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Abstract

There are many applications in motion planning where it is important to consider and distinguish between different
topological classes of trajectories. The two important, but related, topological concepts for classifying manifolds
that are of importance to us are those of homotopy and homology. In this paper we consider the problem of robot
exploration and planning in Euclidean configuration spaces with obstacles to (a) identify and represent different
homology classes of trajectories; (b) plan trajectories constrained to certain homology classes or avoiding specified
homology classes; and (c) explore different homotopy classes of trajectories in an environment and determine the
least cost trajectories in each class. We exploit theorems from complex analysis and the theory of electromagnetism
to solve the problem 2-dimensional and 3-dimensional configuration spaces respectively. Finally, we describe the
extension of these ideas to arbitrary D-dimensional configuration spaces. We incorporate these basic concepts to
develop a practical graph-search based planning tool with theoretical guarantees by combining integration theory
with search techniques, and illustrate it with several examples.

1 Introduction

1.1 Motivation: Homotopy classes of trajectories
Homotopy classes of trajectories arise due to presence of obstacles in an environment. Two trajectories connecting the
same start and goal coordinates are in the same homotopy class if they can be smoothly deformed into one another
without intersecting any obstacle in the environment, otherwise they are in different homotopy classes. In many
applications, it is important to distinguish between trajectories in different homotopy classes, as well as identify the
different homotopy classes in an environment (e.g., trajectories that go left around a circle in two dimensions versus
right). For example, in order to deploy a group of agents to explore an environment (e.g., for eliminating potential
threats, searching for rewards/targets [20], as well as for updating obstacle map of a partially known environment [8]),
an efficient strategy ought to be able to identify the different homotopy classes and deploy one robot in each homotopy
class. One may also wish to determine the least cost path for each robot constrained to or avoiding specified homotopy
classes. In many problems the notion of visibility is linked intrinsically with homotopy classes. In tracking of uncertain
agents in an environment with dynamic obstacles, the ability to deal with occlusions during a certain time frame is
important [23]. A knowledge of the possible homotopy classes of trajectories that a target can take in the environment
when it is occluded can help more efficient belief propagation.

Classification of homotopy classes in two-dimensional workspaces has been studied in the robotics literature using
geometric methods [12, 15], probabilistic road-map construction [19] techniques and triangulation-based path planning
[9]. In two dimensions, topological information can be extracted using geometric methods by counting counting the
number of times a trajectory intersects boundaries of the obstacles or rays emanating from the obstacles, or informed
ways of dividing the free space into cells to keep track of the sequence in which a trajectory visits those cells. To the
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best of our understanding, none of these methods in literature satisfactorily extend to configuration spaces of dimension
higher than two. While in a 2-dimensional configuration space such methods can be used for telling whether or not
two trajectories belong to the same homotopy class, efficient planning for least cost trajectories with homotopy class
constraints is difficult using such representations even in 2-dimensions. Neither is it possible to efficiently explore/find
optimal trajectories in different homotopy classes in an environment. To our knowledge, there has been no prior
research on planning trajectories with topological constraints using search-based methods.

In this paper we propose a novel way of classifying and representing homology classes, a close analog of homotopy
classes, in two and higher dimensional Euclidean configuration spaces, which are the types of configuration spaces we
encounter most often in robot planning problems. For the 2-dimensional case we use theorems from complex analysis
for developing a compact way of representing homology classes of trajectories, while for 3-dimensional configuration
spaces we exploit theorems from electromagnetism.1 Finally, we show that the formulae for 2 and 3 dimensional cases
can in fact be extended to higher D-dimensional Euclidean configuration spaces with obstacles [3]. This is illustrated
with examples in a 4-dimensional configuration space.

The novelty of our work lies in the fact that our proposed representation allows us to identify/distinguish trajec-
tories in different classes and compute least-cost paths in non trivial configuration spaces with topological constraints
using graph search-based planning algorithms. The representation we propose is designed to be independent of the
type of the environment, the discretization scheme or cost function. Our proposed representation can also be used in
configuration spaces with additional degrees of freedom that do not effect homotopy classes of the trajectories (e.g.
for unicycle modes of mobile robots, the configuration space consists of variables X , Y and θ. But the last variable,
θ, does not effect the homotopy classes of trajectories. Only the projection of the x− y plane is enough to capture the
topological information).

Using such a representation we show that topological constraints can be seamlessly integrated with graph search
techniques for determining optimal paths subject to constraints. We also discuss how this method can be used to
explore multiple homotopy classes in an environment using a single graph search.

1.2 Capturing Topological Information in Search-based Planning
In search-based planning algorithms one typically starts by discretizing a given environment to create a graph
G = (V, E). Starting form an initial vertex, vs ∈ V , a typical graph-search algorithm expands the nodes of the
graph by traversing the edges. Values are maintained and associated with each expanded node that capture the metric
information (distance/cost) of shortest path leading to the expanded node from vs. For example, A* search algo-
rithm maintains two functions g, f : V → R. g(v) is the cost of the current path from the start node to node v, and
f(v) = g(v) + h(v) is an estimate of the total distance from start to goal going through v. The algorithm maintains
an open set, the set of nodes to be expanded. Each time it expands a node v, it updates the values of g(v′) for each
neighbor v′ of v, by adding to g(v) the cost of the edge c(vv′) (the update happens only if the newly computed value
is lower than the previous value). This process continues until a desired vertex vg ∈ V is reached [13].

The fact that the value of g(v′) can be computed from g(v) + c(vv′) is due to the fact that the cost function is
additive (i.e. if α and β are two curves that share a common end point, then c(α t β) = c(α) + c(β), where “t”
indicates the disjoint union, and represent the total curve formed by the two curves together). This is because the metric
information about the underlying space is captured using a differential 1-form (‘quantities’ that can be integrated over
1-dimensional manifolds, the trajectories [7, 22]), namely the infinitesimal length/cost, dl. The cost of an edge, e, of
the graph is then computed as an integral of the form c(e) =

∫
e
J (l) dl (with some scaling function J ). This implies,

in an arbitrary graph search algorithm, during the expansion of the vertices of the graph, the cost of the shortest path
up to a vertex that is being expanded can simply be computed by adding to that of its parent (in terms of sequence of
expansions) the cost of the edge connecting to it. This additive property of length/cost is key in developing such graph
search algorithms.

While the differential 1-form, J (l) dl, yields metric information, there are other differential 1-forms that can
incorporate other information about the underlying space and can be used for guiding the search algorithm. The main
idea in this paper is to determine a differential 1-forms that encodes topological information about the space and let us
guide the search accordingly.

1Parts of this paper have appeared elsewhere — the 2-dimensional case was introduced in [2] and the 3-dimensional case was analyzed in [5].
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1.3 H-signature as class invariants for trajectories
We consider a very general differential 1-form in a given D-dimensional configuration space C. If x1, x2, · · · , xD
are the coordinate variables describing the configuration space, a general differential 1-form can be written as dh :=
f1(x)dx1 + f2(x)dx2 + · · · + fD(x)dxD. Thus, for any given trajectory/curve, τ , in this configuration space, one
can computeH(τ) =

∫
τ

dh. We call this theH-signature of τ . In Sections 3.2 and 4.2.2 we will design the differential
1-forms, and hence the H-signature of a trajectory, for the 2 and 3 dimensional configuration spaces respectively, such
that they are invariants for homology classes of trajectories.

We want to design the 1-form dh and the H-signature of a trajectory such that it is an invariant across trajectories
in the same homotopy class. However, because we use 1-forms and their integrals along closed curves to classify
trajectories, we naturally obtain invariants for homology classes of trajectories [14, 18, 7]. But in most practical
robotics problems the notion of homology and homotopy of trajectories can be used interchangeably, especially when
finding the least cost path. This is discussed in greater detail with examples in Sections 5.1 and 6.

2 Homotopy and Homology Classes of Trajectories
Definition 1 (Homotopic trajectories). Two trajectories τ1 and τ2 connecting the same start and end coordinates,
xs and xg respectively, are homotopic iff one can be continuously deformed into the other without intersecting any
obstacle.

Formally, if τ1 : [0, 1] → C and τ2 : [0, 1] → C represent the two trajectories (with τ1(0) = τ2(0) = xs and
τ1(1) = τ2(1) = xg), then τ1 is homotopic to τ2 iff there exists a continuous map η : [0, 1] × [0, 1] → C such that
η(α, 0) = τ1(α) ∀α∈ [0, 1], η(β, 1) = τ2(β) ∀β∈ [0, 1], and η(0, γ) = xs, η(1, γ) = xs ∀γ∈ [0, 1]. Alternatively, in
the notation of [14], τ1 and τ2 are homotopic iff τ1 t−τ2 belongs to the trivial class of the first homotopy group of C,
denoted by π1(C). That is, [τ1 t −τ2] = 0 ∈ π1(C).

Definition 2 (Homologous trajectories). Two trajectories τ1 and τ2 connecting the same start and end coordinates,
xs and xg respectively, are homologous iff τ1 together with τ2 (the later with opposite orientation) forms the complete
boundary of a 2-dimensional manifold embedded in C not containing/intersecting any of the obstacles.

Formally, in the notation of [14], τ1 and τ2 are homologous iff τ1 t −τ2 belongs to the trivial class of the first
homology group of C, denoted by H1(C). That is, [τ1 t −τ2] = 0 ∈ H1(C).

A set of homotopic trajectories form a homotopy class, while a set of homologous trajectories form a homology
class.

At an intuitive level the above two definitions may appear equivalent. For example, in Figure 1(a), τ1 is homotopic
to τ2 since one can be continuously deformed into the other via a sequence of trajectories marked by the dashed
curves. As a consequence, the area swept by this continuous deformation, A, forms a 2-dimensional region in the free
configuration space whose boundary is the closed loop τ1 t −τ2. Indeed, the one-way implication is true as shown
below.

Lemma 1. If two trajectories are homotopic, they are homologous.

Proof. This follows directly from the Hurewicz theorem [14] that guarantees the existence of an homomorphism from
the homotopy groups to the homology groups of an arbitrary space.

The converse of Lemma 1 does not always hold true. There are subtle difference between homology and homotopy
in spite of their similar notions, and one can create examples where two trajectories are not homotopic in spite of being
homologous.

Homotopy equivalence arises naturally in many robotics problems. On the other hand, homology is less natural.
However, it is much simpler to compute homologies. One can establish direct correspondence between homology
groups of trajectories and differential 1-forms whose integrals yield homology class invariants for trajectories via the
De Rham theorem [7]. Since, according to the discussion of Section 1.2, we desire such differential forms, the rest
of the paper will be developed with homology classes of trajectories under consideration rather than their homotopy
classes. The assumption will be that in many of the practical robotics problems where homotopy classes of trajectories
are of greater significance, homology classes of trajectories will serve as a fair analog. We will justify this claim in
Section 5.1 and through experimental results (Section 6).

http://www.springerlink.com/content/f851813u657g5923/
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O2

O3

τ1

τ2
τ3

-τ2

(a) τ1 is homotopic to τ2 since there is a continious sequence
of trajectories representing deformation of one into the other.
τ3 belongs to a different homotopy class since it cannot be
continuously deformed into any of the other two.

xs

xg

O1

O2

O3

τ1

τ2
τ3

-τ2
A

(b) τ1 is homologous to τ2 since there exists an area A
(shaded region) such that τ1 t −τ2 is the boundary of A.
τ3 belongs to a different homology class since such an area
does not exist between τ3 and any of the other two trajecto-
ries.

Figure 1: Illustration of homotopy and homology equivalences. In this example τ1 and τ2 are both homotopic as well
as homologous.

vs

vg

τ1 τ2

A1

A2

(a) In 2-dimensions.

τ1

τ2

S1

S2

(b) In 3-dimensions.

Figure 2: Examples where the trajectories are homologous, but not homotopic.

To clarify the distinction between homotopy equivalence and homology equivalence of trajectories, we present two
examples where homology is not same as homotopy. The first example is in 2-dimensions. In Figure 2(a) we observe
that the trajectories τ1 and τ2 are not homotopic, but they are homologous (since their H-signatures, as defined in
Section 3.2, are equal). This is seen perhaps more easily by considering the interior defined by the union of the areas
marked by A1 and A2 which indeed forms the boundary for τ1 t −τ2. In Figure 2(b), one can observe that the two
trajectories are not homotopic. However, they are homotopic if we only consider S1 or S2 but not both. Hence their
H-signatures are the same (i.e. they are homologous). Thus, if we were exploring different homotopy classes in this
environment using the described method, we would be finding one trajectory for these two homotopy classes.

http://www.springerlink.com/content/f851813u657g5923/
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z2

R

(a) The integrals over contours γ1 and
γ2 are equal.

ak3

γ

R

ak2

ak1

aq

ar

ap

(b) Only the poles enclosed by γ influ-
ence the value of the integral of F .

Figure 3: Cauchi Integral Theorem and Residue Theorem.

3 H-signature in 2-dimensional Euclidean Configuration Space
We consider a 2-dimensional subset of R2 as the configuration space. The obstacles are thus punctures or discontinu-
ities in that subset. The approach for designing a H-signature for such a 2-dimensional configuration space is based
on theorems from Complex Analysis, specifically the Cauchy Integral theorem and Residue theorem.

3.1 Background: Complex Analysis
Cauchy Integral Theorem. The Cauchy Integral Theorem states that if f : C → C is an holomorphic (analytic)
function in some simply connected region R ⊂ C, and γ is a closed oriented (i.e. directed) contour completely
contained inR, then the following holds, ∮

γ

f(z)dz = 0 (1)

Moreover, if z0 is a point inside the region enclosed by γ, which has an anti-clockwise (or positive) orientation, then
for the function F (z) = f(z)/(z − z0) with a simple pole at z0, the following holds∮

γ

f(z)dz
z − z0

= 2πif(z0) (2)

The Residue Theorem. A direct consequence of the Cauchy Integral Theorem, the Residue Theorem, states that,
if F : R → C is a function defined in some simply connected region R ⊂ C that has simple poles at the distinct
points a1, a2, · · · , aM ∈ R, and holomorphic (analytic) everywhere else inR, and say γ is a closed positively oriented
Jordan curve completely contained in R and enclosing only the points ak1 , ak1 , · · · , akm out of the poles of F , then
the following holds, ∮

γ

F (z)dz = 2πi

m∑
l=1

lim
ξ→akl

(ξ − akl)F (ξ) (3)

The scenario is illustrated in Figure 3(b).

It is important to note that in both the Cauchy Integral Theorem and the Residue Theorem the value of the integrals
are independent of the exact choice of the contour γ as long as the mentioned conditions are satisfied (see Figure 3(a)).

3.2 Designing a H-signature
We exploit the above theorems for designing a differential 1-form that can be used to construct a homology class
invariant for 2-dimensional configuration space.

We start by representing the 2-dimensional configuration space as a subset of the complex plane C. Thus a point in
the configuration space, (x, y) ∈ C, is represented as x+ iy ∈ C. The obstacles are assumed to be simply-connected
regions in C and are represented by O1,O2, · · · ,ON .

Construction 1 [Representative points] We define one “representative point” in each connected obstacle such
that it lies in the interior of the obstacle. The exact location of the representative points is not of particular significance

http://www.springerlink.com/content/f851813u657g5923/
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as long as they each lie inside the respective obstacles. Thus we define the points ζl ∈ Ol, ∀l = 1, · · · , N . Figure
4(a) shows such representative points inside three obstacles.

Definition 3 (Obstacle Marker Function). For a given set of “representative points”, we define the “Obstacle Marker
Function” function F : C→ CN as follows,

F(z) =


f1(z)
z−ζ1
f2(z)
z−ζ2

...
fN (z)
z−ζN

 (4)

where fl, l = 1, 2, · · · , N are analytic functions over entire C such that fl(ζl) 6= 0, ∀l. Typical examples of such fl
are polynomials in z.

Thus, F is a complex vector function, the lth component of which has a single simple pole/singularity at ζl.

Definition 4 (H-signature in 2-dimensional configuration space). For the given configuration space and set of obsta-
cles, we define the obstacle marker function as described above, and hence define the H-signature of a trajectory τ
the vector functionH2 : C1(C)→ CN

H2(τ) =

∫
τ

F(z)dz

where C1(C) is the set of all curves/trajectories in C.

It is to be noted that the value of the H-signature of a trajectory in the 2-dimensional configuration space is simply
a vector of N complex numbers.

Lemma 2. Two trajectories τ1 and τ2 connecting the same points in the described 2-dimensional configuration space
are homologous if and only ifH2(τ1) = H2(τ2)

Proof. We note that by changing the orientation of a path over which an integration is being performed, we change
the sign of the integral. If τ is a path, its oppositely oriented path is represented as −τ . Thus, as we see from Figure
4(a), τ1 along with −τ2 forms a positively oriented closed loop.

If τ1 and τ2 are in the same homology class, the area enclosed by τ1 and τ2 does not contain any of the “represen-
tative points”, ζi, hence rendering the function F analytic in that region. Hence from the Cauchy Integral Theorem we
obtain, ∫

τ1t−τ2
F(z)dz = 0

⇒
∫
τ1

F(z)dz +

∫
−τ2
F(z)dz = 0

⇒
∫
τ1

F(z)dz =

∫
τ2

F(z)dz

where the 0 in bold implies that it is a N -vetor of zeros.
If τ1 and τ2 are in different homology classes, we can easily note that the closed positive contour formed by τ1

and −τ2 will enclose one or more of the obstacles, and hence their corresponding “representative points”. This is
illustrated in Figure 4(b). Let us assume that enclosed “representative points” are ζκ1 , ζκ2 , · · · , ζκn . Moreover we
note that at least one component of the vector function F has a simple pole at ζl for each l = 1, 2, · · · , N . Thus, by

http://www.springerlink.com/content/f851813u657g5923/
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τ1S

G

τ2

-τ2
ζ1

ζ3

ζ2

(a) In same Homotopy class, forming a closed contour.

τ1

S

G

ζa

τ2

ζκ1

ζκ2

ζb

ζc

(b) In different Homotopy classes, enclosing obstacles.

Figure 4: Two trajectories in same and different homotopy classes.

the Residue Theorem and Definition 3,∫
τ1

F(z)dz +

∫
−τ2
F(z)dz =

2πi
∑n
u=1 limξ→ζκu (ξ − ζκu)


f1(ξ)
ξ−ζ1
f2(ξ)
ξ−ζ2

...
fN (ξ)

ξ−ζN



⇒
∫
τ1

F(z)dz −
∫
τ2

F(z)dz =



· · ·
fκ1 (ζκ1 )

...
fκ2 (ζκ2 )

...
fκn (ζκn )
· · ·

 6= 0

Hence proved.

We have hence shown thatH2 gives a homology invariant for trajectories in 2-dimensional Euclidean configuration
space with obstacles.

3.3 Computation for a Line Segment
As discussed earlier in Section 1.2, and will be discussed later in Section 5, we discretized the given configuration
space and create a graph out of it. In many practical implementations we assume that every edge in the graph is a line
segment. Thus it is for those line segments that we really need to compute the H-signatures. Thus it is important that
we are able to do so efficiently. In this section we will show how to compute the H-signature for a small line segment
in a 2-dimensional configuration space using a closed-form formula.

Given a line segment e connecting points z1 and z2, we can parametrize the segment using the variable z =
(1− λ)z1 + λz2, where λ ∈ [0, 1] is the parameter. Thus we have,

H2(e) =

∫
e

F(z)dz

=

∫ 1

0

F
(

(1− λ)z1 + λz2

)
(z2 − z1) dλ (5)

http://www.springerlink.com/content/f851813u657g5923/
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For computing the H-signature of e = {z1 → z2} analytically, we assume that fl are chosen to be constants. Let
fl = Al (const.) for all l = 1, 2, · · · , N .

Now, a standard integration result gives for the lth component ofH2(e)∫ 1

0

Al
(1− λ)z1 + λz2 − ζl

(z2 − z1) dλ = Al (ln(z2 − ζi)− ln(z1 − ζl))

However we note that the logarithm of a complex number does not have an unique value. For any z′ ∈ C, ln(z′) =

ln(|z′|ei(arg(z
′)+2kπ)) = ln(|z′|) + i (arg(z′) + 2kπ) , ∀k = 0,±1,±2, . . . (where arg(x + iy) = atan2(y, x)).

Hence, following the assumption that e is a small line segment, we choose the smallest of all the possible values over
different k’s. Thus, the lth component ofH2(e) is computed as,

Al

[
ln(|z2 − ζl|)− ln(|z1 − ζl|) + i absmink∈Z

(
arg(z2 − ζl)− arg(z1 − ζl) + 2kπ

)]
where absmink∈ZG(k) returns the value ofG(k) that has the minimum absolute value (i.e. closest to 0) over all k ∈ Z.
Typically, we can get away with checking a few values of k around 0 and picking the local minimum, since the value
of arg(z2 − ζl)− arg(z1 − ζl) + 2kπ is monotonic in k.

4 H-signature in 3-dimensional Euclidean Configuration Space
While in the two-dimensional case, theoretically any finite obstacle on the plane can induce multiple homotopy and
homology classes for trajectories joining two points, the notion of homotopy/homology classes in three dimensions
can only be induced by obstacles with genus 2 one or more, or with obstacles stretching to infinity. Figure 6 shows
some examples of obstacles that can or cannot induce such classes for trajectories. A sphere or a solid cube, for
example, cannot induce multiple homotopy classes in an environment.

4.1 Background: Electromagnetism
Biot-Savart law. Consider a single hypothetical current-carrying curve (a current conducting wire) embedded in a
3-dimensional space carrying a steady current of unit magnitude (Figure 5(a)). There is no source for the current nor
any sink - only a steady flow persisting inside the conductor due to absence of any dissipation. It is to be noted that
such a steady current is possible iff the curve is closed (or open, but extending to infinity, where we close the curve
using a loop at infinity. See Figure 7(a) and Construction 2). We denote the curve by S. Then, according to the
Biot-Savart Law [11], the magnetic field B at any arbitrary point r in the space, due to the current flow in S, is given
by,

B(r) =
µ0

4π

∫
S

(x− r)× dx

‖x− r‖3
(6)

where, x, the integration variable, represents the coordinate of a point on S, and dx is an infinitesimal element on S
along the direction of the current flow.

Ampere’s Law. While Biot-Savart law gives a recipe for computing the magnetic field from a given current
configuration, Ampere’s Law [11], in a sense, gives the inverse of it. Given the magnetic field B at every point in the
space, and a closed loop γ (Figure 5(a)), the line integral of B along γ gives the current enclosed by the loop γ. That
is,

Ξ(C) :=

∫
γ

B(l) · dl = µ0Iencl (7)

where, l, the integration variable, represents the coordinate of a point on γ, and dl is an infinitesimal element on C.

In Biot-Savart Law and Ampere’s Law one can conveniently choose the constant µ0 to be equal to 1 by proper
choice of units. Moreover, by choice, the value of the current flowing in the conductor is unity. Thus, for any closed
loop γ, the value of Ξ(γ) is zero iff γ does not enclose the conductor, otherwise it is ±1 (the sign depends on the
direction of integration performed on γ). Thus in Figure 5(a), Ξ(γ1) = 1 and Ξ(γ2) = 0.

2The genus of an obstacle refers to the number of holes or handles [17]).

http://www.springerlink.com/content/f851813u657g5923/
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B
r

x
dx

I = 1

S
γ1

γ2

dl

(a) Magnetic field due to current in S, & its integration along
closed loop γi.

τ1

τ2

pA

pB
Sp

Sq

-τ2

(b) 2 trajectories, τ1 & τ2, connecting the same points form
a closed loop.

Figure 5: Theorems from electromagnetism, and their application in defining H-signature in 3-dimensions.

(a) Skeleton of a generic genus 1 obstacle is modeled
as a current-carrying conductor.

(b) A torus-shaped
genus 1 obstacle.

(c) A genus 2 obsta-
cle.

(d) An infinite tube is
a genus 1 obstacle.

(e) A knot-shaped ob-
stacle with genus 1.

(f) A sphere does
not induce homotopy
classes and has genus
0.

Figure 6: Examples of obstacles in 3-D. (a-e) induce homotopy classes, (f) does not.

Definition 5 (Simple Homotopy-Inducing Obstacle in 3-dimensional Configuration Space). A Simple Homotopy-
inducing Obstacle (SHIO) is a bounded obstacle of genus 1, for example a torus (Figure 6(a), 6(b)) or a knot (Figure
6(e)).

http://www.springerlink.com/content/f851813u657g5923/
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(a) An unbounded obstacle and its skeleton can be
closed at a large distance to create a closed loop.

O

O1

O2

(b) An obstacle with genus 2,O, can be decomposed
into 2 obstacles, each with genus one,O1 andO2.

Figure 7: Illustration of Constructions 2 and 3.

4.2 Designing a H-signature
For the 2-dimensional case, each obstacle on the plane that induces the notion of multiple homotopy classes was
assigned a representative point. Analogously, for the 3-dimensional case, we need to define a skeleton for every
SHIO. Intuitively, a skeleton of a 3-dimensional obstacle is a 1-dimensional curve that is completely contained inside
the obstacle such that the surface of the obstacle can be “shrunk” onto the skeleton in a continuous fashion without
altering the topology of the surface of the obstacle. Formally, we define the skeleton of an obstacle in terms of
homotopy equivalence.

Definition 6 (Skeleton). A 1-dimensional manifold, S, is called a skeleton of a SHIO, O, iff S is homeomorphic to S1
(a circle), S is completely contained inside O, and if S and O are homotopy equivalent.

Thus, the fact that τ1 and τ2 are of the same or of different homotopy/homology classes is not altered by replacing
O by S.

In the literature, algorithms for constructing skeletons of solid objects is a well-studied [6, 16]. However in the
present context we have a much relaxed notion of skeleton. While we can adopt any of the different existing algorithms
for automated construction of skeleton from a 3-dimensional obstacles, this discussion is out of the scope of the present
work. Figure 6(a) demonstrates skeletons for several genus 1 obstacles.

4.2.1 Conversion of generic obstacles into SHIOs

Given a set of obstacles in a three-dimensional environment, we perform the following two constructions/reduction on
the obstacles so that the only kind of obstacle we have in the environment are Simple Homotopy-Inducing Obstacles.

Construction 2 [Closing infinite, unbounded obstacles] In most of the problems that we are concerned with, the
domain in which the trajectories of the robots lie is finite and bounded. This gives us the freedom of altering/modifying
the obstacles or parts of obstacles lying outside that domain without altering the problem. One consequence of this
freedom is that we can close infinite and unbounded obstacles (e.g. Figure 6(d)) at a large distance from the domain
of interest (Figure 7(a)).

Construction 3 [Decomposing obstacles with genus > 1] After closing all infinite, unbounded obstacles in an
environment according to Construction 2, if there is an obstacle with genus k (e.g. Figure 6(c)), we can decompose/split
it into k obstacles, possibly overlapping and touching each other, but each with genus 1 (Figure 7(b)). This does not
change the obstacles or the problem in any way. This construction just changes the way we identify obstacles and
construct their skeletons. For example in Figure 7(b) the original obstacle O with genus 2 is realized as two obstacles
O1 and O2, each with genus 1 and overlapping each other. The decomposition of obstacles into SHIOs allows us
define k skeletons for each obstacle of genus k and simplify computations of h-signatures of trajectories.

Note that in this paper we do both constructions manually — the automation of these steps is beyond the scope of
this paper.
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4.2.2 Skeleton of SHIOs as Current Carrying Curves for H-signature Construction

Construction 4 [Modeling skeleton of a SHIO as a current carrying manifold] Given m obstacles in an environ-
ment, O1,O2, . . . ,Om, with genus k1, k2, . . . , km respectively, we can construct M = k1 + k2 + · · ·+ km skeletons
from M SHIOs (obtained using Constructions 2 and 3), namely S1, S2, . . . , SM . Each Si is a closed, connected,
boundary-less 1-dimensional manifold. We model each of them as a current-carrying conductor carrying current of
unit magnitude (Figures 6(a), 7(a)). The direction of the currents is not of importance, but by convention, each is of
unit magnitude.

Definition 7 (Virtual Magnetic Field due to a Skeleton). Given Si, the skeletons of a Simple Homotopy-Inducing
Obstacle, we define a Virtual Magnetic Field vector at a point r in the space due to the current in Si using Biot-Savart
Law as follows,

Bi(r) =
1

4π

∫
Si

(x− r)× dx

‖x− r‖3
(8)

where, x, the integration variable, represents the coordinates of a point on Si, and dx is an infinitesimal element on
Si along the chosen direction of the current flow in Si.

Definition 8 (H-signature in 3-dimensional Configuration Space). Given an arbitrary trajectory, τ , in the 3-
dimensional environment with M skeletons, we define the H-signature of τ to be the functionH3 : C1(R3)→ RM ,

H3(τ) = [h1(τ), h2(τ), . . . , hM (τ)]T (9)

where, C1(R3) is the space of all curves/trajectories in R3, and

hi(τ) =

∫
τ

Bi(l) · dl (10)

is defined in an analogous manner as the integral in Ampere’s Law. In defining hi, Bi is the Virtual Magnetic Field
vector due to the unit current through skeleton Si, l is the integration variable that represents the coordinate of a point
on τ , and dl is an infinitesimal element on τ .

It is to be noted that the value of the H-signature of a trajectory in the 3-dimensional configuration space is simply
a vector of M real numbers.

Lemma 3. Two trajectories τ1 and τ2 connecting the same points in the described 3-dimensional configuration space
are homologous if and only ifH3(τ1) = H3(τ2).

Proof. Since τ1 and τ2 connect the same points, τ1 t −τ2, i.e. τ1 and −τ2 together (where −τ indicates the same
curve as τ , but with the opposite orientation) form a closed loop in the 3-dimensional environment (Figure 5(b)). We
replace the obstacles O1,O2, . . . ,Om in the environments with the skeletons S1, S2, . . . , SM .

Consider the presence of just the skeleton Si. By the direct consequence of Ampere’s Law and our construction in
which a unit current flows through Si, the value of

hi(τ1 t −τ2) =

∫
τ1t−τ2

Bi(l) · dl

is non-zero if and only if the closed loop formed by τ1t−τ2 encloses the current carrying conductor Si (i.e. there does
not exist a surface not intersecting Si, the boundary of which is τ1t−τ2). For example, in Figure 5(b), hp(τ1t−τ2) =
1 and hq(τ1 t −τ2) = 0. Now, by the definition of line integration we have the following identity,

hi(τ1 t −τ2) =
∫
τ1t−τ2Bi(l) · dl

=
∫
τ1

Bi(l) · dl−
∫
τ2

Bi(l) · dl = hi(τ1)− hi(τ2)
(11)

Thus, hi(τ1) = hi(τ2) if and only if the closed loop formed by τ1 and τ2 does not enclose Si (i.e. homologous in
presence of Si).

Now in presence of skeletons S1, S2, . . . , SM the same argument extends for each skeleton individually. Thus τ1
and τ2 are homologous if an only ifH3(τ1) = H3(τ2).

Hence we have shown that the proposed formula for H-signature is a homology class invariant for trajectories in
3-D.
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Figure 8: Closed-form, analytic computation of virtual magnetic field vector.

4.3 Computation for a Line Segment
Once again, we are interested in efficient computation of the H-signature for small line segments since those
are the ones that will make up edges of the graph formed by discretization of the environment. For all practi-
cal applications we assume that a skeleton of an obstacle, Si, is made up of finite number (ni) of line segments:

Si = {
−−→
s1i s

2
i ,
−−→
s2i s

3
i , . . . ,

−−−−−→
sni−1i snii ,

−−−→
snii s1i } (Figure 8(a)). Thus, the integration of equation (8) can be split into

summation of ni integrations,

Bi(r) =
1

4π

ni∑
j=1

∫
−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
(12)

where j′ ≡ 1 + (j mod ni). It is to be noted that a skeleton of an unbounded obstacle created from Construction 2
can be made up of finite and few line segments. The only feature of such a skeleton might be that some of the points
that make up the line segments (sji ) might be located at a large distance from the domain of interest, which is used to
close the skeleton.

One advantage of this representation of skeletons is that for the straight line segments,
−−−→
sjis

j′
i , the integration can be

computed analytically. Specifically, using a result from [11] (also, see Figure 8(b)),∫
−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
=

1

‖d‖
(sin(α′)− sin(α)) n̂

=
1

‖d‖2

(
d× p′

‖p′‖
− d× p

‖p‖

)
(13)

where, d,p and p′ are functions of sji , s
j′

i and r (Figure 8(b)), and can be expressed as,

p=sji−r, p′=sj
′

i −r, d=
(sj
′

i −sji )× (p×p′)

‖sj′i −sji‖2
(14)

We define and write Φ(sji , s
j′

i , r) for the RHS of Equation (13) for notational convenience. Thus we have,

Bi(r) =
1

4π

ni∑
j=1

Φ(sji , s
j′

i , r) (15)
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hi(τ2) < 1.
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(b) In the most general case, it is difficult to precisely
identify a non-looping homotopy class.

Figure 9: Looping vs. non-looping trajectories.

where, j′ ≡ 1 + (j mod ni).
Given a small line segment, e, we can now compute the H-signature, H(e) = [h1(e), h2(e), . . . , hM (e)]T ,

where,

hi(e) =
1

4π

∫
e

ni∑
j=1

Φ(sji , s
j′

i , l) · dl (16)

can be computed numerically. For the numerical integration, in all our experimental results we used the GSL (GNU
Scientific Library), which has a highly efficient implementation of adaptive integration algorithms with desired preci-
sion. We used a cache for storing the H-signature of edges that has been computed in order to avoid re-computation.

4.4 ‘Looping’ and ’Non-looping’ Trajectories
“Looping” of a trajectory around an obstacle (Figure 9(a)) is similar in essence to non-Jordan curves on two-
dimensional planes. However in three dimensions their precise definition is difficult. In fact, the notions of looping
and non-looping is imprecise when the skeleton of the obstacle is complex as a knot (Figure 9(b)). However, equipped
with the definition of H-signature, we propose the following definition. A more elaborate discussion on this can be
found in [4].

Definition 9 (Non-looping trajectory w.r.t. Si). A trajectory τ is said to be non-looping w.r.t. Si if hi(τ) ∈ (−1, 1).
The value is in [0, 1) if the trajectory goes around Si in accordance with the right-hand rule with thumb pointing along
the direction of the current in Si. If the direction is opposite, the value lies in (−1, 0].

This definition, in many cases, conform to our general intuition of non-looping trajectories. A natural consequence
of this definition is the notion of a trajectory that is in a “Complementary Class” of a non-looping trajectory, i.e. one
that goes on the opposite side of every obstacle.

Definition 10 (Complementary Homotopy Class). Given a trajectory τ that is non-looping w.r.t. all the skeletons
in the environment (i.e. hi(τ) ∈ (−1, 1) ∀ i = 1, 2, . . . ,M ), we define the Complementary Homotopy Class of the
homotopy class of τ to be the one for which the h-signature is H(τ) − sign(H(τ)), where sign(·) gives the vector of
signs of the elements of its input vector.

5 H-signature Augmented Graph
Once we have the means of computing H-signature for each edge (small line segments), we introduce the concept of H-
signature augmented graph. Typically, a graph G = {V, E} is created for the purpose of graph-search based planning
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Figure 10: Graph formed by uniform discretization of configuration space and connecting each node with its neighbors.
Dark red indicate location of obstacles.

by discretization of an environment, placing a vertex at each discretized cell, and by connecting the neighboring cells
with edges (See Figure 10 for an example in 2-dimensional configuration space). In the following discussion we
perform a construction without distinguishing between 2 and 3-dimensional configuration spaces explicitly, once we
have discretized the environment, and perform a general treatment with the graph G. For H-signature trajectories or
line segments we use the generic function H, which we understand to be H2 or H3 depending on the dimensionality
of the configuration space.

Let vs be the start coordinate in the configuration space, and vg be the goal coordinate. By Lemma 2 or 3, any two
trajectories from vs to v that belong to the same homology class will have the same H-signature. The H-signature can
assume different, but discrete values corresponding on the class of the trajectory. We also write P(vs,v) to denote the
set of all trajectories from vs to v, and ṽsv ∈ P(vs,v) to denote a particular trajectory in that set.

Definition 11 (Allowed and Blocked Homology Classes). Suppose it is required that we restrict all our search for
trajectories connecting vs and vg to certain homology classes, or not allow some other. We denote the set of allowed
H-signatures of trajectories leading up to vg by the set A, and the set of blocked H-signatures as B. A and B are
essentially complement of each other (A ∪ B = U , where the universal set, U , is the set of the H-signatures of all the
classes of trajectories joining vs and vg), and B can be an empty set when all classes are allowed.

We define the H-signature augmented graph of G as the graph GH(G) = {VH , EH}, such that each node in this
new graph has the H-signature of a trajectory leading up to the coordinate of the node from vs appended to it. That
is, each node in this augmented graph is given by {v,H(ṽsv)}, for some ṽsv ∈ P(vs,v). Thus, corresponding to a
given v ∈ V , since there are discrete homology classes of trajectories from vs to v, there are a discrete number of the
augmented states, {v,h} ∈ VH , where h is a M -vector of reals (M being the number of representative points or the
number of SHIOs depending on whether it’s a 2 or 3-dimensional configuration space) and assumes the values of the
H-signatures corresponding to the discrete homology classes. Thus, we define the H-signature augmented graph of G
as follows,

GH = {VH , EH}

where,

1.

VH =

{v,h}
∣∣∣∣∣∣∣∣∣∣

v ∈ V, and,
h = H(ṽsv) for some trajectory

ṽsv ∈ P(vs,v), and,
h ∈ A (equivalently, h /∈ B)

when v = vg


2. An edge {{v,h} → {v′,h′}} is in EH for {v,h} ∈ VH and {v′,h′} ∈ VH , iff

i. The edge {v→ v′} ∈ E , and,
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Figure 11: The topology of the augmented graph, GH (right), compared against G (left), for a cylindrically discretized
2-dimensional configuration space around a circular obstacle

ii. h′ = h +H(v→ v′), where,H(v→ v′) is the H-signature of the edge {v→ v′} ∈ E .

3. The cost/weight associated with an edge {{v,h} → {v′,h′}} is same as that associated with edge {v→v′}∈E .

The consequence of point 3 in the above definition is that an admissible heuristics for search in G will remain admis-
sible in GH . That is, if f(v,vg) was the heuristic function in G, we define fH({v,h}, {vg,h′}) = f(v,vg) as the
heuristic function in GH for any h′ ∈ A.

The consequence of augmenting each node of G with a H-signature is that now nodes are distinguished not only
by their coordinates, but also the H-signature of the trajectory followed to reach it. Typically we use graph search
algorithms like A* (or variants like D* or D*-lite) where nodes in the graph GH are expanded starting from the node
{vs,0} (where by 0 we mean a M -dimensional vector of zeros).

The topology of this augmented graph for a 2-dimensional case is illustrated in Figure 11. A goal state vg is the
same in G irrespective for the path (τ1 or τ2) taken to reach it. Whereas in theH-signature augmented graph, the states
are differentiated by the additional value of hg . We can perform a graph search in the augmented graph, GH , using any
standard graph search algorithm starting from the state {vs,0}. The goal state (i.e. the state, upon expansion of which
we stop the graph search) is potentially any of the states {vg,hg} for any hg ∈ A (or hg /∈ B if B is provided instead
of A). We can use the same heuristic that we would have used for searching in G, i.e. fH(v,h) = f(v). It is to be
noted that GH is essentially an infinite graph, even if G is finite. However the search algorithm needs to expand only a
finite number of states. Since for a given v, the states {v,h} can assume some discrete values of h (corresponding to
the different homology classes). To determine if {v,h′g} and {v,hg} are the same states, we can simply compare the
values of h′g and hg .

5.1 Uses of the H-signature Augmented Graph
There are primarily two distinct but related ways we would like to use the H-signature augmented graph with search
algorithms:

i. Exploration of environment for different homotopy classes of trajectories connecting vs and vg: For this prob-
lem, whenever we expand a state {vg, h̃} ∈ VH , for some h̃ /∈ B, we store the path up to that node, and continue
expanding more states until the desired number of classes are explored. Although H-signature is a homology
class invariant, and not a homotopy class invariant, by Lemma 1, two trajectories are homotopic implies that
they are homologous. Thus, two trajectories that are homotopic will be in the same homology class, and hence
their H-signatures will be the same. Thus, in such problems where we find least cost trajectories with different
H-signatures in a configuration space using the said method, we are always guaranteed to obtain trajectories in
distinct homotopy classes as well.

ii. Planning with H-signature constraint: For searches with H-signature constraint, we stop upon expansion of a
goal coordinate {vg, h̃} for some h̃ /∈ B (or equivalently, h̃ ∈ A).
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5.2 Theoretical Analysis
Theorem 1. If P∗H =

{
{v1,h1}, {v2,h2}, · · · , {vp,hp}

}
is an optimal path in GH , then the path P∗ =

{v1,v2, · · · ,vp} is an optimal path in the graph G satisfying the H-signature constraints specified by A and B

Proof. By construction of GH , the path {v1,v2, · · · ,vp} satisfies the given H-signature constraints. Moreover by
definition, P∗H is a minimum cost path in GH . Since the cost function in GH is the same as the one in G and does not
involve hj , it follows that the projection of P∗H on G given by P∗ = {v1,v2, · · · ,vp} is an optimal path in the graph
G satisfying the constraints defined in GH .

6 Results
The method described in this paper was implemented in C++ and MATLAB. In the sections below we present results
in 2, 3 and 4-dimensional configuration spaces.

6.1 Two-dimensional Configuration Space
6.1.1 Path prediction by homotopy class exploration

Figure 12(a) shows a large 1000× 1000 discretized environment with circular and rectangular obstacles. We explore
trajectories in different classes in order of their path costs using the method ‘i.’ described in Section 5.1. The im-
plementation was done in C++ running on an Intel Core 2 Duo processor with 2.1 GHz clock-speed and 4GB RAM.
All the different trajectories in different homotopy classes were determined in a single run of graph search on GH as
described earlier.

As discussed earlier, in such exploration problems, although we use the H-signature as the class invariants in
the search algorithms, since non-homologous trajectories are guaranteed to be non-homotopic, we are guaranteed to
obtain trajectories in different homotopy classes.

We also constructed 10 such environments using random circular and rectangular obstacles. Table 12(c) demon-
strate the efficiency of the searches. The time indicates the cumulative time during the search until a shortest-path
trajectory in a particular homotopy class is found. This is relevant to problems of tracking dynamic entities, such
as people, where one often needs to predict possible paths in order to bias the tracker or to deal with occlusion by
anticipating where the dynamic entity will appear. Since people can choose different paths to their destinations, we
need to be able to predict least cost paths that lie in different homotopy classes.

6.1.2 H-signature constraint: H-signature defined by Key-points

Figure 13(a) demonstrates an example where we define homology classes using a sample (suboptimal) trajectory
specified by key-points. One can then compute the H-signature for such a trajectory. It can then be used to search GH
for an optimal path in the same class (or different) as the sample trajectory (Figure 13(b)).

Although technically we have imposed homology class constraint by imposing the H-signature constraint, we
observe that the optimal trajectory that we obtain is in fact in the same homotopy class as the key-point generated
trajectory. In fact we observe that in most robotics planning problems imposingH-signature constraints indeed impose
the corresponding homotopy class constraint as well.

6.1.3 Multiple robot visibility problem

The problem of path planning for multiple robots with visibility constraints can also make use of our approach. If
one robot needs to plan its path such that it is never obstructed from the view of another robot by some obstacle, we
can apply the technique of planning with H-signature constraint to obtain the desired trajectories. In Figure 14(a)-(c)
two robots plan trajectories to their respective goals. The robot on the right needs to plan a trajectory such that it is in
the “visibility” of the robot on the left, whose trajectory is given. Thus, in order to determine the H-signature of the
desired homotopy class it first constructs a suboptimal path by connecting its own start and goal points to the start and
goal of the left robot, such that the trajectory of the left robot is completely contained in it (Figure 14(b)) as key points.
The H-signature of this path gives the desired homology class, thus re-planning with that class as the only allowed
class gives the desired optimal plan (Figure 14(c)).
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(a) Paths in 20 different homotopy classes.
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(b) Run-time & states expanded for finding the least-
cost paths in a particular run.

Hmtp. time ellapsed until ith states expanded
class hmtp. class explored (s) cumulative (106)
(i) min max mean min max mean
1 1.41 2.01 1.71 0.021 0.039 0.032
2 3.58 8.58 5.15 0.099 0.313 0.170
3 5.09 9.69 6.77 0.180 0.375 0.244
4 6.13 12.46 8.92 0.237 0.494 0.345
5 7.80 17.74 11.50 0.285 0.776 0.472
6 10.53 18.56 13.05 0.422 0.825 0.555
7 10.92 19.74 15.38 0.473 0.888 0.681
8 13.35 20.32 17.01 0.604 0.935 0.773
9 15.08 21.76 18.60 0.693 1.027 0.858

10 15.53 26.28 20.87 0.720 1.252 0.978
(c) Statistics of searching least-cost paths in first 10 homotopy classes in 10
randomly generated environments. The numbers represent the cumulative
values till the ith homotopy class is explored.

Figure 12: Exploring homotopy classes in 1000× 1000 discretized environments to find least cost paths in each.
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(a) Suboptimal key-point generated trajectory.
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(b) Optimal trajectory in same class as key-point gen-
erated trajectory.

Figure 13: Homotopy class constraint determined using suboptimal key-point generated trajectory.

http://www.springerlink.com/content/f851813u657g5923/


The final publication is available at www.springerlink.com 18

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

  z1s

  z1g

  z2s

  z2g

(a) Unconstrained plans of two
robots from their respective start to
goal coordinates.
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(b) Robot 2 determines H-signature
of desired homotopy class by con-
structing a suboptimal path.
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(c) Optimal plan with visibility constraint satisfied
– obtained using search-based planning with H-
signature constraints.

Figure 14: 100× 100 discretized environment with 2 representative points on the central large connected walls.
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(a) w = 0.0, B = {}.
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(b) w = 0.01, B = {}.
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1

(c) w = 0.0, B = {h0}.
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(d) w = 0.01, B = {h0}.

Figure 15: Planning with non-Euclidean length as cost as well as homotopy class constraint.

The natural constraint in this situation is that of homotopy. But we once again observe that even imposing the
H-signature constraint we do obtain trajectory in the desired homotopy class.

6.1.4 Arbitrary cost functions

Our method is not limited to Euclidean length cost functions. It can deal with arbitrary cost functions. For example,
in Figure 15 there are two large obstacles and a communication base to the left of the environment marked by the
bold dotted line, x = 0. An agent is supposed to plan its path from the bottom to the top of the environment, while
minimizing a weighted sum of the length of the trajectory and the distance of the trajectory from the communication
base. Thus, in this case, besides the transition costs of the states in G, each state, z = x + iy ∈ G, is assigned a cost
w · x, the penalty on separation from the communication base. Thus the net penalized cost of the trajectory, τ , that is
being minimized is of the form c =

∫
τ
ds + w

∫
τ
x(s)ds, where x is the x-coordinate of the points on the trajectory,

parametrized by s, the length of the trajectory. The trajectories in figures 15(a) and (b) with penalty weights w = 0
and w = 0.01 respectively have H-signature of h0. Blocking this class, but having a small penalty over distance from
communication base gives the trajectory in 15(d) that passes close to the communication base.

6.1.5 Implementation using Visibility Graph

To demonstrate the versatility of the proposed algorithm we implemented it using a Visibility Graph as the state graph,
G. Figure 16 shows the visibility graph generated in an environment with polygonal obstacles and the shortest paths
in 9 homotopy classes that we explore. Obstacles were inflated in order to incorporate collision safety and circular
obstacles were approximated by polygons. Representative points were placed only on the large obstacles (i.e., relevant
obstacles that contribute towards the practical notion of homotopy classes, and not, for example, ones created by
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Figure 16: Exploring homotopy classes using a Visibility Graph

sensor noise – determined by threshold on diameter and marked by blue circles in the figure) and visibility graph was
constructed. A* search was used for searching the H-signatue augmented graph. The implementation was made in
MATLAB. The average run-time of the search until the 9th homotopy class was explored was 0.4 seconds and about
100 states were expanded.

6.2 Three-dimensional Configuration Space
The first 3-dimensional domain in which we implement the planning algorithm is the space of 3 spatial dimensions,
X,Y and Z. We also demonstrate the algorithm in the 3-dimensional space of X , Y and time, i.e. an environment
with planar dynamic obstacles (Section 6.2.5).

For a problem in 3 spatial dimensions, the domain of interest is bounded by upper and lower limits of the 3
coordinates. The domain is then uniformly discretized into cubic cells and a node of G is placed at the center of each
cell. Connectivity is established between a node and its 26 neighbors (all cells that share at least one corner, edge or
face with it). Each edge is bi-directional and its cost is the Euclidean length.

6.2.1 Simple environments with bounded obstacles

Figure 17(a) demonstrates a simple environment, 20 × 20 × 18 discretized, with two torus-shaped obstacles. The
skeleton of each obstacle is made up of line segments passing through the central axis of the cylindrical seg-
ments. Here we restrict search to non-looping trajectories (See [4] for a precise definition). That is, we set
B =

{
h = [h1, h2]T

∣∣ |h1| > 1 or |h2| > 1
}

. We search for 4 homotopy classes of trajectories connecting a given
start and goal coordinate. As shown in Figure 17(a), the algorithm finds four such trajectories: (i) going through hoops
1 and 2; (ii) going through hoop 1 but not through hoop 2; (iii) going through hoop 2 but not through hoop 1; and
(iv) not going through either hoops. According to Theorem 1 each path is the least cost one in the graph and in its
respective homotopy class.

Figure 17(b) shows the exploration of 4 homotopy classes in and around a room with windows on each wall. The
skeletons for this obstacle are defined as loops around each window according to Construction 3. The trivial shortest
path from the given start to goal configuration goes outside the room (the dark violet trajectory). Trajectories in other
homotopy classes pass through the room.

6.2.2 Environment with unbounded Pipes

Figure 18(a) shows a more complex environment consisting of 7 pipes stretching to infinity. The workspace of choice
is 44 × 44 × 44 discretized, with the start and goal coordinates at two opposite corners of the discretized space. In
Figure 18(a) we find the least cost paths in 10 different homotopy classes.
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(a) Two hoops. (b) A room with windows.

Figure 17: Exploring homotopy classes in X − Y − Z space.

(a) Exploring 10 distinct homotopy classes. (b) Plan in the complementary homotopy class of the least cost
path.

Figure 18: An environment with 7 unbounded pipes.

6.2.3 Planning with H-signature Constraint

Figure 18(b) demonstrates a planning problem with H-signature constraint. The darker trajectory is the global least
cost path found from a search in G for the given start and goal coordinates. The H-signature for that trajectory
was computed, and hence we computed the signature of the complementary class (i.e the class corresponding to the
trajectory that passes on the other side of every SHIO - see [4] for a precise definition), and put only that in A. The
lighter trajectory is the one planned with thatA as the set of allowed H-signature. This trajectory goes on the opposite
side of each and every pipe in the environment as compared to the darker trajectory.

We note that in this example the notion of complementary homology class concurs with that of complementary
homotopy class.

6.2.4 Search Speed and Efficiency

We now present the running time for the case in Figure 18(a). The environment, as described earlier, is 44× 44× 44
discretized, and hence G contains 85184 nodes. Due to each node being connected to 26 of its neighbors, there are
almost 13 times as many edges in G. The program was run on a Intel Core 2 Duo processor with 2.1 GHz clock-speed
and 3GB RAM. We first compute the values of H(e) for all edges e ∈ E and store them in a cache, which takes
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Figure 19: Cumulative time taken and number of states expanded while searching GH for 10 homotopy classes in the
problem of Figure 18(a).

about 2273s. Then we perform the A* search in GH , using the values from the cache whenever required. By doing
so we eliminate the requirement of re-computing the h-signatures of the edges every time we perform a search, even
with changed start and goal coordinates. The search for the 10 homotopy classes in Figure 18(a) took about 30s and
expansion of 521692 nodes in GH . Figure 19 shows the cumulative time required and the number of nodes in GH
expanded.

6.2.5 Planning in 2-dimensional plane with moving obstacles

The next 3-dimensional domain that we experiment with is that of the two-dimensional plane, but with dynamic en-
tities. Thus the variables of interest are X,Y and time. The node set was formed by uniform discretization of the
domain of interest. The connectivity of the graph is such that the time variable can increase only in the positive direc-
tion (each node connected to 9 neighboring nodes in next time step, including the same x & y). The cost of an edge,
e, with differences in the coordinates of its end points ∆x,∆y and ∆t is computed as c(e) =

√
∆x2 + ∆y2 + ε∆t2,

where ε is a small value for avoiding zero cost edges in GH . The skeleton of the moving obstacles are the curves traced
by their centers (yellow dots on the oscillating rectangles in Online Resource 1) in the X − Y − Time space. The
skeletons are closed outside and far from the discretized domain (Construction 2). Note that in doing so, segments of
the skeleton may point along negative time. However that does not effect the planning since the X −Y −Time space
itself can be treated no differently from R3.

The first supplementary video (Online Resource 1) shows the exploration of 4 homotopy classes inX−Y −Time
domain. The environment is 40×40 discretized inX and Y directions, and have 100 discretization cells in time. There
are two dynamic rectangular obstacles, that undergo a known oscillatory motion inside a narrow passage between other
static obstacles. The 4 different trajectories in the different homotopy classes are marked by different colors as well as
different numbers at their current locations. The blue trajectory (3) passes above both the obstacles. The red trajectory
(2) passes above the right obstacles, but not the left one. The light blue-gray trajectory (1) passes above the obstacle
on the left, but not one on the right. The dark gray trajectory (0) is the trivial shortest path. The trajectories in the
non-trivial homotopy classes go behind the obstacles, a region that would otherwise not be visited by the least cost
path without any H-signature consideration.

6.3 Four-dimensional Configuration Space
A natural extension of the example provided in Section 6.2.5 would be to explore homotopy classes of trajectories
in a 3-dimensional space with moving obstacles. However that makes the configuration space a 4-dimensional one
consisting of the coordinates X , Y , Z and Time. So far we have developed representations of H-signature for 2 and
3 dimensional configuration spaces. While doing so we have noticed the similarity in the approach of both. In fact it
is possible to unify the formulae and generalize it to arbitrary dimensional configuration space using certain concepts
from algebraic and differential topology. We discuss the derivation of such a formula in [3], where we use exterior
calculus and the Stokes theorem [22, 10, 21] to design differential 1-forms in arbitrary D-dimensional configuration
spaces, the integration of which serve as the desiredH-signature in such spaces. This analysis is reminiscent of a more
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general treatment that we are currently investigating [1].
Thus we present a result in a X − Y − Z − Time configuration space. The second supplementary video (Online

Resource 2) shows the exploration of 3 homotopy classes in a 4-dimensional configuration space consisting of a
dynamic obstacle in 3-dimensions. The loop-shaped obstacle is rotating about an axis. The blue axes are the X,Y and
Z axes. The apparent rotation of the axes themselves is due to movement of the camera for viewing the trajectories
from different angles. As we observe in the video, trajectories numbered 0 and 1 take off from the start coordinate
(green dot) and move towards the “center” of the loop. They wait there while 2 takes a different homotopy class to
reach the center later. From there 0 and 2 head together towards the goal (red dot), while 1 wait to take a different
trajectory to the goal. Thus the 3 trajectories are in different homotopy classes.

7 Conclusion
In this paper we have proposed a novel and efficient way of representing topological information of trajectories for
robot motion planning. We have shown that this representation is well suited for use with graph search techniques for
finding least cost paths respecting given homology class constraints as well as for exploring different homotopy classes
in an environment. The method is independent of the discretization scheme, cost function or the search algorithm
used. We have demonstrated the efficiency, applicability and versatility of the method in our results with examples in
two, three and four dimensions.
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