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Abstract— We address the development of the theory and al-
gorithms that can enable a swarm of inexpensive robots or mo-
bile sensors to create topological maps of indoor environments
without explicitly requiring metric information. Topological
maps are sparse and faithful representations of environments,
and are useful constructions for efficient navigation in GPS-
denied environments. However, in absence of prior knowledge
of the environment, with extremely limited sensing capabilities,
and in an environment without localization, the construction
of a topological map is a challenging problem that has not
received much attention in the literature. In this paper, we
present the basic theory and algorithms that allow a swarm of
resource-constrained mobile sensors to automatically create a
topological map of an unknown indoor environments without
requiring metric information. This method involves covering the
free space, and then constructing an approximate Generalized
Voronoi Graph of the covered environment. We demonstrate
the algorithm using ROS, first with simulations, and then with
experiments using a combination of real and virtual (simulated)
robots.
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I. INTRODUCTION

A topological map (also, a topological graph), by defi-
nition, is a roadmap [1], [2] which is a sparse representa-
tion of the configuration space capturing all its topological
features. A topological map provides information for fast
navigation in many human environments (urban/rural envi-
ronments, homes, shops, office buildings) as well as haz-
ardous environments (collapsed buildings, underground tun-
nels) and for time-critical applications like disaster response
and search/rescue. In a resource-constrained environment and
in the absence of global localization or metric information, a
topological map not only provides a coarse topological rep-
resentation of the environment, but also provides a roadmap
for transporting physical robots, equipments or supplies from
one point to another.

The topological map that is of particular interest to us is
the Generalized Voronoi Graph (GVG, also called a Gener-
alized Voronoi Diagram or a GVD), which is the locus of
points in the configuration space which have more than one
distinct “closest” points on the boundary of the configuration
space. Given a configuration space, the algorithms for con-
structing a GVG are well-studied [3], [4], [5]. The practical
motivation and applications of a GVG representation of an
environment are diverse, including sensor based mapping [2],
efficient motion planning [6], and computer graphics [7].
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There has been very little work in literature on how
small, resource-constrained sensors and processors can yield
global information that is relevant to operation in large-scale
environments. Topological representations being robust to
sensor and actuator noise, and having reliable local-to-global
integrability properties, are ideal choices when working with
resource-constrained robots in GPS-denied environments.
Existing works in the topological mapping literature ([2], [8],
[9]) require robots equipped with sensors that yield metric
information and are able to localize the robot in an inertial
frame. In contrast, our approach focuses on using minimum
sensing robots that yield topological information only to
construct a coarse global representation of an environment.

This paper, following the authors’ previous work [10], con-
siders the problem of topological mapping an unknown 2-D
environment using a swarm of limited sensing robots. Every
robot is only equipped with a bearing sensor with limited
range that allows a robot to detect bearings of neighbors,
and a touch sensor that allows a robot to perform obstacle
avoidance. Additionally, robots are capable of communicat-
ing with their neighbors. As a result, robots do not have
access to metric information and cannot localize themselves
in any meaningful coordinate system. Our algorithm allows
the swarm of robots to construct an approximate GVG
of the environment. The graph must be approximate since
robots lack the ability to make metric measurements. Further
since all sensors are local, the graph must be constructed
incrementally.

The essence of our approach is illustrated in Figure 1. The
robot swarm enters a completely unknown area (Figure 1(a)).
The robots navigate the environment, gather information,
construct a simplicial complex representation (a Rips com-
plex) [11] of the environment with sensor coverage, and
attain a hole-less sensor coverage using all the available
robots. Since there are a finite number of robots available,
we can only ensure coverage of a subset of the environment
(Figure 1(b)). Once the hole-less sensor coverage of the
partial environment is attained, we run a discrete graph-
based GVG construction algorithm (similar to [5]) on the
1-skeleton of the Rips complex formed by the robot sensor
footprints to identify the robots that can be removed and the
ones that need to be kept in order to retain the approximate
physical representation of the GVG of the partially covered
environment (which we call an approximate physical/partial
GVG or an APGVG for simplicity – Figure 1(c)). The robots
that are not tagged to be part of the APGVG can now be
redeployed beyond the frontier to the unknown part of the



(a) A finite swarm of robots enter an
unknown environment.

(b) The swarm “floods” part of the
environment and attains hole-less
sensor coverage.

(c) A topological map of the par-
tially covered environment (APGVG)
is computed – magenta curve).

(d) Robots not constituting APGVG
are re-deployed to the unexplored
region and the process continues.

Fig. 1. Overview: Illustration of the main steps in construction of a physical representation of a topological map using a finite swarm of robots with
limited local sensing.

environment to attain hole-less sensor coverage of a new
portion of the environment, while the robots stationed on
the APGVG of the previously covered environment maintain
their position (Figure 1(d)).

The overall algorithm involves interleaving robot deploy-
ment cycles with the construction of the APGVG. Every new
deployment cycle results in a new APGVG which must be
stitched together with the old APGVG so that that stitched
result is an approximate GVG of the entire environment.
This process results in a sparse topological map for the free
environment and is a deformation retract of the environment.

We call each of these cycles (involving robot deployment,
hole-less sensor coverage of part of the environment, and
computation of APGVG for identifying robots for deploy-
ment in next cycle) a APGVG computation cycle or a
APGVGCC for simplicity.

Section II briefly describe the algorithm and control for
deploying a robot swarm to attain a hole-less coverage of a
part of the environment. The main contribution appears in
Section III, where we describe the algorithm for computing
the APGVGs and stitching them. In Section IV, we present
simulation results and describe an experimental platform
involving a heterogeneous team of real and virtual robots
for demonstrating the proposed algorithm.

II. PRELIMINARIES

For the sake of completeness of this paper, in this section
we briefly describe the algorithm for robot deployment
and control for attaining hole-less sensor coverage of an
environment, as described in [10].

We assume that each robot has a disk-shaped sensor foot-
print of radius rv , and a robot can see (and identify) another
robot, and measure the bearing to it in local coordinates (θji is
the bearing of j in the local coordinates of i), only if the other
robot is in its sensing disk. The overall algorithm involves
a sequence of deployment cycles, each of which consist of
identifying frontier robots, locations (in local coordinates of
the frontier robots) for deployment of new robots, and thus
executing a “push” action through the graph so as to deploy
a new robot into the coverage network. The key components
of the algorithm are described next:

i. An abstract simplicial complex [12] representation of
the environment is computed in the server through local

8

12

10

11

6

7
3

2

1

9

source

5
4

New

60o

(a) Partially covered environment,
with new location for deployment
identified in local coordinates of ver-
tex ‘2’ in F . Shortest path 12 →
10→6→2 identified from a source
to the vertex.
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(b) Robots are “pushed” along the
path. Notice how the new robot 13
appears near the source.

Fig. 2. The complexRrv , and the subcomplexes F (cyan) and O (brown).
Robots are transported along paths through the 1-skeleton of the complex
using a “pushing” action in order to explore and cover regions beyond the
frontier, while keeping the graph topology in the already covered region
fixed.

communication with the neighbors of each robot. Robot
i determines its set of neighbors, Ni, and sends that
information to the server, where a Rips complex [13],
Rrv , is constructed: A 0-simplex corresponds to every
deployed robot in the environment, a 1-simplex exists
between two 0-simplices if the corresponding robots
are in each other’s disk of visibility, and a 2-simplex
exists for every 3-tuple of robots that can all see each
other. Since Rrv is dependent on the set of robot
configurations, X = [x1, x2, · · · , xn], we sometimes
refer to it as Rrv (X).

ii. Using the constructed Rips complex, we identify the
frontier and obstacle subcomplexes and the robots con-
stituting them. The basic ideas is that if all the 2-
simplices attached to a 1-simplex lie on the same side
of the 1-simplex, (which can be determined from local
bearing measurements), the 1-simplex should be part of
the boundary to the unexplored region or is adjacent
to an obstacle. A few pathological exceptions to this
general rule also needs to be considered. Such simplices,
in general, constitute the fence subcomplex, K ⊆ Rrv .
Using this subcomplex and readings from the touch
sensors, we perform additional checks to determine
whether the fence simplices are frontier to the uncovered



(a) A topological map which is an
approximate GVG.

(b) The exact Generalized Voronoi
Graph of the free space.

Fig. 3. Topological graphs of a simple subset of R2.

region, or adjacent to an obstacle. These respectively
constitute the frontier subcomplex, F , and the obstacle
subcomplex, O, such that K = F ∪O. For example, in
Figure 2(a) we identify {8, 3}, {3, 1}, {1, 2}, · · · ∈ F
and {7, 8}, {7, 11} ∈ O.

iii. We perform a breadth-first search from the source to
a frontier robot, and thus identify a path in the 1-
skeleton of the complex from the source to a frontier
robot (Figure 2(a)).

iv. The frontier robot at the end of the path identifies (in its
local coordinates) the new location beyond the frontier
for robot placement (Figure 2(a)). This is done so as to
try and achieve a hexagonal packaging of the robots as
much as possible, only to be interrupted by obstacles.

v. Robots are then transported using a “push” strategy
along the path. In absence of global localization or
long-range sensing, the robot needs to control their
movements only making use of the bearing to its
neighbors. To that end we use the bearing-based visual
homing controller presented in [14]. The basic idea
involves selecting the adjacent robots and use them as
“landmarks” for bearing-based navigation (Figure 2(b)).

The algorithm comes with guarantees of hole-less cov-
erage, stability (no indefinite switching behavior) and ter-
mination with complete coverage (in presence of sufficient
number of robots).

III. MULTI-STAGE CONSTRUCTION AND STITCHING OF
APGVGS

A. Generalized Voronoi Graph and its Approximate Discrete
Construction

The topological map of a configuration space, C, is a 1-
dimensional subspace such that it is topologically equivalent
to C. In particular, the topology of the topological map cap-
tures all the “holes” in the space C as loops in the topological
map (Figure 3(a)). If C is a subset of R2 (say, part of the
plane with obstacles in it), the topological map can be more
precisely described as a 1-dimensional deformation retract
of the space, and can always be constructed [4], [15], [12].
A Generalized Voronoi Graph (GVG) is a special topological
map with the property that each point on the GVG has two
or more equidistant closest points on the obstacle boundary
of the configuration space, ∂C (Figure 3(b)).

The 1-skeleton of the simplicial complex,Rrv (X), formed
by the robots as described in the previous section, can be

considered as an approximate discrete graph representation
of the covered subset of the workspace, with the robots being
the vertices of the graph and the 1-simplices being the edges.
Let’s call this graph Grv (X) (or simply Grv for simplicity)
for the set of robot positions, X . One can employ a wave-
front propagation algorithm in Grv (X), as described in [5],
[16], for identifying the vertices (the robots) in the graph
which constitute an approximate GVG.

The overall idea is not very different from the continuous
gradient flow method for Computation of GVGs [4] – we
employ a breadth-first search (Dijkstra’s algorithm) with the
initial open list containing all the vertices adjacent to the
obstacles. Out of those initial vertices adjacent to obstacles,
we mark the ones lying between two “concave corners” of an
obstacle with the same label, so that the part of the wavefront
originating from the vertices with the same label sweep a
Voronnoi cell of the approximate GVG. By the virtue of the
Dijkstra’s algorithm, the property of the wavefront is that at
every instant all points on it are at an equal shortest distance
from the closest obstacle. Thus, wherever the wavefronts
with different labels collide, it ought to be a point on the
GVG. The overall process is illustrated in Figure 4, and the
pseudocode of the algorithm is provided later.

1) Segmentation of the Obstacle Subcomplex by Concave
Corners: As described above, we need to segment the
workspace boundary (boundary next to the obstacles) based
on presence of concave corners.

However, since we do not have a global knowledge of
the environment, all that we can use to identify corners at
the boundaries is the obstacle subcomplex, O ⊆ Grv (X) ⊆
Rrv (X). This is achieved through communication between
adjacent robots in the obstacle subcomplex. We choose the
criteria on the angle at a corner in the environment to be γ,
which, for example in environments with only right-angle
corners will be π

2 + ε (where the factor ε accounts for
mismatch of the robot placement with the corners, and for
all the simulations we choose ε = π

4 ).
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(a) Not a concave
corner.

j2

i

j1

(b) A concave corner
at i since ∠j1ij2 < γ.

i

j1

j2

j3

(c) Not a concave corner at
i since ∠ij2j3 doesn’t sat-
isfy normality condition.

Fig. 5. Detection of concave corners from the simplicial complex with
γ = π

2
+ ε.

Suppose robots{i, j1} and {i, j2} are 1-simplices in O,
and let ∠j1ij2 be the angle made by the 1-simplices at i
(which, in the local frame of i, is the relative bearing between
j1 and j2 as seen by i) on the side opposite to the obstacles.

We identify i as a concave corner if ∠j1ij2 < γ (Fig-
ure 5(b)).

However, under some circumstances (as shown in Fig-
ure 5(c), where we mark ij2 and j2j3 as obstacle 1-simplices



(a) The initial stage in the wavefront
propagation, with different labels (marked
by different colors) assigned to parts of
the wavefront originating from segments
of boundaries with no concave corner.

(b) The vertices at which the wavefronts with different labels (marked
by different colors) “collide” constitute the approximate GVG (ma-
genta disks) for the partially covered environment. Figures show the
steps with 930 and 1430 vertices expanded.

(c) Final approximate APGVG
shown in magenta.

Fig. 4. Illustration of the progress of wavefront algorithm for construction of APGVG using a discrete graph representation of the partially covered
environment. The vertices of the graph are marked by the small disks and are representative of the physical robots (not to scale, and dense, ideal placement
for illustration).

Fig. 6. Segmented obstacle subcomplex. The segments O1,O2, . . . are
the curves in different hues of brown.

due to algorithm in [10]), it is not sufficient to consider only
the angle made by two consecutive boundary 1-simplices at
i. We also need to put some normality condition on angles
made by the boundary 1-simplices at j1 and j2 in order to
avoid too much spurious detection of concave corners. These
checks are, however, mostly heuristic-based, given that we
can only estimate the presence of the corners from relative
bearings between the robots, and thus can very well lead to
false positives or false negatives in concave corner detections.
However, it is to be noted that presence of concave corners
only effects the “branchiness” of the Voronoi graph, and
does not effect its more fundamental property of being a
deformation retract.

Once we identify the concave corner robots on the obstacle
subcomplex, we assign identical labels to all robots between
two concave corners, while the corner robot is assigned either
of the labels of the obstacle robots on its two sides. This gives
a segmentation of the obstacle subcomplex, O = O1 ∪O2 ∪
· · ·∪Oσ , where Om contains all the robots that are assigned
label m (Figure 6). Note that Om is itself a subgraph of
O (which in turn is a subgraph of Grv (X)), and we denote
the vertex and edge sets of this subgraph by V (Om) and
E(Om), respectively.

2) Wavefront Algorithm For Voronoi Graph Construction:
We present the pseudocode, GVG Compute, of the wave-
front algorithm for computing the GVG in a discrete graph
setting as described earlier (also see Figure 4). The basic
framework of the algorithm is that of Dijkstra’s [17]. The
algorithm takes as input the 1-skeleton of the Rips complex
– the graph Grv , and the segmented boundary subgraphs,

O1,O2, · · · ,Oσ . We assume that the cost of each edge in
Grv is 1 (i.e., “distance” is measured in hop count) since we
do not have the inter-robot distances available. The algorithm
outputs the set of vertices in the graph Grv which will
constitute the discrete approximate GVG in the graph.

V = GVG Compute (Grv , {Oα}α=1,2,··· ,σ)
Inputs: a. Graph Grv , with vertex set V (Grv )

and edge set E(Grv ),
b. Segmented obstacle subgraphs, Oα ⊆ O

Outputs: a. Vertex set constituting APGVG, V ⊆ V (Grv )

1 Set g(v) :=∞, for all v ∈ V (Grv ) // Distances to obstacle
2 Set l(v) :=−1, for all v ∈ V (Grv ) // Labels
3 Set V := ∅
4 for each k ∈ {1, 2, · · · , σ}
5 for each v ∈ V (Ok)
6 Set g(v) :=0
7 Set l(v) :=k // Assign label k to vertices in Ok
8 Set Q := V (Grv ) // Set of un-expanded vertices
9 while (Q 6= ∅)

10 q := argminq′∈Qg(q′) // Maintained by a heap
11 if (g(q) ==∞) // Open list is empty
12 break
13 Set Q := Q− q // Remove q from Q

// Look at expanded neighbors with a different label:
14 u := argminu′∈NGrv

(q){g(u′) | u′ /∈Q, l(u′) 6= l(q)}
15 if

(
g(u)+1==g(q) OR g(u)==g(q)

)
16 Insert q into V // It’s a GVG vertex!

// un-expanded neighbors that need updating:
17 W := {w∈NGrv(q) | w∈Q, g(w)>g(q)+1}
18 for each w∈W
19 Set g(w) := g(q) + 1 // Update to lower g-value
20 Set l(w) := l(q) // Copy label to neighbor
21 return V

Pseudocode for GVG Compute

We initiate the open list in the search algorithm with
all the vertices in the obstacle subcomplex, set their g-
value to zero (i.e., they are at a distance of zero from the
obstacle subcomplex) and attach a label to them based on the
segmentation of O (lines 4-7). The rest of the algorithm is
the usual breadth-first search — at every iteration we choose
the vertex, q, in the open list with smallest g-value (line 10),
place it in the closed list (i.e., “expand” the vertex – line



(a) None of the robots in the marked
GVG can be removed.

(b) Robot marked by red ellipse in
the GVG is redundant.

Fig. 7. Identifying robots that can be removed from the GVG computed
by GVG Compute.

13) and update its un-expanded neighbors if they will have
better g-value if reached via q (lines 17-20).

We determine whether the vertex q, which is being ex-
panded, is part of the GVG by looking at its expanded
neighbors that have a label different to q’s label. Precisely, q
is equidistant from two different segments of the obstacle
subcomplex if its g-value would have been the same (or
one more) had it been expanded via a differently labeled
vertex, and hence placed in V (lines 14-16). However, this
process may end up including some redundant vertices (and
corresponding 2-simplices from Rv) in the GVG, which are
not essential in maintaining the connectivity of the GVG
(Figure 7(b)). We remove such vertices from the GVG
through a simple post-check of the number of 2 and 1-
simplices connected to a vertex belonging to the GVG. In
particular, if a vertex in the GVG is connected to n edges (1-
simplices) which form part of the GVG, which in turn form
boundary of at least n− 1 counts of 2-simplices which also
form part of the GVG, then the vertex is redundant in the
GVG and can be removed from it (an explicit deformation
retract can be constructed).

B. Robot Redeployment and Stitching the APGVGs

As illustrated in Section I we construct the partial GVGs
in the discrete setting (the APGVGs) at every APGVGCC.

For easy reference, for the ith APGVGCC we will use
superscripts of i to indicate the different objects described
so far (e.g., Xi will be the set of robot positions con-
stituting the hole-less coverage of the partial environment
at the ith APGVGCC, Rirv it’s Rips complex, Girv its 1-
skeleton, F i the frontier subcomplex, APGVGi the GVG
computed on Girv using segmented obstacle subcomplex
Oi = Oi1∪Oi2∪ · · ·∪Oiσi , etc.). Thus, we have APGVGi =
GVG Compute(Girv , {O

i
α}α=1,2,··· ,σi)).

By the virtue of its construction, APGVGi and APGVGi+1

will be connected to F i (Figure 8(a)). Following the com-
putation of APGVGi+1, we consider each connected com-
ponent of F i, and identify the subcomplex, Si, necessary to
keep the branches of APGVGi and APGVGi+1 emanating
from that component of F i connected to each other (this
essentially boils down to eliminating the robots at the trailing
ends of the connected component of F i – Figure 8(b)). We
exclude the robots in Si from the set of robots, Λi+1, for
re-deployment in the (i+ 1)th APGVGCC (Figure 8(b)).

(a) (b)

APGVGi
APGVGi+1

Fig. 8. Stitching APGVGi and APGVGi+1 by considering each connected
component of Fi. The set of robots re-deployed/removed in going from (a)
to (b) is Λi+1 = Gi+1

rv − (APGVGi+1 ∪ F i+1 ∪ Si)

Thus we identify the set of robots that can be redeployed
for the APGVGCCi+1 as Λi+1 = Gi+1

rv − (APGVGi+1 ∪
F i+1∪Si) (i.e., we leave the robots on the partial GVG just
computed as well as those on the current frontier subcomplex
and the subcomplex of the past frontier, Si).

In general, we use the “push” strategy through the 1-
skeleton as described in Section ?? and [10] for finding
paths to transport the robots one at a time to explore new
locations outside the frontier F i+1, and use the local bearing-
based control described in [14] to move the robots. However,
in some cases the path from a re-deployable robot to a
frontier may contain parts of the approximate GVG which
are no more surrounded by neighboring robots. The “push”
strategy does not work well under such circumstances due
to lack of sufficient number of landmark robots for the
bearing-based controller. For that we need to use a separate
controller, which we are in the process of implementing,
that physically navigates the re-deployable robot along the
single-robot chain constituting the GVG. In the simulations
presented in this paper such a situation does not arise since
we use sufficient number of robots in the swarm.

The overall algorithm for the multi-stage approximate
GVG construction can thus be summarized as follows:

Algorithm: Multi-stage approximate GVG construction
using a finite robot swarm

1 Set Λ0 := the set of all robots
2 Set F0 := the initial frontier at the entrance
3 Set i := 0
4 while F i 6= ∅ and Λi 6= ∅ // APGVGCCi+1

5 - Deploy robots in Λi to unexplored region outside F i
for hole-less coverage and construct the final Ri+1

rv

(which includes F i), with its 1-skeleton Gi+1
rv .

6 - Compute the obstacle and frontier subcomplexes,
Oi+1,F i+1 ⊆ Ri+1

rv

7 - APGVGi+1 =
GVG Compute(Gi+1

rv , {O
i+1
α }α=1,··· ,σi+1)

8 - Identify robots Si ⊆ F i to keep for proper stitching
of APGVGi and APGVGi+1.

9 - Λi+1 = Girv − (APGVGi+1 ∪ F i+1 ∪ Si)
10 Set i := i+ 1



ai ai-1+ai-2+. . .+a1
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Fig. 9. Stitching APGVGi and APGVGi+1 by considering each connected
component of Fi. The set of robots re-deployed/removed in going from (a)
to (b) is Λi+1 = Gi+1

rv − (APGVGi+1 ∪ Fi+1 ∪ Si). β = 1 in this
illustration of an obstacle-free environment.

C. Estimation of the Number of Robots Required

In general the number of robots required for being able
to completely construct the approximate GVG is highly
dependent on the precise structure of the environment. How-
ever, under some assumptions on the environment, a very
rough and informal estimate can be worked out. In this
section we provide an extremely simplified estimate of the
number of robots that will be required for constructing the
complete approximate GVG using the algorithm described in
this paper. We consider the dimensions of the environment
described in terms of number of average robot separations
along X or Y directions (which, we approximately assume to
be uniform, and equal to κrv for some constant κ). Suppose
the width of an environment (the dimension orthogonal to the
main flow direction of the robots) is W times the average
robot separation, and the length (dimension in the direction
of robot flow) be L times the average robot separation
(Figure 9 shows the obstacle-free case). Furthermore, in
presence of obstacles, let the average number of “branches”
that the final GVG will have in the vertical direction be β.

Say we start with n = n1 robots. In APGVGCC1, those
robots will be able to progress a distance of a1 = n1

W average
robot separations along the width of the environment. This
will also be equal to the approximate number of robots
that will constitute APGVG1 with βa1 robots. Thus, the
remaining robots, n2 ' n1−βa1 = n1

W−β
W can be deployed

for APGVGCC2. In general, using an inductive argument, at
the beginning of the ith APGVGCC, the number of robots
available will be nk ' nk−1ρ ' n1ρ

k−1, where ρ = W−β
W .

However, if the algorithm terminates at the mth APGVGCC,
we should at least have the final free robots span the entire
width of the environment (so that there are enough robots to
have the complete obstacle subcomplex and empty frontier
subcomplex, for being able to compute the final APGVG
effectively). This gives us

n1ρ
m−1 'W

Furthermore, we should be able to span the entire
length of the environment using the APGVGs of length
a1, a2, · · · , am−1. Thus,

1

W
(n1 + n2 + · · ·+ nm−1) ' L

⇒ 1− ρm−1

1− ρ ' LW

n1

Combining the above equations, and eliminating m, one
gets n1 ' W + βL. Thus, this simplified estimate puts the
required number of robots at W + βL.

In practice we would surely like to keep a margin for
safety and have more robots than what presented in this
simple estimate.

IV. RESULTS

A. Simulation Result

We implemented the proposed algorithm on Robot Op-
erating System (ROS) [18] platform with the kinematic
robots and the on-board sensors simulated by Stage robot
simulator [19].

Figure 10 shows a simple environment with an entrance
at the top. A team of 100 robots construct a topological
map (an approximate GVG) using the proposed algorithm in
four APGVGCCs, with a total of 259 deployment iterations,
which is the approximate number of robots required to cover
the entire environment.

Figure 11 shows simulation in a more complex indoor
environment (a part of the 4th floor plan of the Levine
building at the University of Pennsylvania). We construct
the approximate GVG of the environment with a swarm of
270 robots that is not sufficient to fill the entire environ-
ment (Figure 11(a)). The experiment is completed in three
APGVGCCs with 535 deployment iterations.

B. Experiment with Heterogeneous team of Live and Virtual
Robots

We also tested our algorithm on a real experimental plat-
form. Because of limited number of available physical robots,
as well as to demonstrate a new paradigm in combining
physical robots with virtual/simulated ones in a real-time
experiment, we use a heterogeneous team of virtual and real
robots to constitute the swarm in the experimental setup.

We used Scarab robot [20] as the physical robot platforms
for some of the robots, and used Stage robot simulator
to simulate the remaining virtual robots. The Scarab is a
differential drive robot, while the virtual robots consisted
of holonomic robots simulated in Stage. Each real robot
in the environment was coupled with a virtual robot in the
simulation environment, besides the remaining robots in the
swarm being simulated as well.

In order to make the real robot work coherently with
all virtual robots, its corresponding virtual peer needs to
be synchronized through the feedback loop as illustrated in
Figure 13. Localization of the real robots was done through
the use of a VICON motion capture system. The motion
capture system would broadcast the pose information of the
physical robots in the environment. These poses were used in
conjunction with the simulated robots information in order to



(a) The Rips complex, G1rv ,
with frontier subcomplex,
F1, marked in cyan and
black, and the discrete GVG,
APGVG1, computed in G1rv
shown in blue.

(b) Robots are re-deployed
to construct G2rv . The new
discrete voronoi graph,
APGVG2, is also shown
in blue, stitched with the
earlier APGVG1.

(c) The end of APGVGCC3,
showing the three subse-
quent APGVGs stitched to-
gether.

(d) The conclusion of
APGVGCC4.

(e) The algorithm terminates
since there are no more un-
explored frontiers (F5 = ∅).

Fig. 10. Demonstration of the proposed algorithm in ROS simulation using a simple environment.

(a) APGVG1, computed in G1rv . (b) At the end of the computation of
APGVG2.

(c) The end of APGVGCC3. (d) Algorithm terminates since there
are no more unexplored frontiers.

Fig. 11. ROS simulation in a more complex indoor environment. See the accompanying multimedia attachment for the video.

(a) t = 103s. (b) t = 276s. (c) t = 600s. (d) t = 938s.

Fig. 12. A heterogeneous team of live (green) and virtual (red) robots covering a simple, obstacle-free environment. The dashed green lines are drawn
for comparison between the formation of the live robots and the simulated version of the live robots. The accompanying multimedia attachment shows the
video of the simulation environment overlaid on the experiment for better comparison.



construct a virtual bearing sensor for the real robots. The real
robots utilized this sensor to execute bearing-based visual
homing. The virtual robot performed proportional position
control on the pose information from the motion capture
system. In summary, a virtual bearing-based visual homing
sensor was utilized in a heterogeneous team of mobile robots.

As a proof of concept, an obstacle free environment was
selected for exploration by the heterogeneous team. The
results are illustrated in Figure 12. The top row shows the
simulated environment, with virtual robots colored in red and
the simulated version of the live robots colored in green.
The snapshots of the experiment in the lower row shows
the live robots. The heterogeneous team is able to explore
the environment with the limited sensing and communication
capabilities. Testing in more complex environments and
construction of the GVG is within the scope of future work.

Bearing Control 

Virtual Control 

Virtual Sensor 

Real Robot Sim Robot 

desired 
velocity 

simulated 
sensing for  
Vicon robot 

desired 
velocity 

pos. and orient.  pos. and orient. 

pos. and orient. 

Fig. 13. Block digram describing the communication and feedback between
the simulation platform, experimental (real) robots and the VICON motion
capture system.

Videos of the simulation and the experiment can be found
in the accompanying multimedia attachment or at http://
mrsl.grasp.upenn.edu/˜tee/APGVG/.

V. CONCLUSION

In this paper, we proposed the basic theory and algorithms
that allow a swarm of resource-constrained mobile sensors
to automatically create a topological map, specifically a
Generalized Voronoi Graph, of indoor environments without
requiring metric information. This method involves covering
part of the free space of an environment prior to constructing
a Generalized Voronoi Graph from the covered space. The
excess robots are then used to extend the covered space
and further construct a GVG of the environment until a full
topological representation is completed. We demonstrated the
proposed algorithm in a ROS-Stage simulation, as well as
introduced a new paradigm in experimental demonstration
involving a heterogeneous team of real and virtual robots.

As part of future research we will demonstrate how the
approximate GVG construction using physical robots, as
described in this paper, can be used for fast and efficient
transportation of other robots and resources from one region
to another in unknown, GPS-denied environments.
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