
Distributed Path Consensus Algorithm
Subhrajit Bhattacharya Maxim Likhachev Vijay Kumar
Mechanical Engineering Computer and Mechanical Engineering
and Applied Mechanics Information Science and Applied Mechanics

University of Pennsylvania University of Pennsylvania University of Pennsylvania
Philadelphia, PA 19104 Philadelphia, PA 19104 Philadelphia, PA 19104

subhrabh@seas.upenn.edu maximl@seas.upenn.edu kumar@me.upenn.edu

Abstract
Path planning methods based on discrete graph searches are highly ef-
fective in dealing with large-scale environments, arbitrarily shaped obsta-
cles, frequent map updates and complex cost functions. When it comes
to planning for teams of coupled agents however, typical graph search-
based planning techniques quickly become infeasible due to the exponen-
tial growth of the dimensionality of the joint state-space. In this paper, we
study the problem of path planning for teams of agents coupled with time-
parameterized constraints on the distances from each other, the problem
that often arises in planning for multi-agent robotic systems with limited
communication range. We first pose this problem as searching N (the
number of agents) graphs for cost-minimal paths that satisfy the distance
constraints. We then show how the solution to this problem - path con-
sensus - can be achieved in distributed fashion. Our theoretical analysis
gives the conditions under which the algorithm converges to an optimal
solution. Our experimental analysis shows that the algorithm converges
fast for teams of up to six agents navigating cluttered environments.

Introduction
This paper studies the problem of path planning for teams of agents coupled with time-
parameterized constraints on the distances between each other. A number of multi-
agent planning problems fall into these category. For instance, robots navigating to-
wards their respective goal locations while staying within the communication range is
one of the common planning problems in multi-agent robotics. The time-parameterized
distance constraints for this problem will be set as constant (time-invariant). Another
typical application area is search and/or coverage in settings where robots must ren-
dezvous periodically to exchange information and/or maintain relative distance con-
straints to enable communication. For example, the agents may be required to move
to their respective goal locations while some of them need to meet and exchange map
information every 30 seconds. In this case, the distance constraints in between the cor-
responding agents will be set to a small value at every 30 second timestep and will be
set to infinity at all other timesteps.

1

We are interested in planning in a discretized environment in a decentralized fash-
ion in order to enable scalability. Continuous motion planning is possible for such
problems [5], but only practical in environments with moderate complexity. Thus, in
this paper, we explore discrete path planning algorithms for multiple robots with con-
straints on intermediate positions.

In this paper we study how and when the one-shot joint state-space planning can be
decomposed into planning with a series of lower-dimensional searches converging to
an optimal solution. In particular, we first formulate the planning problem as searching
N graphs for cost-minimal paths that satisfy the distance constraints. We will refer to
this problem as finding cost-minimal Path Consensus. We then develop an algorithm,
called Distributed Path Consensus (DPC) that repeatedly searches these graphs while
gradually increasing the weight of the constraints until full convergence. The basic idea
is to incorporate constraints through penalty functions in a fashion that is reminiscent
of augmented Lagrangian techniques. As in augmented Lagrangian techniques [7],
it is possible to show convergence to optimal solutions when the cost function and
constraint functions are convex. Our theoretical analysis gives the conditions under
which the algorithm is guaranteed to converge to an optimal solution. Our experimental
analysis shows that the algorithm converges fast for teams of up to six agents operating
in cluttered environments. In addition to the presented simulation results, we also show
the implementation and execution of the algorithm on three physical robots navigating
a cluttered environment while obeying time-parameterized distance constraints.

Related Works
Robot path planning is probably one of the most extensively studied problems areas in
robotics [28]. Broadly speaking algorithms can be divided into two categories: continu-
ous and discrete planning planning methods. In continuous planning methods, one tries
to derive either open loop trajectories [47] or closed loop feedback policies [40, 12] that
avoid obstacles while satisfying constraints on the robot dynamics. However, it is diffi-
cult to establish completeness and convergence results except in special cases. In most
practical settings, discrete graph search methods have been shown to be complete and
efficient [44]. And in some cases [29], it is even possible to incorporate robot dynamics
to solve planning problems.

Multi-robot path planning suffers from the inherent complexity resulting from the
necessity of operating in Cartesian products of configuration and state spaces [14].
The continuous path planning problem is even more difficult to solve in a centralized
setting [47, 32] unless the problem is solved sequentially for each robot [48]. Open
loop trajectory planning problems can be reduced to optimization problems. While
completeness results are often possible [4] for simple or no constraints, it is difficult to
respect more complex multi-robot constraints.

Closely related to our present work is the work on task allocation for multiple
robots[22]. In these methods, one can impose rendezvous constraints at intermediate
time points as tasks and reformulate the path planning problem as a task allocation
problem. This then lends itself to auction-based solutions[16] for the team. However,
these methods can produce grossly sub-optimal solutions in the environments with

2

obstacles.
The iterative method proposed in the present work is closely related to those found

in distributed optimization techniques [9] and to solving decentralized planning under
uncertainty problems [6, 34, 42]. Such problem is often solved sequentially for each
agent [48]. However, the novelty is our ability to find efficiently the optimal paths in
arbitrarily complex environments with constraints on intermediate points.

Separable optimization problems [8] (optimization problems that can be split up
into simpler sub-problems involving only certain partitions of the variable set) with
linear constraints have been studied extensively in the past and solved in a distributed
fashion using techniques based on dual decomposition [41, 8]. Augmented Lagrangian
type methods have been used for solving similar problems more efficiently [7, 35].
However such methods are limited to problems with linear constraints and rely on
convexity of cost functions.

Path planning methods based on discrete graph searches such as Dijkstra’s, A* [17,
24] and its variants are a common way of planning for a single agent. These methods
have been shown to be suitable for planning under time-constraints [27, 23, 30], are
able to re-plan efficiently whenever terrain map is updated [43], and can accommodate
various cost functions and agent dynamics and environment constraints [29]. However
when planning for multi-agent systems the joint state-space of N agents requires the
construction and search of a graph whose size grows exponentially as N increases.
Real-time planning and re-planning in such large state-spaces becomes infeasible.

Our use of time-parameterized distance constraints is related to the work on task
allocation for multiple agents [22]. In these methods, one can impose rendezvous con-
straints at intermediate time points as tasks and reformulate the path planning prob-
lem as a task allocation problem. This then lends itself to auction-based solutions [?]
for the team. However, these methods can produce highly sub-optimal solutions. No
completeness or optimality results are available for planning paths in the presence of
obstacles with such methods.

There also exist an extensive research of distributed planning in a more general
sense (a good survey can be found in [18]). For example, in Cooperative Distributed
Planning (CDP) agents communicate and coordinate with an aim to reach a consensus
on paths [15]. The DIPART experimental platform [38] can analyze a wide range of
planning and execution problems, especially in relation to task allocation. Communica-
tion [25] and coordination [19, 20] are important aspects of such planning. The method
we propose is also related to those found in distributed optimization techniques [9]. Our
paper concentrates specifically on path planning under time-parameterized distance
constraints and studies how and under what conditions, one can obtain cost-minimal
path consensus without ever planning in the joint state-space.

Distributed optimization in iterative fashion by gradual increment of Lagrangian-
like penalty weights has been used for solving shortest path problems with resource
constraints [26]. The technique of Multiplier Adjustment Method (MAM) has been
used in various integer and mixed integer optimization problems like set partition-
ing [11] and assignment problem [21]. However use of such a method for planning
in a high dimensional space like that of robot trajectories is computationally highly
expensive even with the proposed distributed scheme in [26]. This is because the the
planning variable in our case are trajectories that lie in infinite dimensional Hilbert

3

space. Even if we discetize the space, the number of planning variable required for
defining a path will be extremely high. Moreover the resource constraint is not quite
applicable to the problem of robot path planning.

In similar lines, Lagrangian dual problem has been used to solve shortest path prob-
lem in a network subject to knapsack-type or resource constraints [?]. However such
approaches are highly specific to the resource-type constraints and is suitable for mod-
erately sized network graphs. The graphs resulting from discretization of a continuous
space, as in our case, is significantly larger compared to the network graphs and the
distance-type constraints in our case are quadratic or even more complex than that.

Sven Koenig, et al. has investigated Distributed Constraint Optimization Problems
(DCOPs). The BnB-ADOPT algorithm [46] does an A* search on the spanning tree of
the constraint graph of the agents. The algorithm deals with assigning states to agents
such that constraint costs are minimized. While this is once again more relevant to
task allocation problem than path planning, it is possible to frame our present problem
as a particular case of DCOP by describing the complete path for each agent as their
states. Quite evidently, for using this algorithm in constrained path planning as in
the present problem, if we describe each path for an agent as its state, the number of
possible states for each agent will be extremely huge. In that case this algorithm will be
very inefficient and computationally expensive to work with. The “Opportunistic Best-
First Search”, where the ADOPT algorithm performs sequential searches exchanging
information between the agents until termination is attained, is in essence very similar
to our present approach, but applicable to a different problem scenario.

Some of the other relevant works done in the past are elastic-based path plan-
ning [39] and potential-field based path planning [31]. In methods like these, distance
constraints are not present as in our case, and hence the problem with high dimension-
ality of the joint state-space is not faced. Planning for multiple robots can be done
independently - at least there is no guarantee provided by this methods for for multi-
agent planning. Moreover, for the most generic environments these methods pose the
problem of local energy/potential minima. Similar work of decentralized planning of
multi-robot trajectories under collision and communication constraint using navigation
functions have been investigated [37], but such approaches do not provide guarantee of
optimality or completeness.

Probabilistic or sample-based path planning [45] on the other hand although can
deal with constraints like the distance constraints, the typical search in such methods
are performed through the ‘super-graph’ of the joint state-space of the agents (prob-
abilistic roadmaps for example) and hence scales exponentially with the number of
agents. Moreover being a sample-based method completeness is guaranteed only prob-
abilistically.

Optimization of velocity profile for path constrained robots [3], maintainance of
communication connectivity in an obstacle-free environment for robots with second-
order dynamics [36] and maintainance of graph connectivity using potential func-
tions [33] are some of the other related works worth mentioning, which although differ
markedly from our present work in terms of the nature of the constraints, the generality
in the kind of environment we consider and the kind of guarantee on completeness and
optimality we can prove on our algorithm.

4

Problem Formulation, Assumptions, and Notations
In this section, we formalize the planning problem for multi-robot goal-directed nav-
igation with distance constraints as the problem of finding a set of paths through N
graphs that satisfy the constraints in between, where N is the number of robots. We
will denote each robot by Ri, 1 ≤ i ≤ N . We assume that the constraints functions
are given by time parametrized maximum distance between each pair of robots, Ri
and Rj . One particular case of such constraints is the rendezvous constraints, where
the foresaid function takes small finite values at particular instants of time, and remain
infinite at all other instants of time.

Goal-directed navigation Planning for goal-directed navigation for an individual
robot Ri is often modeled as computing a least-cost path through a graph Gi formed
by discretization of the configuration space. Each state s ∈ V(Gi) is given by {x, y}
coordinates of the corresponding cell. For permissible and neighboring states s and s′

(free states inside the configuration space) the edge s→ s′ ∈ E(Gi) is associated with
a strictly positive cost c(s, s′). A common choice for the costs is to be equal to the
Euclidean distances (or its square) in between the centers of the corresponding cells.

Typically, for a single robot Ri, a planner would find a path through the graph
Gi that connects states Starti and Goali and minimizes the cumulative cost of tran-
sitions using a search algorithm. However, in our case, the distance constraints are
specified as functions in time at which robots have to be within certain distance from
each other. As a result, the generated paths need to be time-parameterized. To achieve
this, we augment each state in the graph Gi with an additional variable - time in-
dex1, such that an augmented state becomes {s, t}. Edges in this augmented graph
Hi = Gi × {0, 1, · · · , T} are defined such that a particular node {s, t} connects only
to the nodes {s′, t+1}, such that s′ ∈ (Neighbors(s)∪s) ⊂ V(Gi). Planning in such
an Hi ensures that the planning is done both in space and time, enabling incorporation
of dynamic obstacles and inter-robot collision avoidance, and the time parametrized
trajectory returned by the planner is consistent with the fact that the robots can move
only forward in time.

For the simplicity of notations, we will assume that all paths of interest to us are
at most T timesteps. Thus, a T -step path from {Starti, 0} to {Goali, T} is given by
the ordered set πi = {s0 = Starti, s1, . . . , sT = Goali}. Thus, πi(t) will refer to the
state st the robot Ri is at time t when following path πi. The cost of a path is given as
c(πi) =

∑
j=1...T c(sj−1, sj).

We assume that the start and goal coordinates of each robot are given and fixed.
Thus, when we write πi to be a path in Hi, we immediately imply the constraint that
the first node on the path is {Starti, 0} and the last node on the path is {Goali, T}. For
notational simplicity we don’t write this constraint explicitly every time. But whenever
we write πi we mean a trajectory for Ri such that πi(0) = Starti and πi(T) = Goali.

Constraints We represent constraints between pair of robots, Ri and Rj , as time
parametrized functions of maximum distance between them. For any pair of states
s ∈ V(Gi), s′ ∈ V(Gj), where i 6= j, we define a distance d(s, s′) as a non-negative

1One should also be able to use non-uniform transition times. We assume constant times for each transi-
tion purely for the sake of simpler explanations.

5

finite scalar-valued function satisfying commutativity (e.g., d(s, s′) = d(s′, s)). Thus,
in case graphs Gi were derived from a 2D gridworld, the distance function d(s, s′) can
be a simple Euclidean distance in between the centers of the cells that correspond to
state s for the first robot and state s′ for the second robot. In other cases, the distance
function can model more complex factors.

We thus specify time-parameterized distance constraints between all pairs of the
robots φi,j for all i 6= j. Thus, φi,j is a vector of T scalar values such that φi,j(t)
implies that the distance d(·, ·) in between robots Ri and Rj at time t should be no
more than φi,j(t). The φi,j(t) = ∞ therefore implies the absence of any constraint in
between these robots at time t.

Objective function Given our formulation of the problem, the goal of an optimal
planning algorithm would be to find N paths π∗i (1 ≤ i ≤ N) through the correspond-
ing graphs Gi such that:

{π∗1 , . . . , π∗N} = argminπ1...πN

P
j=1...N c(πj) (1)

subject to the constraint that

d(πi(t), πj(t)) ≤ φi,j(t)
for every {i, j, t} s.t. 1 ≤ t ≤ T, 1 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j

(2)

DPC Algorithm
We explain the DPC algorithm in two steps. We first present the version of the al-
gorithm suitable for solving the multi-robot goal-directed navigation problems with
distance constraints in spaces free of obstacles. In the next section, we therefore ex-
plain an extended version of the DPC algorithm that was specifically developed for fast
convergence in the presence of obstacles. It runs the basic version of the algorithm
repeatedly (in superiterations), thus making it more computationally expensive, but at
the same time guarantees completeness.

DPC Algorithm without Superiterations
The basic idea behind the DPC algorithm without superiterations is to run a series of
graph searches on graphs Hi, 1 ≤ i ≤ N . At each iteration iter, the search processes
some graph Hr and computes a path that minimizes the weighted sum of the pathcost
plus the amount to which the paths violate the rendezvous point constraints with re-
spect to the paths computed for other robots previously. In that respect, the algorithm
is similar to [34]. The difference is that DPC slowly increases the weights associated
with the rendezvous point constraints. This makes the robots to increase their pathcosts
slowly and often converge to an optimal solution. We also present the proof of con-
vergence, completeness and optimality of the algorithm in an empty environment and
under some specific assumptions.

6

1 procedure BasicDPC()

2 compute π0
i = argminπic(πi) for all i;

3 set w0
i,j = 0 for all i, j;

4 r = 1, iter = 0;

5 while (
P
i=1...N

P
j=i+1...N Ω(πiteri , πiterj) 6= 0 ANDP

i c(π
iter
i) +

P
i,j
i6=j

witeri,j Ω(πiteri , πiterj) ≤ N ∗maxpathcost)

6 set witer+1
i,j = witeri,j for all i, j;

7 witer+1
i,j = witer+1

j,i = witerj,i + εki,j for all i, j;

8 compute πiter+1
r = argminπr{c(πr) +

P
i=1...N,i6=r w

iter+1
i,r Ω(πiteri , πr)

+
P
j=1...N,j 6=r w

iter+1
r,j Ω(πr, π

iter
j)};

= argminπr{c(πr) + 2
P
i=1...N,i6=r w

iter+1
i,r Ω(πiteri , πr)};

9 set πiter+1
j = πiterj for all other j 6= r;

10 iter = iter + 1;

11 r = r + 1;

12 if r > N

13 r = 1;

Figure 1: DPC without superiterations

To penalize for the violation of constraints, the algorithm introduces the penalty
function function Ω(πi, πj), i 6= j as follows:

Ω(πi, πj) =
P
t=0,1,··· ,T $(πi(t), πj(t), φi,j(t))

where, $(s, s′, p) = max(0, d(s, s′)− p) (3)

Note that Ω depends on φi,j as well. However since typically φi,j is a constant
throughout the problem (i.e. does not change with the iterations), for notational sim-
plicity we use Ω(πi, πj , φi,j) ≡ Ωij(πi, πj) ≡ Ω(πi, πj). The convention is that we
look at the indices of the π’s to identify which φ to use for defining Ω.

The penalty function is a way of expressing the hard distance constraints into soft
constraints. To gradually increase the weight of each constraint violation, each con-
straint φi,j is associated with a dynamically adjusted weight wij (the weights have to
be symmetric, so wij = wji).

The pseudocode of the algorithm is shown in figure 1. It first computes uncon-
strained least-cost paths for each of the robot (line 2). The computation of the paths
can be done with any graph search such as A* search [24]. After that, the algorithm
iterates over the robots repeatedly (robot index is incremented on lines 11-13). Within
each iteration iter, the algorithm increases the penalty weights by a small increment ε

7

(line 7), which has the following property,

εki,j

{
≥ 0, ∀i = r or j = r, i 6= j
= 0, otherwise (4)

It then computes a path for the robot Rr from its start state {Startr, 0} to its goal state
{Goalr, T} in graph Hr that minimizes the summation of all the transition costs and
all the weighted penalties (line 8). To compute this path, one can once again use any
graph search for a least-cost path, but the costs of all the edges, however, need to be
modified. In particular, the cost of any transition {s, t− 1} → {s′, t} becomes:

c(s, s′) + 2
P
j=1...N,j 6=r w

iter+1
rj $(s′, πiterj (t), φr,j(t))

Example 1. Figure 2 demonstrates frame-by-frame how the iterations of the DPC
Algorithm without superiterations converge to a feasible solution by changing the tra-
jectories of each robot change in small steps at every iteration. The simulation consists
of 6 robots in an empty environment of size 1 unit by 1 unit, discretized into 100 by 100
cells. All the robots start at time t = 0 units and need to reach their goals at the time
that is no later than t = 8 units. Time is discretized at the resolution of 0.1 units. The
constraint between robot i and robot i+ 1, for i = 1, 3, 5 is that the distance between
them needs to be 0.0 units at time t = 2.0 & t = 6.0, and for i = 2, 4 the distance
between the robots needs to be 0.0 units at time t = 4.0. At any other time, there is no
constraint on the distances in between the robots.

The first iteration is the unconstrained planning which returns the straight line tra-
jectories. In iteration 2, Robot 1 plans with the soft constraint of rendezvousing with
Robot 2 at two points on its trajectory. Thus, the trajectory of robot 1 changes accord-
ingly. In iteration 3, Robot 2 plans its trajectory based on the most recent trajectories
of all the robots. Its constraints are to meet Robot 1 at two points and robot 3 at a
single point in the middle of its trajectory. The changes in its trajectory are clearly
directed towards satisfying these constraints. In this fashion, the robots sequentially
make small changes to their trajectories gradually progressing towards the global fea-
sible solution. The solution converges in 13 iterations. Each iteration is a single A*
search in a 3-dimensional space (Hi), as opposed to a full 12 + 1-dimensional joint
state-space of 6 robots. The number of states in each Hi is 800,000. The number of it-
erations required for the convergence is 13, and the time taken for the overall planning
was less than 10 seconds. Figure 2(m) shows the final converged solution. Also, it can
be noted that since it is an 8-connected grid, the motions of the robots are restricted in
their orientations, and the generated solution is just one of the many optimal solutions
as was discussed in section .

The changes in its trajectory with the increase in the penalty weights are clearly di-
rected towards satisfying the constraints. The robots sequentially make small changes
to their trajectories gradually progressing towards the global feasible solution.

8

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(a)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(b)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(c)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(d)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(e)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(f)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(g)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(h)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(i)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(j)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(k)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(l)

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(m)

Figure 2: Planning in an empty environment (Example 1) with 6 robots using
BasicDPC without superiterations. Each frame represent an iteration and the plan-
ning robot Rr’s trajectory is colored in pink.

Theoretical Properties for two agents
In the following sections πi will indicate a trajectory of robot i consistent with its initial
and goal configurations at Starti and Goali respectively, even if that is not explicitly
mentioned. This means πi belongs to a subspace of the space of all possible trajectories
sich that the initial and goal configurations at Starti and Goali.

For the two-robot case, since the weighs and the increments need to be symmetric,
for notational simplicity we define w ≡ 2w1,2 = 2w2,1 and ε ≡ 2ε1,2 = 2ε2,1.
Consider the case when two agents are planning in an environment without obstacles.
Let’s define the following for this scenario (recall that Ω(πa, πb) = Ω(πb, πa)):

Ψ(w, π1) = min
π′2

(c(π′2) + w · Ω(π1, π
′
2))

Ψ(w, π2) = min
π′1

(c(π′1) + w · Ω(π′1, π2))

Definition 1 (well-behaved cost and distance functions). The function pair {c, d} is
said to be well-behaved iff there exists small enough ε0 > 0 such that for any ε0 ≥ ε >
0 it holds that

Ψ(w + ε, π∗w1)−Ψ(w, π∗w1) ≤ Ψ(w + ε, π∗w+ε
1)−Ψ(w, π∗w+ε

1)

Ψ(w + ε, π∗w2)−Ψ(w, π∗w2) ≤ Ψ(w + ε, π∗w+ε
2)−Ψ(w, π∗w+ε

2)

9

for any∞ > w ≥ 0 and any paths π1 or π2, where for a given w we define

{π∗w1 , π∗w2 } = argminπ′1,π′2
{c(π′1) + c(π′2) +

w · Ω(π′1, π
′
2)}

Note that this definition is also dependent on the structure and discretization of the
Graph Gi since the function Ψ takes in π as an input, which in turn depends on the
discretization of the graph.

In this condition, the pair {π∗w1 , π∗w2 } represents a cost-minimal pair given the cost
function formulated as the sum of the path costs and the weighted penalty function,
and the pair {π∗w+ε

1 , π∗w+ε
2 } is the same but for the weight equal to w + ε. Therefore,

in plain English, the condition above requires the increase in Ψ function due to the
increase in w (by ε) to be smaller whenever the current path pair is cost-minimal. If
this condition is satisfied, then the algorithm exhibits the following cornerstone prop-
erty: after every iteration the current set of paths is cost-minimal w.r.t the cost function
formulated as the sum of the path costs and the weighted penalty function.

Theorem 1. Given the condition defined in Definition 1 holds and a sufficiently small
ε is used in the algorithm, every time line 5 is executed the following holds:

{πiter1 , πiter2 } = arg minπ1,π2

 X
i=1...N

c(πi) + witer · Ω(π1, π2)

!

Proof. The theorem clearly holds when line 5 is executed for the first time sincew0
i,j =

0 for all i, j.
We now prove the theorem by induction. Assume it holds for 0th through iter =

0 . . . k executions of line 5. We will now prove that it continues to hold for the iter =
k + 1th execution of line 5. By inductive assumption we have:

{πk1 , πk2} = arg minπ1,π2
c(π1) + c(π2) + wk · Ω(π1, π2)

Without loss of generality, let’s assume that at iter = kth execution of line 5,
r = 1. In other words, at kth iteration, the algorithm was computing the path for the
1st robot, πk+1

1 , and therefore πk+1
2 = πk2 .

We prove by contradiction. Let us assume that

{πk+1
1 , πk+1

2 } 6= arg minπ1,π2
(c(π1) + c(π2) + wk+1 · Ω(π1, π2))

This implies that there exist π′1 and π′2 such that
{π′1, π′2} = arg minπ1,π2

(c(π1) + c(π2) + wk+1 · Ω(π1, π2))

10

and

c(πk+1
2) + c(πk+1

1) + wk+1 · Ω(πk+1
1 , πk+1

2)

> c(π′2) + c(π′1) + wk+1 · Ω(π′1, π
′
2) (5)

Since the algorithm has just computed πk+1
1 it holds that:

πk+1
1 = arg minπ1

c(π1) + wk+1 · Ω(π1, π
k+1
2)

Also, it holds that π′1 = arg minπ1
(c(π1) + wk+1 · Ω(π1, π

′
2)) and π′2 =

arg minπ2
(c(π2) + wk+1 · Ω(π′1, π2)). Thus from 5,

c(πk+1
2) + minπ1(c(π1) + wk+1 · Ω(π1, π

k+1
2))

> c(π′2) + minπ1(c(π1) + wk+1 · Ω(π1, π
′
2)) (6)

⇒ c(πk+1
2)− c(π′2) > Ψ(wk+1, π′2)−Ψ(wk+1, πk2) (7)

On the other hand, since {πk1 , πk2} is a global minimum for wk according to our
inductive assumption, and since by hypothesis πk2 = πk+1

2 , it holds that

c(πk2) + Ψ(wk, πk2) ≤ c(π′2) + Ψ(wk, π′2) (8)

c(πk+1
2)− c(π′2) ≤ Ψ(wk, π′2)−Ψ(wk, πk2) (9)

Thus, from inequalities 6 and 8, and using πk2 = πk+1
2 ,

Ψ(wk, π′2)−Ψ(wk, πk+1
2) > Ψ(wk+1, π′2)−Ψ(wk+1, πk+1

2)

⇒ Ψ(wk + ε, π′2)−Ψ(wk, π′2) < Ψ(wk + ε, πk2)−Ψ(wk, πk2)

But the pair of paths {πk1 , πk2} are the global minimum forw = wk by the inductive
assumption. Moreover, π′2 = π∗w+ε

2 by hypothesis. From Definition 1 it therefore
follows that:

Ψ(wk + ε, πk2)−Ψ(wk, πk2)

≤ Ψ(wk + ε, π′2)−Ψ(wk, π′2)

Thus from the last two inequalities we end up with a contradiction. Hence our
assumption of the existence of {π′1, π′2} was incorrect.

Since theorem 1 basically says that after every iteration the solution paths are cost-
minimal w.r.t. the current weight w, the optimality of the algorithm follows from the
fact that for a sufficiently large weight w, the weighted penalty function will dominate
completely the cost function c(·), and therefore the paths will converge to the cost-
minimal path consensus if there exists one. It happens in finite amount of time, since
weights are increased by a strictly positive (bounded from below) increment ε and
assuming there is a bound on the cost of a shortest path (denoted by maxpathcost).
The following theorem states this formally.

11

Theorem 2. Given the condition defined in 1 holds and a sufficiently small ε is used in
the algorithm, the algorithm terminates, and when it terminates (say at iteration iter)
the following holds:

• {πiter1 , πiter2 } = {π∗1 , π∗2} if there exists any set of paths that minimizes the ob-
jective function 1 and satisfies the constraints 2;

• {πiter1 , πiter2 } = arg minπ1,π2

(
c(π1) + c(π2) + witer · Ω(π1, π2)

)
otherwise;

Proof. As before, without loss of generality, we assume that at iter = kth execution
of line 5, r = 1. From result of Theorem 1, and using the fact that c(πk2) = c(πk+1

2),
we have,

c(πk1) + c(πk2) + wk · Ω(πk1 , π
k
2)

≤ c(πk+1
1) + c(πk+1

2) + wk · Ω(πk+1
1 , πk+1

2)

⇒ wk · Ω(πk1 , π
k
2)− wk · Ω(πk+1

1 , πk+1
2) ≤ c(πk+1

1)− c(πk1)

Similarly,

c(πk+1
1)− c(πk1) ≤ wk+1 · Ω(πk1 , π

k
2)− wk+1 · Ω(πk+1

1 , πk+1
2)

Thus, combining the above two and rearranging,

wk · (Ω(πk1 , π
k
2)− Ω(πk+1

1 , πk+1
2))

≤ wk+1 · (Ω(πk1 , π
k
2)− Ω(πk+1

1 , πk+1
2))

Since 0 ≤ wk < wk+1, therefore we should have,

Ω(πk1 , π
k
2)− Ω(πk+1

1 , πk+1
2) ≥ 0

⇒ Ω(πk+1
1 , πk+1

2) ≤ Ω(πk1 , π
k
2)

Thus we see that in every iteration step the violation cost decreases. The algorithm
terminates to a feasible solution only when the violation cost becomes zero (step 5 of
the algorithm). Then the solution to the problem becomes, by Theorem 1,

{πiter1 , πiter2 } =

arg minπ1,π2

P2
i=1 c(πi) +witer · 0

⇒ {πiter1 , πiter2 } = {π∗1 , π∗2}

Otherwise, termination to an infeasible solution will trivially imply

{πiter1 , πiter2 } = arg minπ1,π2

“
c(π1) + c(π2) + witer · Ω(π1, π2)

”

12

Now we justify the proposed termination criteria when Ω(πk1 , π
k
2) 6= 0 at termina-

tion. From result of Theorem 1, and using the fact that wk < wk+1 = wk + ε

c(πk1) + c(πk2) + wk · Ω(πk1 , π
k
2)

≤ c(πk+1
1) + c(πk+1

2) + wk · Ω(πk+1
1 , πk+1

2)

< c(πk+1
1) + c(πk+1

2) + wk+1 · Ω(πk+1
1 , πk+1

2)

Since we have a discretized space, we can have a measurably finite ∆ such that

∆ = minπ1,π2{Ω(π1, π2) s.t. Ω(π1, π2) 6= 0}

Then,

c(πk1) + c(πk2) + wk · Ω(πk1 , π
k
2)

≤ c(πk+1
1) + c(πk+1

2) + wk+1 · Ω(πk+1
1 , πk+1

2)−∆ε

Thus the total cost grows at least linearly with k unless Ω(πk1 , π
k
2) = 0. This

will guarantee that the infeasibility termination criteria is achieved unless of course
a feasible solution is found before that. That is, the value of wk1,2 · Ω(πk1 , π

k
2) does

not asymptotically tend to a positive value as k tends to infinity. [Note: Although the
termination criteraia is on the violation cost rather than the total cost, we can note that
the terms c(πk1) + c(πk2) are bounded by 2 ∗maxpathcost. This will imply that only
the violation cost portion is able to increase linearly or faster with k.])

Next we will prove that if the infeasibility criteria is indeed achieved, then there
does not exist a feasible solution.

Termination due to the second condition (infeasibility condition) implies (at the
iteration k where the termination takes place),

c(πk1) + c(πk2) + wk · Ω(πk1 , π
k
2) > 2 ∗maxpathcost

and, by Theorem 1,

{πk1 , πk2} = argminπ1,π2c(π1) + c(π2) + wk · Ω(π1, π2)

By contradiction, let us assume that there exists a feasible solution {π′∗1 , π
′∗
2 } so

that,

{π
′∗
1 , π

′∗
2 } = argminπ1,π2c(π1) + c(π2)

s.t. Ω(π1, π2) = 0

If {πk1 , πk2} 6= {π
′∗
1 , π

′∗
2 }, then by Theorem 1 we should have,

c(πk1) + c(πk2) + wk · Ω(πk1 , π
k
2)

≤ c(π
′∗
1) + c(π

′∗
2) + wk · Ω(π

′∗
1 , π

′∗
2)

⇒ c(πk1) + c(πk2) + wk · Ω(πk1 , π
k
2)

≤ c(π
′∗
1) + c(π

′∗
2)

[∵ Ω(π
′∗
1 , π

′∗
2) = 0]

(10)

13

Thus, by using the termination criteria we have,

c(π∗1) + c(π∗2) > 2 ∗maxpathcost

Which is not possible in a discrete graph of finite size. Thus there can’t exist {π∗1 , π∗2}
as hypothesized.

Satisfying the condition of well-behaved function defined in Definition 1
We now analyze when the condition defined in Definition 1 is satisfied assuming

that Gi is continuous (i.e. Gi ⊂ R2). To do this, let us first introduce several additional
notations.

Definition 2 (Best Trajectory functions). We define the following functions for a given
w and call these ‘best trajectory functions’ (they are similar to the concept of best
strategy in Game theoretic sense).:

Π∗w1 (π2) = argminπ′1
{c(π′1) + w · Ω(π′1, π2)} (11)

Π∗w2 (π1) = argminπ′2
{c(π′2) + w · Ω(π′2, π1)} (12)

Definition 3 (Notations for derevatives). In general the trajectories, π, may be ele-
ments of an Hilbert space, π : R → R2 such that π(t) gives the coordinate of the
trajectory at time t. However for simplicity we can assume that the time is discretized,
and hence π is just a vector whose elements are the x and y coordinates of the trajec-
tory points at the discretized time instants. c being a scalar function of the trajectories,
it’s derivative w.r.t. the trajectory has the simple interpretation of the gradient vector.
The second derivative will in similar way be interpreted as a Hessian matrix, and the
higher derivatives are higher order tensors. Similar interpretations can be made for
the derivatives of Ω.

We use the following notations for simplicity:

c(k) ≡ ∂kc

∂πk

Ω(k,l) ≡ ∂(k+l)Ω

∂π1
k∂π2

l

where, π1 and π2 denote respectively the first and second arguments of Ω.
This implies π∗w1 = Π∗w1 (π∗w2) and π∗w2 = Π∗w2 (π∗w1) (This is analogous to a Nash

Equilibrium for this game).

Hypothesis 1 (Hypotheses on c and Ω). Consider the following hypotheses. We will
show that the conditions for well-behaved function in Definition 1 hold if these hypothe-
ses are true, and later we will discuss under what circumstances these hypotheses will
hold.

The hypotheses are as follows:

i. Ω(1,0)(πa, πb) = −Ω(0,1)(πa, πb) ∀πa, πb

ii. Ω(2,0)(πa, πb) = Ω(0,2)(πa, πb) � 0 ∀πa, πb

14

iii. Ω(1,1)(πa, πb) � 0 ∀πa, πb

iv. c(2)(π) = K(const.) � 0 ∀π

where the curly inequalities indicate positive or negative definiteness of the matrices.

We also note that,

Ψ(w, π2) = min
π′1

(c(π′1) + w · Ω(π′1, π2))

⇒ Ψ(w, π2) = c(Π∗w1 (π2)) + w · Ω(Π∗w1 (π2), π2), and

c(1)(Π∗w1 (π2)) + w · Ω(1,0)(Π∗w1 (π2), π2) = 0

Thus,

∂Ψ

∂w
(w, π2) =

“
c(1)(Π∗w1 (π2)) + w · Ω(1,0)(Π∗w1 (π2), π2)

” ∂Π∗w1
∂w

(π2) + Ω(Π∗w1 (π2), π2)

= Ω(Π∗w1 (π2), π2) (13)

Similarly,

∂Ψ

∂w
(w, π1) = Ω(π1,Π

∗w
2 (π1)) (14)

Lemma 1 (Equivalent forms of well-behaved condition). As ε → 0, from the ‘well-
behaved function condition’ we get for R1,

Ψ(w + ε, π∗w1)−Ψ(w, π∗w1) ≤ Ψ(w + ε, π1)−Ψ(w, π1)

⇐⇒ ∂Ψ

∂w
(w, π∗w1) ≤ ∂Ψ

∂w
(w, π1)

for any π1 6= π∗w1 .
Similarly, the condition for trajectories of R2:

∂Ψ

∂w
(w, π∗w2) ≤ ∂Ψ

∂w
(w, π2)

Using 13 and 14 this implies,

Ω(π∗w1 , π∗w2) ≤ Ω(π1,Π
∗w
2 (π1)) ∀π1 (15)

Ω(π∗w1 , π∗w2) ≤ Ω(Π∗w1 (π2), π2) ∀π2 (16)

Or equivalently, using the condition of vanishing derevative at an extremum, the above
two becomes,

Ω(1,0)(π∗w1 , π∗w2) + T Ω(0,1)(π∗w1 , π∗w2) = 0 (17)

Ω(0,1)(π∗w1 , π∗w2) + T−1 Ω(1,0)(π∗w1 , π∗w2) = 0 (18)

where, T =
[
∂Π∗w2
∂π1

∣∣∣
π∗w1 ,π∗w2

]
and T−1 =

[
∂Π∗w1
∂π2

∣∣∣
π∗w1 ,π∗w2

]
can be interpreted as

jacobians.

15

Finally on adopting the hypotheses 1.i., the above two equations reduce to the fol-
lowing final equivalent form of the ‘well-behaved’ condition,

[I − T] Ω(1,0)(π∗w1 , π∗w2) = 0

⇒ T = I

where, I is the identity element from the space where T resides. Thus the problem of
justifying the ‘well-behaved’ condition now reduces to proving that T = I .

By definition, from 11 we have,

c(1)(Π∗w1 (π2)) + w · Ω(1,0)(Π∗w1 (π2), π2) = 0 (19)

c(1)(Π∗w2 (π1)) + w · Ω(0,1)(π1,Π
∗w
2 (π1)) = 0 (20)

Now, taking derevative of 19 w.r.t. π2 and evaluating it at π∗w2 we get,

T−1c(2)(π∗w1) + T−1w · Ω(2,0)(π∗w1 , π∗w2) + w · Ω(1,1)(π∗w1 , π∗w2) = 0 (21)

Ans similarly,

Tc(2)(π∗w2) + Tw · Ω(0,2)(π∗w1 , π∗w2) + w · Ω(1,1)(π∗w1 , π∗w2) = 0 (22)

Substracting 21 from 22,

Tc(2)(π∗w2) + Tw · Ω(0,2)(π∗w1 , π∗w2)

−T−1c(2)(π∗w1)− T−1w · Ω(2,0)(π∗w1 , π∗w2) = 0
(23)

But from 23 and using hypotheses 1.ii. and 1.iv. we get“
K + Ω(0,2)(π∗w1 , π∗w2)

”
(T − T−1) = 0

⇒ T = ±I

The solution T = −I is eliminated because in that the left hand side of 21 or 22
becomes negative definite violating the equalities. Hence we have T = I , which proves
the equivalent form of the convexity condition in Lemma 1.

Now we will investigate the proposed hypotheses and check whether it holds true
for the functional forms of c and Ω that were proposed.

First we check the function Ω(π1, π2) = ‖π1 − π2‖2. Clearly, Ω(1,0)(π1, π2) =
2(π1 − π2) and Ω(0,1)(π1, π2) = 2(π2 − π1), hence supporting our hypothesis (i).
Ω(2,0)(π1, π2) = Ω(0,2)(π1, π2) = 2I supports the hypothesis (ii). And clearly
Ω(1,1)(π1, π2) = −2I supports the third hypothesis. It can be proved in similar ways
that the functional form that we have used for Ω (equation 3) also satisfies the hypothe-
ses (i) to (iii).
To justify the fourth hypothesis we assume that c being the sum of squares of the Eu-
clidean distances between points in the trajectory is a quadratic in π and c(π) ≥ 0 ∀π.
Thus the Hessian matrix c(2)(π) is a constant matrix, and πT c(2)(π) π = c(π) ≥ 0 ∀π.
This hence justifies the condition (iv).

16

Theoretical Properties for N agents
Similar to before, πi will indicate a trajectory of robot i passing through its initial and
goal configurations. In order to generalize the proof for N agents we generalize the
definition for Ψ as follows:

Ψ(W,π−r) ≡ Ψ(W,π1, π2, · · · , πr−1, πr+1, · · · , πN)

= min
π′r

0@c(π′r) +
X
i,i6=r

wirΩ(πi, π
′
r) +

X
j,j 6=r

wrjΩ(π′r, πj)

1A
Here, we write π−r to denote the set {π1, π2, · · · , πr−1, πr+1, · · · , πN} for conve-

nience. Also, note that W is a symmetric matrix with non-negative elements and a
zero diagonal. The summations are done from 1 to N . For the case of two agents, con-
sistent with this definition, we had, w = 2w12 = 2w21 and Ω = Ω12. In the following
sections we will use the substitution εki,j = εV ki,j , where, consistent with our previous
definitions, V is a symmetric matrix with non-negative elements and zero diagonal,
and

V ki,j


≥ 0, ∀i = r or j = r, i 6= j
= 0, otherwise

Where r is the robot that plans trajectory in the kth iteration. By using this substitution
we decouple the direction of increment of the penalty weights from the step-size of the
increments.

Definition 4 (generalized well-behaved cost and distance functions). The function pair
{c, d} is said to be well-behaved in Graph Gi iff there exists small enough ε0 > 0 such
that for any ε0 ≥ ε > 0 it holds that

Ψ(W + εV, π∗W−r)−Ψ(W,π∗W−r) ≤ Ψ(W + εV, π∗W+εV
−r)−Ψ(W,π∗W+εV

−r)

∀r, and for any symmetric matrices W and V with non-negative elements and zero
diagonals. As before, for a given W we define

{π∗W1 , π∗W2 , · · · , π∗WN } = argminπ′1,π′2,··· ,π′N

n
c(π′1) + c(π′2) + · · ·+ c(π′N)

+
X
i,j
i6=j

wijΩ(π′i, π
′
j)
o

Theorem 3. Given the condition defined in 4 holds and a sufficiently small ε is used in
the algorithm, every time line 5 is executed the following holds:

{πiter1 , . . . , πiterN } = arg minπ1...πN

P
i=1...N c(πi)

+
P
j=1...N,j 6=iw

iter
i,j · Ω(πi, πj)

Proof. The theorem clearly holds when line 5 is executed for the first time sincew0
i,j =

0 for all i, j.

17

As before, we prove the theorem by induction. Assume it holds for 0th through
iter = 0 . . . k executions of line 5. We will now prove that it continues to hold for the
iter = k + 1th execution of line 5. By inductive assumption we have:

{πk1 , πk2 , · · · , πkN} = arg minπ1,π2,··· ,πN

0BB@X
i

c(πi) +
X
i,j
i 6=j

wki,jΩ(πi, πj)

1CCA

Without loss of generality, let’s assume that at kth iteration, the algorithm was
computing the path for the rth robot, πk+1

r , and therefore πk+1
j = πkj ,∀j 6= r.

We prove by contradiction. Let us assume that

{πk+1
1 , πk+1

2 , · · · , πk+1
N } 6= arg minπ1,π2,··· ,πN

0BB@X
i

c(πi) +
X
i,j
i 6=j

wk+1
i,j · Ω(πi, πj)

1CCA
This implies that there exist π′1, π

′
2, · · · , π′N such that

{π′1, π′2, · · · , π′N} = arg minπ1,π2,··· ,πN

„P
i c(πi) +

P
i,j
i 6=j

wk+1
i,j · Ω(πi, πj)

«
and X

i

c(πk+1
i) +

X
i,j
i6=j

wk+1
i,j · Ω(πk+1

i , πk+1
j)

>
X
i

c(π′i) +
X
i,j
i 6=j

wk+1
i,j · Ω(π′i, π

′
j) (24)

Since the algorithm has just computed πk+1
r it holds that:

πk+1
r = arg minπr

c(πr) +
∑
i
i 6=r

wk+1
i,r · Ω(πk+1

i , πr) +
∑
j
j 6=r

wk+1
r,j · Ω(πr, πk+1

j)


⇒ Ψ(W k+1, πk+1

−r) =

c(πk+1
r) +

∑
i
i 6=r

wk+1
i,r · Ω(πk+1

i , πk+1
r) +

∑
j
j 6=r

wk+1
r,j · Ω(πk+1

r , πk+1
j) (25)

Also, it holds that

18

π′r = arg minπr

c(πr) +
∑
i
i 6=r

wk+1
i,r · Ω(π′i, πr) +

∑
j
j 6=r

wk+1
r,j · Ω(πr, π′j)


⇒ Ψ(W k+1, π′−r) =

c(π′r) +
∑
i
i 6=r

wk+1
i,r · Ω(π′i, π

′
r) +

∑
j
j 6=r

wk+1
r,j · Ω(π′r, π

′
j) (26)

Thus from 24, 25 and 26

∑
i
i 6=r

c(πk+1
i) +

∑
i,j 6=r
i 6=j

wk+1
i,j · Ω(πk+1

i , πk+1
j) + Ψ(W k+1, πk+1

−r)

>
∑
i
i6=r

c(π′i) +
∑
i,j 6=r
i6=j

wk+1
i,j · Ω(π′i, π

′
j) + Ψ(W k+1, π′−r)

⇒
∑
i
i 6=r

(
c(πk+1

i)− c(π′i)
)

+
∑
i,j 6=r
i 6=j

wk+1
i,j ·

(
Ω(πk+1

i , πk+1
j)− Ω(π′i, π

′
j)
)

> Ψ(W k+1, π′−r)−Ψ(W k+1, πk−r) (27)

On the other hand, {πk1 , πk2 , · · · , πkN} is a global minimum for W k according to
our inductive assumption. Using this fact and the hypotheses that πk−r = πk+1

−r and
wki,j = wk+1

i,j ∀i 6= r and j 6= r, similarly it holds that

∑
i
i6=r

c(πki) +
∑
i,j 6=r
i 6=j

wki,j · Ω(πki , π
k
j) + Ψ(W k, πk−r)

<
∑
i
i6=r

c(π′i) +
∑
i,j 6=r
i6=j

wki,j · Ω(π′i, π
′
j) + Ψ(W k+1, π′−r)

⇒
∑
i
i 6=r

(
c(πk+1

i)− c(π′i)
)

+
∑
i,j 6=r
i 6=j

wk+1
i,j ·

(
Ω(πk+1

i , πk+1
j)− Ω(π′i, π

′
j)
)

< Ψ(W k, π′−r)−Ψ(W k, πk−r) (28)

Thus, from inequalities 27 and 28, and using πk2 = πk+1
2 ,

Ψ(W k, π′−r)−Ψ(W k, πk−r) > Ψ(W k+1, π′−r)−Ψ(W k+1, πk−r)

⇒ Ψ(W k + εV, π′−r)−Ψ(W k, π′−r) < Ψ(W k + εV, πk−r)−Ψ(W k, πk−r) (29)

19

But the paths {πk1 , πk2 , · · · , πkN} are the global minimum for W k by the inductive
assumption. From Definition 4 of well-behaved-ness it therefore follows that:

Ψ(W k + εV, πk−r)−Ψ(W k, πk−r) < Ψ(W k + εV, π′−r)−Ψ(W k, π′−r) (30)

Thus from the last two inequalities we end up with a contradiction. Hence our
assumption of the existence of {π′1, π′2, · · · , π′N} was incorrect.

Since theorem 3 basically says that after every iteration the solution paths are cost-
minimal w.r.t. the current weight W , the optimality of the algorithm follows from the
fact that for a sufficiently large weight W , the weighted penalty function will dominate
completely the cost function c(·), and therefore the paths will converge to the cost-
minimal path consensus if there exists one. It happens in finite amount of time, since
weights are increased by a strictly positive (bounded from below) increment ε and
assuming there is a bound on the cost of a shortest path (denoted by maxpathcost).
The following theorem states this formally.

Theorem 4. Given the condition defined in 4 holds and a sufficiently small ε is used in
the algorithm, the algorithm terminates, and when it terminates (say at iteration iter)
the following holds:

• {πiter1 , . . . , πiterN } = {π∗1 , . . . , π∗N} if there exists any set of paths that minimizes
the objective function 1 and satisfies the constraints 2;

• {πiter1 , . . . , πiterN } = arg minπ1...πN

∑
i=1...N c(πi) +

∑
j=1...N,j 6=i w

iter
i,j ·

Ω(πi, πj) otherwise;

Proof. From result of Theorem 3,X
i

c(πki) +
X
i,j
i 6=j

wki,jΩ(πki , π
k
j) ≤

X
i

c(πk+1
i) +

X
i,j
i 6=j

wki,jΩ(πk+1
i , πk+1

j)

⇒
X
i,j
i6=j

wki,j

“
Ω(πki , π

k
j)− Ω(πk+1

i , πk+1
j)

”
≤

X
i

“
c(πk+1

i)− c(πki)
”

(31)

Similarly,X
i

c(πki) +
X
i,j
i 6=j

wk+1
i,j Ω(πki , π

k
j) ≥

X
i

c(πk+1
i) +

X
i,j
i 6=j

wk+1
i,j Ω(πk+1

i , πk+1
j)

⇒
X
i

“
c(πk+1

i)− c(πki)
”
≤

X
i,j
i6=j

wk+1
i,j

“
Ω(πki , π

k
j)− Ω(πk+1

i , πk+1
j)

”
(32)

20

Combining the above two,X
i,j
i 6=j

(wk+1
i,j − w

k
i,j)
“

Ω(πki , π
k
j)− Ω(πk+1

i , πk+1
j)

”
≥ 0

⇒ ε
X
i,j
i6=j

vki,j

“
Ω(πki , π

k
j)− Ω(πk+1

i , πk+1
j)

”
≥ 0

⇒
X
i,j
i 6=j

vki,jΩ(πki , π
k
j) ≥

X
i,j
i 6=j

vki,jΩ(πk+1
i , πk+1

j)

⇒ V k · Ωk ≥ V k · Ωk+1 (33)

where Ωki,j := Ω(πki , π
k
j)

We now note that in 33, Ωk and Ωk+1 are non-negative matrices (matrices with non-
negative elements). We can choose V k such that it’s elements are non-negative (i.e. a
non-negative matrix). This will immediately imply that the sequence {|Ω1|, |Ω2|, . . . }
is bounded, and the can also be decreasing under proper choice of V k.

The algorithm terminates to a feasible solution only when the violation cost be-
comes zero (step 5 of the algorithm). Then the solution to the problem becomes, by
Theorem 3,

{πiter1 , · · · , πiterN } = {π∗1 , · · · , π∗N}

Otherwise, termination to an infeasible solution will trivially imply

{πiter1 , · · · , πiterN } = arg minπ1,··· ,πN

X
i

c(πi) +
X
i,j
i 6=j

witeri,j · Ω(πi, πj)

Now we justify the proposed termination criteria when Ω(πk1 , π
k
2) 6= 0 at termina-

tion. From result of Theorem 3, and using the fact that wki,j < wk+1
i,j = wki,j + εki,jX

i

c(πki) +
X
i,j
i 6=j

wki,jΩ(πki , π
k
j) ≤

X
i

c(πk+1
i) +

X
i,j
i6=j

wki,jΩ(πk+1
i , πk+1

j)

<
X
i

c(πk+1
i) +

X
i,j
i6=j

wk+1
i,j Ω(πk+1

i , πk+1
j) (34)

Since we have a discretized space, we can have measurably finite ∆ij such that

∆ij = minπi,πj{Ω(πi, πj) s.t. Ω(πi, πj) 6= 0}

Then, X
i

c(πki) +
X
i,j
i6=j

wki,jΩ(πki , π
k
j)

≤
X
i

c(πk+1
i) +

X
i,j
i6=j

wk+1
i,j Ω(πk+1

i , πk+1
j)−min

i,j
i6=j

∆ijε
k
i,j

21

Thus the total cost grows at least linearly with k unless Ω(πki , π
k
j) = 0 ∀i, j. This

will guarantee that the infeasibility termination criteria is achieved unless of course a
feasible solution is found before that. That is, the value of

∑
i,j
i6=j

wki,jΩ(πki , π
k
j) does

not asymptotically tend to a positive value as k tends to infinity. [Note: Athough the
termination criteria is on the violation cost rather than the total cost, we can note that
the terms

∑
i c(π

k
i) are bounded by N ∗maxpathcost. This will imply that only the

violation cost portion is able to increase linearly or faster with k after that bound is
reached.])

Next we will prove that if the infeasibility criteria is indeed achieved, then there
does not exist a feasible solution.

Termination due to the second condition (infeasibility condition) implies (at the
iteration k where the termination takes place),∑

i

c(πki) +
∑
i,j
i 6=j

wki,jΩ(πki , π
k
j) > N ∗maxpathcost

and, by Theorem 3,

{πk1 , · · · , πkN} = arg minπ1,··· ,πN

∑
i

c(πi) +
∑
i,j
i6=j

wki,jΩ(πi, πj)


By contradiction, let us assume that there exists a feasible solution {π′∗1 , · · · , π

′∗
N}

so that,

{π
′∗
1 , · · · , π

′∗
N } = argminπ1,··· ,πN

X
i

c(πi)

s.t. Ω(πi, πj) = 0,∀i, j

If {πki , · · · , πkj } 6= {π
′∗
i , · · · , π

′∗
j }, then by Theorem 3 we should have,P

i c(π
k
i) +

P
i,j
i6=j

wki,jΩ(πki , π
k
j) ≤

P
i c(π

′∗
i) +

P
i,j
i6=j

wki,jΩ(π
′∗
i , π

′∗
j)

⇒
P
i c(π

k
i) +

P
i,j
i 6=j

wki,jΩ(πki , π
k
j) ≤

P
i c(π

′∗
i)

[∵ Ω(π
′∗
i , π

′∗
j) = 0]

(35)

Thus, by using the termination criteria we have,X
i

c(π
′∗
i) > N ∗maxpathcost

Which is not possible in a discrete graph of finite size. Thus there can’t exist
{π∗1 , · · · , π∗N} as hypothesized.

22

1 procedure DPC()

2 set iter = 0;

3 setBLIST iter = ∅;

4 while (
P
i=1...N

P
j=i+1...N Ω(πiteri , πiterj) 6= 0)

5 runBLISTnew = BasicDPCmodified(BLIST iter);

6 BLIST iter+1 = BLIST iter
S
BLISTnew ;

7 iter = iter + 1;

Figure 3: DPC with superiterations

DPC Algorithm with Superiterations
The DPC algorithm without superiterations typically converges to an optimal solution
in an empty environment. The space filled with obstacles, however, presents an en-
vironment in which small perturbations to the penalty weights can cause large jumps
in the path from one homotopy classes of paths to another. This not only tend to re-
sult in suboptimal solutions (if a feasible solution is found), but may also need us to
increase the penalty weights by large values before the transition from an infeasible
homotopy class can take place to a feasible one. This presents a problem to the al-
gorithm presented in the previous section since it relies on the ability to slowly vary
the trajectories to satisfy the distance constraints by gradually increasing pathcosts. As
shown in figure 4 example, obstacles can be positioned in such a configuration that the
trajectories get trapped in a infeasible homotopy class and cannot get modified by the
DPC algorithm without superiterations. To resolve this and to guarantee completeness,
we gradually build a list, calledBLIST (short for blacklist) of pairwise configurations
in the joint state-space that are invalid.

Each entry in the blacklist is of the following format:

BLIST [l] = {{i, j}, t, {si, sj}}

where i and j are indices of the robots that violate a constraint in between them at
time t (namely, the constraint specified by φi,j(t)), and si ∈ V(Gi) and sj ∈ V(Gj)
are corresponding states of these robots that violate this constraint.

The pseudocode of the algorithm is shown in figure 3. It first initializes the list
BLIST to an empty set and then repeatedly calls a modified version of the basic DPC
algorithm (BasicDPCmodified) passing in the current BLIST 5.

The modified version of the BasicDPC operates exactly as before (figure 1) ex-
cept with three modifications:

i. Within each graph search, avoids the configurations within a radius of α of the
configurations in the BLIST iter that are known to be invalid. When search
within an iteration of BasicDPCmodified computes a path πiterr for the robot
Rr, if {{r, j}, t0, {p,q}} is an entry in the blacklist, and robot r is planning its

23

trajectory at (iter+ 1) iteration, it will consider the state (i.e. a cell in the space-
time planning environment) {s, t0} to be an obstacle (i.e. an invalid cell for the

graph Hr) if
√
|s− p|2 +

∣∣πiterj (t0)− q
∣∣2 < α. Thus, basically it avoids a 4

dimensional ball of radius α around the blacklisted point in the joint statespace of
robots r and j(6= r). If we choose α small enough such that it is small compared
to the thickness or radius of all obstacles in the environment, this method will
gradually eliminate infeasble homotopic classes and will converge to a feasible
solution.

ii. There is an additional termination criteria that will detect consistent lack of
change in the trajectories violating the constraints in spite of increasing the
weights significantly. This will indicate that the present homotopic class of tra-
jectories is infeasible and hence need to terminate that particular superiteration.

iii. After every graph search finishes, the BasicDPCmodified function processes
the path that was just computed and finds all the constraints it violates. All
of these violations are being added to BLISTnew, which is returned from
the BasicDPCmodified function. Suppose in one of the iterations inside
BasicDPCmodified robot Rr was planning. Then, in that iteration if there has
been a violation of a constraint such that ω(πr(t0), πj(t0), φr,j(t0)) > 0 for
some j, t0, the algorithm adds {{r, j}, t0, {πr(t0), πj(t0)}} to BLISTnew.

Example 2. Figure 4 demonstrates the operation of the DPC Algorithm with superiter-
ations. The environment is also of size 1 unit by 1 unit discretized into 100 by 100 cells.
All the robots start at time t = 0 units and need to reach their goals at no later than
t = 8 time units. Time is again discretized at the resolution of 0.1 units. The constraint
in between the robot 1 (the left-most robot) and the robot 2 (the right-most robot) is that
the distance in between them needs to be less than 0.2 units at time t = 4.0, and can be
anything else at other times. Also, the constraint in between the robot 1 (the left-most
robot) and the robot 3 (robot in the middle) is that the distance in between them needs
to be less than 0.02 units at time t = 4.0, and can be anything else at other times. The
first superiterations, which corresponds to the operation of the BasicDPCmodified,
fails to find a feasible solution. The constraints that are violated are between R1 and
R2 (left-most and right-most robots). The solution found by robots 1 and 3 are the ones
lying to the left of the circular obstacle, whereas the feasible solution requires their
trajectories to be on the right side of the circular obstacle. Because these two solutions
belong to two different homotopy classes of trajectories, it is impossible to deform one
into the other gradually. DPC with superiterations gradually builds the blacklist rul-
ing out the invalid configurations in the joint state-space of the robots violating the
constraints (R1 and R2). Thus, figure 4(b) shows that the blacklist contains one single
entry b1 - a 4-dimensional ball indicating a joint state for robots 3 and 2 at the time
of the constraint. This list is being grown after every superiterations. At the end of the
8th superiteration, the trajectories of the robots 1 and 3 switch to the right of the large
circular object and the globally feasible solution is found.

24

(a)

b1

(b)

b1

b2

(c)

b1

b2

b3

(d)

b1

b2

b3

b4

(e)

b1

b2

b3

b4

b5

(f)

b1

b2

b3

b4

b5

b6

(g)

b1

b2

b3

b4

b5

b6

b7

(h)

Figure 4: Planning in environment of example 2 using DPC with superiterations. Note
that the pairs of black circles, bi in the figure are 2-D projections of the 4-D blacklisted
balls in the joint state-space H1 ×H2

x x

2x

(a) (b)

Figure 5: Two possible solutions for two robots in an 8-connected grid

Results

Simulation in a Discretized Environment
Discretization

This three-dimensional state-space of each robot, Hi, was discretized into uniform
cells, each cell representing nodes of the search graph. The connectivity of the graph
was such that a cell in the x, y, t space connected to its 8 neighboring cells and itself in
x, y but with the time index incremented by one. While an 8-connected grid is quick
and efficient to perform search in, it confines the motion of the robot to 8 directions
(45◦ orientations). A consequence of this is that some seemingly sub-optimal solutions
are actually optimal.

For example, consider two robots separated by a distance of x units. They need
to reach goals that are 2x units of distance away from them. Also, suppose that a
constraint requires them to meet in the middle of their paths. In an 8-connected grid
the two possible solutions that the robots can take are shown in figure 5.

25

Figure 6: The three different types of heuristics for 8-connected grids: The green is
the start state and red is the goal state. Dashed arrow represents hE , solid black arrow
represents h8, light blue path represents the one from the Dijkstra search. Obstacles
are in gray.

It is easy to see that both sets of paths, (a) and (b), are valid solutions to the problem.
While seemingly very different however, in both of these solutions, the summations of
the costs of the paths are the same and are equal to 2(1 +

√
2)x. This implies that,

since our objective function is the summation of the costs of the paths, both of these
outcomes are equally feasible and optimal in an 8-connected graph.

Heuristic

For each graph search (corresponding to the discretized 3-dimensional space), we used
A* algorithm [24]. The choice of the heuristic function, h, is extremely crucial in any
A* search. A heuristic function is a positive scalar function of the states in the search
graph. For an A* to return an optimal solution, an admissible heuristic function needs
to be such that it never overestimates the actual minimum cost for reaching the goal.
However for making the search more efficient so that the least number of states are
expanded, the heuristic must as close as possible to the actual minimum cost to the
goal. One obvious and commonly used heuristic for planning in Gi is the Euclidean
distance to the goal, i.e. hE(s) = ‖s−sgoal‖. But for an 8-connected grid, whichGi is,
one can use a more efficient heuristic given by h8(s) =

√
2 min(∆x,∆y)+|∆x−∆y|,

where ∆x = |sx − sgoal,x| and ∆y = |sy − sgoal,y|.
However in an environment with plenty of obstacles even h8 turns out to be

highly inefficient. In such a case, before executing the actual planning, we perform
a Dijkstra’s search in Gi starting from the goal coordinate sgoal till we expand all
the accessible states in Gi. Let the cost associated with each expanded state (starting
from sgoal) as obtained from Dijkstra search be Dsgoal(s). Although the process of
Dijkstra search is itself more expensive than a simple A* search in Gi, the advantage
of this pre-computation becomes clear when we attempt to plan in higher dimensional
graphs Hi. Once D is precomputed for all the states in Gi, while planning in Hi we
can simply use the more efficient heuristic function, hH({s, t}) = Dsgoal(s). Figure 6
illustrates the different heuristic functions.

26

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(a) Unconstrained trajectories

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

1 2 3 4 5 6

(b) Converged feasible solution

Figure 7: Planning in a simple environment

In the following subsections, we will present the performances of our algorithm in
different environments. 2

A simple environment
This environment shown in Figure 7 is similar to Environment of Example 1 consist-
ing of 6 robots in an environment with 7 obstacles. The environment discretization
and the constraints are exactly same as that described in Example 1. Some of the
obstacles in the environment were intentionally placed so as to disrupt the relatively
easy rendezvous of the robots as they were done in the environment without obsta-
cles. Figure 7(a) shows the unconstrained planning done by the individual robots in
the environment. The iterations converged to a feasible solution within the very first
superiteration, despite the presence of obstacles. We set the penalty weight increment
to ε = 0.1. The number of iterations required for the convergence was 25, and the
time taken for the overall planning was less than 20 seconds. Figure 7 shows the final
converged solution. The rendezvous points are marked by the black circles.

Computation time
We ran multiple simulations in a downsampled version of the environment (with ob-
stacles) of Figure 7 with 500,000 states (50× 50 cells along the spacial directions and
200 cells along the time) and 6 robots. In each run we randomized the constraints
and noted the time required to do the complete planning. The minimum planning
time was 117 seconds and the maximum planning time was 142 seconds, with an
average time of 129.6 seconds. We note that the joint state-space of the robots has
200× (50×50)6 = 4.883×1022 states. Finding a plan that satisfies all the constraints
in such a huge state-space is itself an extremely challenging task. Our algorithm not
only does the planning substantially fast, but also has the potential of guaranteeing con-
vergence, completeness and optimality (we have presented the proofs for the case of 2

2All the corresponding output files and the matlab scripts for viewing the output files can be found at
http://www.seas.upenn.edu/ subhrabh/nonWebsite/IterPlanning/index.html.

27

http://www.seas.upenn.edu/~subhrabh/nonWebsite/IterPlanning/index.html

1

2

3

(a) Unconstrained plans

1

2

3

(b) Converged feasible solution

Figure 8: Planning in environment with three interconnected rooms

robots in an empty environment. We are working towards generalizing the proofs for
more than 2 robots in environments with obstacles.).

Three interconnected rooms
This environment shown in Figure 8 consists of three interconnected rooms as shown.
The size of the environment is 11.125 by 11.75 units and discretization size is 0.125
units. The size of the environment in time is 5 units with discretization of 0.025 units.
That results in the graph Hi, i = 1, 2, 3 to have almost 2 million states. The robots
start at t = 0 from the left side of the environment and need to reach their goals on
the right end latest by t = 4.0. Figure 8(a) shows the unconstrained optimal plan.
A constraint is defined between R1 (black) and R3 (blue) such that they need to be
within a distance of 0.3 units at t = 1.0. And the constraint between R1 (black)
and R2 (green) is such that they need to be within a distance of 0.3 units at t = 3.0.
There is no other distance constraint. With a penalty weight increment of ε = 0.1 the
algorithm converges to the solution (Figure 8(b)) in about 60 iterations within the very
first superiteration.

Extended randevouz
This environment shown in Figure 9 is very similar to the previous example. The
size and discretization are exactly the same as before. In this example R1 (black) and
R2 (green) need to traverse the environment from left to right, while R3 (blue) needs
to traverse it from top to bottom. Figure 9(a) shows the unconstrained optimal plan.
Constraints between R2 and R3 is that they need to be within 0.3 units distance from
t = 0.8 to t = 1.7 (36 time steps), and the constraints between R1 and R3 is that
they need to be within 0.3 units distance from t = 2.1 to t = 3.0 (36 time steps).
There is no other distance constraint. With a penalty weight increment of ε = 0.1 the

28

1

2

3

(a) Unconstrained plans

1

2

3

(b) Converged feasible solution

Figure 9: Extended randevouz in environment with three interconnected rooms

algorithm converges to the solution (Figure 8(b)) in the second superiteration (about
100 iterations/searches in total).

Extended randevouz in a real environment
This environment shown in Figure 10 is the map of a part of the fourth floor of the
Levine hall in University of Pennsylvania that includes the L457 room. The map is
35 meters by 35 meters, discretized into 100x100 cells (each cell 35cmx35cm, almost
the dimension of the Scarab robots, described later). The unconstrained objectives,
resulting in the solution in Figure 10, are as follows:

i. Robot 1 is to start at t=0.0 inside the big room at the left side of it. It needs to
reach the smaller room at the top and the one on the left, by t=170.0. Thus robot
1 traverses the map from bottom to the top.

ii. Robot 2 needs to start at t=0.0 inside the big room at the right side of it. It needs
to reach the smaller room at the top and the one on the right, by t=170.0. Thus
robot 2 traverses the map from bottom to the top.

iiii. Robot 3 needs to start at t=45.0 inside the small lower cubicle on the left side of
the map. It needs to reach the smaller storage space at the top right of the map,
by t=120.0. Thus robot 3 moves diagonally and traverses the map from left to
right.

Figures 11 shows the converged feasible solution that satisfy the following constraints:

A. Robot 2 first needs to meet robot 3 at t=60.0 and needs to stay within 50cm of it
for a period of 20 time steps (till t=80.0).

B. Robot 1 then needs to meet robot 3 at t=90.0 and needs to stay within 50cm of it
for a period of 20 time steps (till t=110.0).

29

(a) Unconstrained plans

Figure 10: Map of fourth floor of Levine hall including room L457

Looking at the converged solution we observe that in order to satisfy constraint A, robot
2 loops it’s trajectory around the central and lower cubicles to meet up with robot 3 on
the left side of the map from t=60.0 to t=80.0. Then it follows the shortest past to its
goal. Again, in order to satisfy constraint B, robot 1 continues moving along with robot
3 for a while and hence ends up moving a little excess to the north. Once the meeting
from t=90.0 to t=110.0 is done, the robot 1 takes the shortest path to its goal from there,
because of which it loops its trajectory around the central and upper cubicles.

Using a visualization tool we generated an animation movie demonstrating exe-
cution of the plan. Collision between the robots and with the walls were avoided
using a local greedy collision check alogorithms. The movie can be found at
http://www.seas.upenn.edu/ subhrabh/nonWebsite/IterPlanning/index.html.

Simulation in Gazebo
Gazebo is a open-source multi-robot simulator for outdoor environments. It is capable
of simulating a population of robots, sensors and objects in real time and does so in
a three-dimensional world. It generates both realistic sensor feedback and physically
plausible interactions between objects. It includes an accurate simulation of rigid-body
physics and makes use of the Open Dynamics Engine to do so. [1]

We tested our algorithm on the environment in Example 2 in Gazebo simulated en-

30

http://www.seas.upenn.edu/~subhrabh/nonWebsite/IterPlanning/index.html

(a) t=1 (b) t=50

(c) t=67 (d) t=95

(e) t=115 (f) t=171

Figure 11: Demonstration of extended randevouz showing screenshots at different time
instants

31

(a) Screenshot 1 (b) Screenshot 2 (c) Screenshot 4

Figure 12: Screenshots from Gazebo simulation

vironment and on real robots. In order to account for the non-zero radii of the robots,
we performed a greedy collision avoidance during run-time. For controlling the non-
holonomic robots, a feedback linearization technique was adopted [13]. Some screen-
shots from the Gazebo simulation are shown in Figure 12. They show the execution of
the plan generated for 3 robots by the DPC with superiterations algorithm as shown in
the figure 4(h). The full movie of the simulation can be found at [10].

Experiment with real Mobile Robots
Experiment was performed with mobile robots as well. The mobile robot platforms
named Scarab were used along with an overhead LED tracking system to track the
positions of the robots. The platforms run using robot device interfaces provided by
Player [2]. Figure 13(a) shows the Scarab mobile robot platform. Figure 13(b) shows
a screenshot of the experiment that was run in an indoor setup of Figure 4. The full
movie of the experiment can be found at [10].

Conclusions
While planning with discrete graph searches has proven to be successful for single-
agent tasks, planning for teams of coupled robots is hard due to the high dimensionality
of the joint state-spaces. The algorithm we presented in this paper avoids planning in
these high-dimensional spaces by breaking the planning problem into a series of low-
dimensional planning problems, each being a problem of planning a trajectory in the
workspace of a single robot augmented with an additional dimension, namely time.
Thus, each search is fast and the overall planning requires little memory. In addition,
the algorithm lends itself well to distributed implementation, in which each iteration
of the planning can be done on each of the robots separately, and the only required
inter-communications are the generated paths and the contents of the blacklist. We
have shown analytically that the algorithm guarantees convergence, completeness and
optimality in an empty environment under certain conditions.

32

(a) Scarab - the mobile robot plat-
form

Robot 1

Robot 3

Robot 2

The Rectangular
obstacle

The Cylindrical
obstacle

(b) Setting up the environment in
an indoor environment

(a) (b)

(c) (d)

(c) Screenshots from the experiment

Figure 13: Real robot experiments on the environment of Figure 4

33

References
[1] Gazebo.

[2] The player project.

[3] P. Abichandani, H. Y. Benson, and M. Kam. Multi-vehicle path coordination
under communication constraints. In American Control Conference, pages 650–
656, June 2008.

[4] Ali Ahmadzadeh, Gilad Buchman, Peng Cheng, Ali Jadbabaie, Jim Keller, Vijay
Kumar, and George Pappas. Cooperative control of uavs for search and coverage.
Proceedings of the AUVSI Conference on Unmanned Systems, 2006.

[5] Ali Ahmadzadeh, James Keller, George J. Pappas, Ali Jadbabaie, and Vijay Ku-
mar. Critical cooperative surveillance and coverage with unmanned aerial ve-
hicles. In Vijay Kumar Oussamma Khatib and Daniela Rus, editors, Interna-
tional Symposium on Experimental Robotics, STAR, Rio de Janeiro, July 2006.
Springer-Verlag.

[6] Daniel S. Bernstein, Eric A. Hansen, and Shlomo Zilberstein. Bounded policy
iteration for decentralized pomdps. Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pages 1287–1292, 2005.

[7] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci-
entific, 2007.

[8] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computa-
tion:Numerical Methods. Prentice Hall, 1989.

[9] D.P. Bertsekas and J.N. Tsitsiklis. Some aspects of parallel and distributed itera-
tive algorithms - a survey. Automatica, 27(1):3–21, 1991.

[10] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Files related to this
paper, 2009.

[11] Thomas Justin Chan and Candace Arai Yano. A multiplier adjustment approach
for the set partitioning problem. Operations Research, 40(S1):40–47, 1992.

[12] David C Conner, Alfred Rizzi, and Howie Choset. Composition of local potential
functions for global robot control and navigation. In Proc. Int’l Conf. on Intelli-
gent Robots and Systems (IROS), pages 3546–3551, 2003.

[13] B. d’Andrea Novel, G. Campion, and G. Bastin. Control of nonholonomic
wheeled mobile robots by state feedback linearization. The International Journal
of Robotics Research, 14(6), Sept. 1995.

[14] J. Desai, J. Ostrowski, and V. Kumar. Modeling and control of formations of
nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,
17(6):905–908, December 2001.

34

[15] Marie E. desJardins, Edmund H. Durfee, Jr. Charles L. Ortiz, and Michael J.
Wolverton. A survey of research in distributed, continual planning. AI Magazine,
2000.

[16] M Bernardine Dias, Robert Michael Zlot, Nidhi Kalra, and Anthony (Tony)
Stentz. Market-based multirobot coordination: a survey and analysis. Proc. of
the IEEE, 94(7):1257 – 1270, 2006.

[17] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[18] Edmund H. Durfee. Distributed problem solving and planning. Lecture Notes in
Computer Science, 2086(2):118–149, 2001.

[19] E. Ephrati and J. Rosenschein. The clarke tax as a consensus mechanism among
automated agents. In Proceedings of AAAI-91, pages 173–178, 1991.

[20] Eithan Ephrati, Martha E. Pollack, and Jeffrey S. Rosenschein. A tractable heuris-
tic that maximizes global utility through local plan combination. In Proceedings
of the 1st International Conference on MultiAgent Systems (ICMAS-95), 1991.

[21] M. L. Fisher, R. Jaikumar, and L. N. Van Wassenhove. A multiplier adjust-
ment method for the generalized assignment problem. Management Science,
32(9):1095–1103, 1986.

[22] Brian Gerkey and Maja Mataric. A formal analysis and taxonomy of task al-
location in multi-robot systems. Int’l. J. of Robotics Research, 23(9):939–954,
2004.

[23] Eric A. Hansen and Rong Zhou. Anytime heuristic search. Journal of Artificial
Intelligence Research (JAIR), 28:267–297, 2007.

[24] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems, Science, and
Cybernetics, SSC-4(2):100–107, 1968.

[25] N. Jennings. Controlling cooperative problem in industrial multi agent systems
using joint intentions. Artificial Intelligence, 75(2):195–240, 1995.

[26] Nejat Karabakal and James C. Bean. A multiplier adjustment method for multiple
shortest path problem. Technical report, The University of Michigan, June 1995.

[27] R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211,
1990.

[28] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,
U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[29] M. Likhachev and D. Ferguson. Planning long dynamically-feasible maneuvers
for autonomous vehicles. In Proceedings of Robotics: Science and Systems (RSS),
Cambridge, USA, June 2008.

35

[30] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with provable
bounds on sub-optimality. In Advances in Neural Information Processing Systems
(NIPS) 16. Cambridge, MA: MIT Press, 2003.

[31] Chien-Chou Lin, Chi-Chun Pan, and Jen-Hui Chuang. A novel potential-based
path planning of 3-d articulated robots with moving bases. Robotica, 22(4):359–
367, 2004.

[32] Savvas G. Loizou and Kostas J. Kyriakopoulos. Closed loop navigation for mul-
tiple holonomic vehicles. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 2861–2866, 2002.

[33] Nathan Michael, Michael M. Zavlanos, Vijay Kumar, and George J. Pappas.
Maintaining connectivity in mobile robot networks. In International Symposium
on Experimental Robotics (ISER), July 2008.

[34] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella. Taming decentral-
ized pomdps: Towards efficient policy computation for multiagent settings. 18th
International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[35] I. Necoara and J.A.K. Suykens. Interior-point lagrangian decomposition method
for separable convex optimization. Journal of Optimization Theory and Applica-
tions, 143:567–588, 2009.

[36] Giuseppe Notarstefano, Ketan Savla, Francesco Bullo, and Ali Jadbabaie. Main-
taining limited-range connectivity among second-order agents. In Proceedings of
the 2006 American Control Conference, June 2006.

[37] Guilherme Augusto Silva Pereira, Aveek K. Das, Vijay Kumar, and Mario F. M.
Campos. Decentralized motion planning for multiple robots subject to sensing
and communication constraints. In Proceedings of the Second MultiRobot Sys-
tems Workshop, 2003.

[38] Martha E. Pollack. Planning in dynamic environments: The “dipart”” system.
Advanced Planning Technology: Technology Achievements of the ARPA/Rome
Laboratory Planning Initiative, 1996.

[39] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control.
In IEEE International Conference on Robotics and Automation, volume 2, pages
802–807, May 1993.

[40] E. Rimon and D.E. Koditschek. The construction of analytic diffeomorphisms
for exact robot navigation on star worlds. Trans. of the American Mathematical
Society, 327(1), Sept. 1991.

[41] Sikandar Samar, Stephen Boyd, and Dimitry Gorinevsky. Distributed estimation
via dual decomposition. 2007.

36

[42] Matthijs T.J. Spaan, Geoffrey J. Gordon, and Nikos Vlassis. Decentralized plan-
ning under uncertainty for teams of communicating agents. Proc. of Int. Joint
Conference on Autonomous Agents and Multi Agent Systems, pages 249–256,
2006.

[43] A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), pages 1652–
1659, 1995.

[44] A. Stentz and M. Hebert. A complete navigation system for goal acquisition in
unknown environments. Autonomous Robots, 2(2):127–145, 1995.

[45] P. Svestka and M. H. Overmars. Probabilistic path planning. Technical Report
UU-CS-1995-22, Department of Information and Computing Sciences, Utrecht
University, 1995.

[46] William Yeoh, Ariel Felner, and Sven Koenig. Bnb-adopt: An asynchronous
branch-and-bound dcop algorithm. In Proceedings of the International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pages 591–
598, 2008.

[47] Milos Zefran. Continuous methods for motion planning. PhD thesis, University
of Pennsylvania, Philadelphia, PA, USA, 1996. Supervisor-Vijay Kumar.

[48] H. Zhang, V. Kumar, and J. Ostrowski. Motion planning under uncertainty. In
IEEE International Conference on Robotics and Automation, Leuven, Belgium,
May 16-21 1998. IEEE.

37

	Abstract
	Introduction
	Related Works
	Problem Formulation, Assumptions, and Notations
	DPC Algorithm
	DPC Algorithm without Superiterations
	Theoretical Properties for two agents
	Theoretical Properties for N agents
	DPC Algorithm with Superiterations

	Results
	Simulation in a Discretized Environment
	Discretization
	Heuristic

	A simple environment
	Computation time
	Three interconnected rooms
	Extended randevouz
	Extended randevouz in a real environment
	Simulation in Gazebo
	Experiment with real Mobile Robots

	Conclusions

