w0.

2. A little less trivial example occurs when the obstacles are not polygonal. Then
the statement of the corollary essentially reduces to the assertion that the normal
at any point on an involute [8] is parallel to the ‘taut string’, the end of which
traces the involute – and this is true irrespective of the curve used to generate the
involute. While the statement has an obvious intuitive explanation by considering
the possible directions of motion of the end of the taut string, we provide an
explicit computation for an involute created using a circle (Figure 3(c)). Consider
a taut string unwrapping off a circle of radius r (starting from θ = 0 when it
is completely wrapped). Thus, when the string has unwrapped by an angle θ ,
the string points at a direction [sin(θ),−cos(θ)]T . Now, it is easy to verify that
the involute is described by the parametric curve x = r(cos(θ)+ θ sin(θ)),y =

r(sin(θ)− θ cos(θ)). Thus we have dx
dθ

= θ cos(θ), dy
dθ

= θ sin(θ). Thus the
normal to the involute pointing in the direction [ dy

dθ
,− dx

dθ
] is indeed parallel to

the direction in which the string points.



Multi-Robot Coverage and Exploration in Non-Euclidean Metric Spaces 9

4 Generalized Continuous-Time Lloyd’s Algorithm

Corollary 1, along with the assumption that fk(x) is of the form x2 + c, enables us
to re-write Equation (3) for the most general metric setup as follows[

∂H̃ (P)
∂pk

]
i
= 2

∫
Vk

d(q,pk)
ηi j(pk) z j

qpk√
ηmn(pk) zm

qpk
zn

qpk

φ(q) dq (6)

This, as we will see later, gives an algorithm for approximately computing the
gradient of H̃ . Note that dq represents an infinitesimal volume element. Thus, in
a discretized setup (with uniform discretization of the coordinate space, which we
will discuss in the next section), when we replace the integral by a summation over
the vertices of a graph, we need to use the appropriate volume representing dq for
each discretized cell. In particular, a uniform discretization of the coordinate space
implies we use

√
det(η••(q)) (up to a constant scalar multiple) for volume of each

discretized cell.
Once we have the gradient of H̃ , the control law for minimizing H̃ would

simply be for kth robot to move in a direction opposite to the gradient

uk =−κ
∂H̃ (P)

∂pk
(7)

This give a generalized Lloyd’s algorithm with guarantee of asymptotic stability
(as easily seen by considering H̃ a Liapunov function candidate, and noting that
its domain is a manifold). In the final converged solution, each robot will be at
the generalized centroid of its related Voronoi tessellation (since that’s when the
gradient of H̃ vanishes).

With the assumption of isotropy of the metric in the given chart (which will hold
in most of the exploration applications we will be describing), this further reduces
to ∂H̃ (P)

∂pk
= 2

√
ζ (pk)

∫
Vk

d(q,pk) zT
qpk

φ(q) dq (8)

Typically, since we will be computing the control commands in a discrete setup, we
are mostly interested in the direction of uk rather than its magnitude. Moreover, the
metric in the given chart will be isotropic in most practical robot planning problems.
Thus we clump the leading term 2 ζ (pk) of (8) inside κ to obtain the following
control law

uk =−κ

∫
Vk

d(q,pk) zqpk φ(q) dq (9)

5 Graph Search-based Implementation

In order to develop a version of the generalized continuous-time Lloyd’s algorithm
for a general distance function, we first need to be able to compute the general
Voronoi tessellation of Equation (2) for arbitrary distance function, d. We adopt
a discrete graph-search based approach for achieving that, not very unlike the ap-
proach taken in previous work [2]. We consider a uniform square tiling (Figure 4(a))
of the space of coordinate variables (in a particular coordinate chart) and creating a
graph G out of it (with vertex set V (G), edge set E (G) ⊆ V (G)×V (G) and cost
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function CG : E (G)→R+). The costs/weights of the edges of the graph are the met-
ric lengths of the edges. It is to be noted that in doing so we end up restricting the
metric of the original space to the discrete graph. Because of this, as well as due to
the discrete computation of the integrations (as discussed later), this discrete graph-
search based approach is inherently an approximate method, where we trade off the
accuracy and elegance of a continuous space for efficiency and computability with
arbitrary metric.

The key idea is to make a basic modification to Dijkstra’s algorithm [9, 4]. This
enables us to create a geodesic Voronoi tessellation. For creating Voronoi tessella-
tions we initiate the open set with multiple start nodes from which we start prop-
agation of the wavefronts. Thus the wavefronts emanate from multiple sources.
The places where the wavefronts collide will hence represent the boundaries of the
Voronoi tessellations. In addition, we can conveniently alter the distance function,
the level-set of which represents the boundaries of the Voronoi tessellations. This en-
ables us to even create geodesic power Voronoi tessellation. Figure 4(b) illustrates
the progress of the algorithm in creation of the tessellations.

(a) Illustration of
graph construc-
tion.

(b) Illustration of progress of the algorithm for tessellation and con-
trol computation in a 200×200 uniform square discretized environment.
Frames show snapshots at iterations 100,10100,25100 and 37300.

Fig. 4 (a): An 8-connected grid graph created from a uniformly discretized coordinate space.
The brown cells represent obstacles. (b): Progress of the algorithm for tessellation and control
computation in an environment with a L-shaped obstacle. The graph is constructed by 200× 200
uniform square discretization of the environment (see [2]). Tessellations are created starting from
three points (the location of the agents) to the complete diagram after expansion of about 37300
vertices. The filled area indicates the set of expanded vertices. The boundaries of the tessellations
are visible in blue.

In order to compute the control command for the robots (i.e. the action of the
robot in the next time step), we use the formula in Equation (9). In a general metric
setup, the vector zqpk is the unit vector along the tangent at pk to the geodesic joining
q to pk. In a discretized setup, the position of the kth robot corresponds to a vertex
pk ∈ V (G). Then, in the graph, the unit vectors zqpk is approximated as the unit
vectors along edges of the form [p′k, pk] ∈ E (G) for some p′k ∈NG(pk) (the set of
neighbors of pk) such that the shortest path in the graph connecting pk and q passes
through p′k. For a given q, we keep track of the index of the robot whose tessellation
it belongs to, as well as the neighbor of the corresponding robot’s vertex through
which the shortest path leading to q passes. Thus, we can also compute the integra-
tion of (9) on the fly as we compute the tessellations. The complete pseudocode for
the algorithm can be found in [1].

The complexity of the algorithm is the same as the standard Dijkrstra’s algorithm,
which for a constant degree graph is O(VG log(VG)) (where VG = |V (G)| is the
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number of vertices in the graph). This is in sharp contrast to the complexity of
search for optimal location as in [10].

5.1 Application to Coverage on Non-Euclidean Metric Spaces

In this section we will illustrate examples of coverage using the generalized continuous-
time Lloyd’s algorithm on a 2-sphere. We use a coordinate chart with coordinate
variables x ∈ (0,π), the latitudinal angle, and y ∈ [0,2π), the longitudinal angle
(Figure 5(a)). The matrix representation of the metric on the sphere using this coor-

dinate chart is η•• =

[
1 0
0 sin2(x)

]
. As usual, we use a uniform square discretization of

the coordinate space to create an 8-connected grid graph [2]. However, in order to
model the complete sphere (in the example of Figure 6), we need to establish appro-
priate edges between vertices at the extreme values of y, i.e. the ones near y = 0 and
y = 2π . Similarly, we use an additional vertex for each pole to which the vertices
corresponding to the extreme values of x connect.

y

x

(a) The 2-sphere and a coor-
dinate chart on it.

(b) t = 1. (c) t = 150. (d) t = 250. Con-
verged solution.

Fig. 5 Coverage using discrete implementation of generalized continuous-time Lloyd’s algorithm
on a part of the 2-sphere. The chosen coordinate variables, x and y, are the latitudinal and longitudi-
nal angles respectively, and the domain shown in figures (b)-(d) represent the region on the sphere
where x ∈ [π/16,3π/4],y ∈ [π/16,3π/4]. x is plotted along horizontal axis and y along vertical
axis on linear scales. The intensity of red indicates the determinant of the round metric, thick blue
curves are the tessellation boundaries, and the thin pale blue curves are the robot trajectories.

Figure 5(b)-(d) shows two robot attaining coverage on a geodesically convex sub-
set of the 2-sphere by following the control command computed using the algorithm
of Section 5 at every time-step. The region of the sphere that we restrict to is that
of latitudinal angle x ∈ [π/16,3π/4], and longitudinal angle y ∈ [π/16,3π/4]. The
robots start off from the bottom left of the environment near the point [0.42,0.45],
and follow the control law of Equation (7) until convergence is achieved. Note that
the tessellations have a curved boundary in Figures 5(c) and 5(d) because it has to
be a segment of the great circle on the sphere (note that the jaggedness is due to
the fact that the curve actually resides on the discrete graph rather than the original
metric space of the sphere). In the converged solution of Figure 5(d), note how the
robots get placed such that their tessellation split up the area on the sphere equally
rather than splitting up the area of the non-isometric embedding that depends on the
chosen coordinate chart. The weight function is chosen to be constant, φ(q) = 1.
For this example, the program ran at a rate of about 4 Hz on a machine with 2.1
GHz processor and 3 Gb memory.
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(a) t = 32. (b) t = 88. (c) t = 171. (d) t = 211.

(e) t = 32. (f) t = 88.

(g) t = 171. (h) t = 211.

Fig. 6 Coverage on a complete sphere. In Figures (a)-(d), x ∈ (0,π) (latitudinal angle) is plot-
ted along horizontal axis and y ∈ [0,2π) (longitudinal angle) along vertical axis on linear scales.
Figures (e)-(h) show the same plot mapped on the 2-sphere. The colors are used to indicate the tes-
sellation of each robot. Note that in (e)-(h) different viewing angles are used to view the interesting
parts of the sphere at a particular time-step. (d) and (h) are the converged solutions.
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Fig. 7 Coverage on a 2-torus with obstacle on it (marked in black) attained by 5 robots.

A more complete example is shown in Figure 6 in which 4 robots attain coverage
on a complete 2-sphere. The robots start off close to each other on the sphere, and
follow the control law of Equation (7), until they converge attaining good and uni-
form coverage of the sphere. In order to avoid numerical problems near the poles,
we ‘chop off’ small disks near the poles (marked by the gray regions), and establish
‘invisible’ edges across those disks connecting the vertices on their diametrically op-
posite points. Figures 6(a)-(d) show the tessellations of the robots in the coordinate
chart with x plotted along the horizontal axis and y along the vertical axis (300×600
uniformly discretized). Figures 6(e)-(h) show the same tessellations mapped on the
sphere. The weight function, once again is chosen to be φ(q) = 1. For this example,
the program ran (control computation as well as plotting of the graphics) at a rate of
about 1 Hz on a machine with 2.1 GHz processor and 3 Gb memory.

Figure 7 shows the final converged solution of a similar example of coverage
on a 2-torus with obstacles by 5 robots. The metric tensor on the torus is given by

η•• =

[
r2 0
0 (R+ r cosx)2

]
, where R is the radius of the axial circle, r the radius of the

tube of the torus, x is the latitudinal angle, and y is the longitudinal angle. Note how
the Voronoi tessellations in this case are not simply connected.

5.2 Application to Cooperative Exploration and Coverage Problem

Region of
high Entropy

Splits area equally

Splits entropy equally

Sensor 1 Sensor 2

Fig. 8 Entropy-weighted metric for voronoi tessellation in exploration problem.

Next we apply the tools developed to the problem of cooperative exploration and
simultaneous coverage. In previous work [2] we had used an approximate and ad
hoc “projection of centroid” method in order to compute an analog of generalized
centroid and device a control law that was essentially to follow the approximate
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generalized centroid. However, now that we are equipped with the control law of
Equation (7), we can achieve the same objectives in a more systematic way.

As detailed in [2], we choose Shannon entropy for constructing the density func-
tion as well as to weigh the metric (Figure 8). Thus, if p(q) is the probability that the
vertex q is inaccessible (i.e. occupied or part of an obstacle), for all q ∈ V (G), then
the Shannon entropy is given by e(q)=−(p(q) ln(p(q))+(1− p(q)) ln(1− p(q))).
We use this for modeling the weight function, φ , and an isotropic metric, ζ I (where
I is the identity matrix). Noting that in an exploration problem, the occupancy prob-
ability, p, and hence the entropy e, will be functions of time as well, we use the
following formulae for φ and ζ ,

φ(q, t) =
{

εφ , if e(q, t)< τ

e(q, t), otherwise. , ζ (q, t) =
{

εζ , if e(q, t)< τ

e(q, t), otherwise.
(10)

for some small εφ and εζ representing zero (for numerical stability).
Each mobile robot maintains, updates and communicates a probability map for

the discretized environment and updates its entropy map. We use a sensor model
similar to that described in [2], as well as ‘freeze’ a vertex to prevent any change to
its probability value when its entropy drops below some τ ′ (< τ).

In addition, to avoid situations where a robot gets stuck at a local minima in-
side its tessellation even when there are vertices with entropy greater than τ in the
tessellations (this can happen when there are multiple high entropy regions in the
tessellations that exert equal and opposite pull on the robot so that the net velocity
becomes zero), we perform a check on the value of the integral of the weight func-
tion, φ , within the tessellation of the kth robot when its control velocity vanishes.
If the integral is above the value of

∫
Vk

εφ dq, we switch to a greedy exploration
mode where the kth robot essential head directly towards the closest point that has
entropy greater than the value of τ . This ensures exploration of the entire environ-
ment (i.e. the entropy value for every accessible vertex drops below τ). And once
that is achieved, both φ and ζ become independent of time. Thus convergence is
guaranteed.

Figure 9 shows screenshots of a team of 4 robots exploring a part of the 4th floor
of the Levine building at the University of Pennsylvania. The intensity of white rep-
resents the value of entropy. Thus in Figure 9(a) the robots start of with absolutely
no knowledge of the environment, explore the environment, and finally converge to
a configuration attaining good coverage (Figure 9(d)).

Figure 10 shows a similar scenario. However, in this case one of the robots (Robot
0, marked by red circle) gets hijacked and manually controlled by a human user soon
after they start cooperative exploration of the environment. That robot is forced to
stay inside the larger room at the bottom of the environment. Moreover, in this
case we use a team of heterogeneous robots (robots with different sensor footprint
radii), thus requiring to compute power voronoi tessellations. This simple example
illustrates the flexibility of our framework with respect to human-robot interaction.

For either of the above examples, with the environment 284× 333 discretized,
the program ran at a rate of about 3− 4 Hz on a machine with 2.1 GHz processor
and 3 Gb memory.
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(a) t = 2. (b) t = 300.

(c) t = 900. (d) t = 1550. Converged solution.

Fig. 9 Exploration and coverage of an office environment by a team of 4 robots. Blue curves
indicate boundaries of tessellations, intensity of white indicates the value of entropy.

6 Conclusion

In this paper we have extended the coverage control algorithm proposed by Cortes,
et al. [5], to non Euclidean configuration spaces that are, in general, non convex and
equipped with metrics that are not Euclidean. The key idea is the transformation
of the problem of computing gradients of distance functions to one of computing
tangents to geodesics. We have shown that this simplification allows us to implement
our coverage control algorithm in any space after reducing it to a discrete graph.
We have illustrated the algorithm by considering multiple robots achieving uniform
coverage on a 2-sphere and an indoor environment with walls and obstacles. We
have also shown the application of the basic ideas to the problem of multi-robot
cooperative exploration of unknown or partially known environments.
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(a) t = 150. (b) t = 500. (c) t = 1450. (d) t = 2100. Converged
solution.

Fig. 10 Exploration and coverage of an office environment (284×333 discretized) by a team of 4
robots, with one of the robots (marked by red circle) being controlled by a human user.
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