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Abstract— Oil skimmers towed by two vehicles have been
widely used for skimming of oil on the water surface. In
this paper, we address the cooperative control of two au-
tonomous surface vehicles for oil skimming and cleanings. We
model the skimmer as a flexible, floating rope of constant
length as well as discrete segmented model. We derive the
equations governing the rope dynamics from first principles
and demonstrate their application through simulations. We
have performed field experiments with two autonomous surface
vehicles that substantiate the proposed model and provides
estimates of constants underlying the model. We propose a
method for controlling the shape of the rope, and derive the
conditions that maximize skimming efficiency.

I. INTRODUCTION

On April 20, 2010 the Deepwater Horizon drilling rig
explosion in the Gulf of Mexico caused the largest oil spill
(Figure 1(a)) in the history of the petroleum industry. By
the time the gushing wellhead was capped (July 15, 2010),
it is estimated that approximately 104 m3 of crude oil was
released into the ocean [9]. Before the wellhead could finally
be capped four primary means of mitigation were employed:
direct recovery from the wellhead, burning at the surface,
chemical dispersion, and skimming at the surface.

Skimming operations at the surface accounted for the
smallest impact (by some estimates ∼ 3% of the oil
was skimmed [7]). This is not surprising, since skimming
(whether with a floating boom deployed from one ship,
or via the manipulation of a flexible skimmer using two
ships (Figure 1(a))) is a slow, manual operation. Given,
the widespread concern at the use of certain chemicals
for dispersion, increased efficiency in skimming operations
could lead to positive change in the way cleanup is performed
in the future.

Motivated by this, we develop a model of roboticized
skimming operations using two Autonomous Surface Vehi-
cles (ASVs) cooperatively towing a flexible skimmer. The
model allows us to design controllers for the ASVs and
to think about problems beyond skimming, such as caging
and towing rigid objects (barges, floating docks etc. ) using
ASVs.
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(a) A skimming operation with
two vessels in the gulf of Mexico.

p(s,t)

(b) Two boats towing a rope.

Fig. 1. Cooperative oil skimming.

For purposes of the skimming analysis in this paper
we will model the skimmer as a flexible, floating rope of
constant length. Such a rope has infinite degrees of freedom.
When attached at each end to a ASV, it deforms continuously
in the horizontal plane under the effects of the forces the
vehicles impart at its endpoints and the drag due to the water.
The separation between the vehicles, and their instantaneous
accelerations govern the deformation of the rope.

In this paper we model the problem from first principles
in the form of PDEs describing the dynamics of the rope
(Section II). These equations simplify to the catenary so-
lution at steady state and certain assumptions on the drag
coefficients. We then develop a complete dynamic model and
simulation with force and position control at the ends of the
rope, with the rope approximated by discrete rigid segments
(Section III), as well as a quasi-static approximation of
it (Section IV). Following this we report on experimental
results in field trials to identify the discrete model under
quasi-static conditions (inertial forces negligible compared
to drag) (Section V) Using the parameters so identified we
apply the model to two tasks. The first task is to control
the rope shape so that it is transformed from its initial
configuration into a (desired) steady state (Section VI). The
second is to sweep an area given a maximum force that the
boats can exert (i.e., maximum drag force) and a fixed rope
length. We solve for the maximum speed for a given boat-to-
boat desired separation under these constraints. We also solve
for the maximum efficiency (swept area per unit time) we can
achieve for cleanup in such a setting (Section VI). For clarity
and better readability we have placed some of the detailed
mathematical derivations in a supplementary technical report
[2] that can be accessed on-line.

II. CONTINUOUS DYNAMIC MODEL

We begin by deriving the dynamic model of the continuous
flexible rope.



v
v┴

v║

(a)

Fdrag ∞ U

U

(b)

Fdrag ∞ U

U

(c)

Fig. 2. Drag on a cylinder due to its motion through a fluid can be split
into two components.

A. Drag Force Model
We consider the drag force on a small cylindrical ele-

ment moving in a fluid with a velocity v at low Reynolds
number. We assume that the diameter of the cylinder is
much smaller than the length. The velocity of the element
can be decomposed into two components — one parallel
to the axis (v‖), other perpendicular to the axis (v⊥). At
low Reynolds number the drag forces are assumed to be
proportional (linear) to the speed, but the proportionality
constants are different along the parallel and perpendicular
directions. In particular, we write the drag force per unit
length, fD, acting on the cylindrical element (Figure 2(a))
that is moving through a fluid with velocity v as follows:

fD = −
(
cV v

‖ + cSv
⊥
)

(1)
where cS and cV are constants that are functions of the stan-

dard properties of the fluid such as Reynolds number (Re),
drag coeficient (CD), dynamic viscocity (µ) and density (ρ).

For flow perpendicular to the axis of a cylinder of diameter
d, at low Reynold’s number (Re ≤ 100), the drag coeficient,
CD, varies inversely as Re, and is 1 at Re = 100 [10],
[4]. Noting that fS (force per unit length on the cylinder
due to flow perpendicular to axis) = 1

2CDρdU
2 we can thus

empirically derive a value for cS as follows,

cS =
fS
U

(by definition) =
1

2
CD ρ d U =

1

2

100

Re
ρ d U

=
100

2

µ

ρ d U
ρ d U = 50 µ (2)

where µ, the dynamic viscocity, takes the value of 8.9×10−4

for fresh water at 25◦C, and 1.08 × 10−3 for sea water at
20◦C. In all simulations we assumed µ = 1× 10−3, giving
cS = 0.05.

B. The Rope Dynamics

We use s, the length of the rope starting from the left boat
up to a point p on the rope, for parametrization of the points
on the rope. Thus, we denote the coordinate of a point on

the rope in a global reference frame by p(s, t) =

[
x(s, t)
y(s, t)

]
.

Let λ be the mass per unit length of the rope (assumed to
be constant).

By writing down the force and moment equations for
an infinidecimal element of the rope at an instant of time,
one can derive the following differential equations (PDEs)
governing the dynamics of the rope (details in [2]),
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The three equations in (3) contain three unknown quan-
tities, x, y and T . Given appropriate initial and boundary
conditions these can be solved numerically. Typically it
is difficult to find an analytic solution to such equations
(Nonlinear Wave Equations). In this paper we do not attempt
to solve these PDEs directly. In Section III we propose
a discrete model for the problem and numerically obtain
solutions for the discrete model instead. The discrete model
is a reduced order approximation of the exact continuous
model described in this section.

C. A Special Case - The Catenary Analogy

We consider the special case of steady-state motion of the
system along a straight line by making both boats drive at
constant parallel velocities. Without loss of generality we
can assume that the motion is along the positive Y axis with
speed v. Thus we have ∂x

∂t = 0, ∂y∂t = v.
For this case, a quick simplification of equations (3) can

be made using the following two assumptions:
i. Quasi-static motion: The inertial foces are negligible

compared to the viscous forces.
ii. Isotropic drag: cV = cS = c, i.e. the drag coeffi-

cients along the parallel and perpendicular directions
are equal.

In the later sections of this paper we will emphasis the fact
that the aforesaid assumptions indeed hold in many practical
cases, and substantiated by experiments.

Under these assumptions the set of equations (3) reduces
to the following ordinary differential equations (ODEs) de-
scribing the shape of the rope.

d
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(
T
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)
=0 ,

d
ds

(
T
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)
=cv ,

(
dx
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)2

+

(
dy
ds

)2

=1 (4)

This well-known set of ODEs describes the shape of a
catenary [1]. Upon integration and elimination of T and
s one obtains y = Tx

cv cosh
(
cv
Tx
x+ k1

)
+ k2, where the

integration constant Tx is the X-component of the force
applied by each vehicle, and the integration constants k1
and k2 are determined by the choice of coordinate systems.
If we choose a coordinate system moving concurrently with
the steady-state rope and with origin at the lowest point of
the rope, we obtain y = Tx

cv cosh
(
cv
Tx
x
)
− 1 (Figure 6(a)).

III. A DISCRETE DYNAMIC MODEL AND SIMULATION

As noted earlier, the accurate solution to Equations (3) is
rather difficult to achieve. Thus we propose an approximate
discrete model, where the rope is represented by n rigid
cylindrical segments connected to each other by revolute
joints (Figure 3).

A. Force-controlled System

In this section we assume that the external input quantities
are the forces applied by the left and right boats, respectively

denoted by
[
fLx
fLy

]
and

[
fRx
fRy

]
. This requires each boat to

control the forces applied to the cables. The system has
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Fig. 3. A discrete dynamic model.

n + 2 degrees of freedom, and we choose the generalized
coordinates to be the coordinates of the point at which the
rope is attached to the left boat, (xL, yL), and the angles
made by each of the n segments with the positive X axis,
θi, i = 1, · · · , n, all with respect to a global inertial frame
of reference.

Using Lagrangian mechanics, one can derive the following
Lagrange equations of motion [5] for the system (details in
[2]),

d

dt

(
∂K

∂q̇l

)
− ∂K

∂ql
−Qql = 0,

∀ ql ∈ {xL, yL, θ1, θ2, · · · , θn}
(5)

where, K, the kinetic energy of the system is given by,

K =

N∑
i=1

(
1

2
mi|ṗi|2 +

1

2

miL
2
i

12
|θ̇i|2

)
(6)

and the generalized forces,

QxL = fLx + fRx +

n∑
j=1

Fj,x

QyL = fLy + fRy +

n∑
j=1

Fj,y

Qθi = −fRxLi sin(θi) + fRyLi cos(θi) + τi +

n∑
j=1

Fj ·
∂pj
∂θi

∀ i = 1, 2, · · · , n
(7)

with,

Fi :=

[
Fi,x
Fi,y

]
= −

∫ Li/2

−Li/2

(
cV v

‖
i (s) + cSv

⊥
i (s)

)
ds

τi = −
∫ Li/2

−Li/2

ri(s)×
(
cV v

‖
i (s) + cSv

⊥
i (s)

)
ds (8)

being the forces and torques due to drag. The relative flow
velocity along each segment is given by,

v
‖
i (s) =

([
cos(θi)
sin(θi)

]
· ṙi(s)

) [
cos(θi)
sin(θi)

]
v⊥i (s) =

([
− sin(θi)
cos(θi)

]
· ṙi(s)

) [
− sin(θi)
cos(θi)

]
(9)

The equations (5) consist of n+2 second order ordinary dif-
ferential equations in the quantities {xL, yL, θ1, θ2, · · · , θn}.
Moreover they are affine in {ẍL, ÿL, θ̈1, θ̈2, · · · , θ̈n}. Thus
for a given initial values of {xL, yL, θ1, θ2, · · · , θn} and
{ẋL, ẏL, θ̇1, θ̇2, · · · , θ̇n} at t = 0, and given the external
force profiles, {fLx, fLy, fRx, fRy} as function of t, we can
numerically integrate these equations to obtain the complete
dynamics of the system.

For simulating the system we used Mathematica for
simplifying the Equations (5) to obtain the ODEs and the
coefficients of the second derivatives in the equations. The

equations were then numerically integrated using C and
Matlab. The accompanying video shows some examples of
the simulation results. Figures 4(a)-4(d) shows a trace of the
force controlled system simulation.

B. Position-controlled System

The the force controlled model of the previous section
allows us to specify the required values for the forces
that the boats need to apply on the rope to achieve a
desired trajectory of the end points, in practice it is more
realistic to assume that the boats, and therefore the end
points, are position controlled. Under such conditions the
equations of motion, (5), need to be re-formulated slightly
so that now {xL, yL, xR, yR} are the specified variables, and
{fLx, fLy, fRx, fRy} are unknown.

Since the coordinates of the ends of the rope are now
known as function of time, we need n generalized coor-
dinates, {θ1, θ2, · · · , θn}. Equations the expression for the
kinetic energy and the drag forces/torques, (6), still remain
the same. However now we have just n generalized forces,

Qθi = −fRxLi sin(θi) + fRyLi cos(θi) (10)

+ τi +

n∑
j=1

Fj ·
∂pj
∂θi

∀ i = 1, 2, · · · , n

Thus, now we have n Lagrange equations of motion,
d

dt

(
∂K

∂θ̇i

)
− ∂K

∂θi
−Qθi = 0 (11)

Taking the time derivative of the configuration constraint
equation (details in [2]) we obtain the velocity constraint
equations,[

ẋR
ẏR

]
−
[
ẋL
ẏL

]
−

n∑
j=1

Lj θ̇j

[
− sin(θj)
cos(θj)

]
= 0 (12)

And differentiating it for a second time we obtain the
acceleration constraint,[
ẍR
ÿR

]
−
[
ẍL
ÿL

]
−

n∑
j=1

Lj

(
θ̈j

[
− sin(θj)
cos(θj)

]
− θ̇2j

[
cos(θj)
sin(θj)

])
= 0

(13)
Equations (11) and (13) together form n + 2 equa-

tions, which are algebraic in the unknowns fRx
and fRy

,
whereas second order ordinary differential equations in
the unknowns θ1, θ2, · · · , θn. Moreover they are affine in
{fRx

, fRy
, θ̈1, θ̈2, · · · , θ̈n}. Thus, for given trajectories of the

left and right ends of the rope (i.e. given {xL, yL, xR, yR}
and their derivatives as a function of time), and an ini-
tial configuration {θ1, θ2, · · · , θn} that satisfy the shape
constraint equations, and an initial set of angular speeds
{θ̇1, θ̇2, · · · , θ̇n} that satisfy the velocity constraint equations
(12) at t = 0, we can integrate and solve Equations (11) and
(13) for {fRx

, fRy
, θ1, θ2, · · · , θn}.

As in the force-controlled case, for simulating the system
we used Mathematica for simplifying the Equations (11)
and (13) to obtain the differential-algebraic equations, and
the coefficients of the unknown quantities in the equations.
The equations were then solved and numerically integrated
using C and Matlab. The accompanying video shows the
simulation results. Figure 4(e)-4(h) shows an example run
of the position-controlled system simulation.
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Fig. 4. Traces of complete dynamic simulations of a 10-segment system. Figures 4(a)-4(d) are screenshots from a force-controlled simulation and
demonstrates a hard turn to the right. Figures 4(e)-4(h) are screenshots from a position-controlled simulation and demonstrates an “about turn”.

IV. THE QUASI-STATIC MODEL

In this section we simplify the discrete segment model
in order to implement a method for controlling the shape
of the linkage. The quasi-static model for position control
is obtained by setting the inertial forces equal to zero. This
assumption is reasonable when drag forces dominate over
inertial forces and is justified for slow-moving boats, as we
will see Section V. Under this condition, the equations that
govern the evolution of the system simplify to

Qθi = 0, ∀ i = 1, 2, · · · , n (14)

where Qθi are given by Equations (10). Along with the
velocity constraint equations (12), these make a total of n+2
equations.

We now note that each of the external forces,
Fj , and torques, τj , due to drag are linear
in the speeds {ẋL, ẏL, ẋR, ẏR, θ̇1, θ̇2, · · · , θ̇n}.
Thus from (10), Qθi are linear in the variables
{ẋL, ẏL, ẋR, ẏR, θ̇1, θ̇2, · · · , θ̇n, fRx, fRy}. Moreover
the velocity constraint equations (12) are linear in
{ẋL, ẏL, ẋR, ẏR, θ̇1, θ̇2, · · · , θ̇n}. Thus, the n + 2
equations, (14) and (12), are linear in n + 6 variables,
{ẋL, ẏL, ẋR, ẏR, θ̇1, θ̇2, · · · , θ̇n, fRx, fRy}.

One can eliminate fRx and fRy from these equations.
This leaves n equations which are linear in n + 4 quan-
tities, {ẋL, ẏL, ẋR, ẏR, θ̇1, θ̇2, · · · , θ̇n}. These equations that
govern the evolution of the quasi-static model, can be written
as

An×4Ṗ +Bn×nΘ̇ = 0 (15)

where, Ṗ = [ẋL, ẏL, ẋR, ˙yR]T and Θ̇ = [θ̇1, θ̇2, · · · , θ̇n]T .
Note that the matrices An×4 and Bn×n contain only the

shape variables xL, yL, xR, yR, θ1, θ2, · · · , θn. For a given
shape and the control speeds Ṗ = {ẋL, ẏL, ẋR, ˙yR} applied
to the ends of the linkage, the angular speeds of the segments,
and hence the evolution of the shape, is given by

Θ̇ = −B−1AṖ (16)
Equation (16) describes the dynamics of the quasi-static

model.

V. FIELD EXPERIMENTS

To ground the models developed in the previous sections,
we performed data-collections trials in the field. Field data
were recorded in Echo Park Lake, Los Angeles using two
ASVs designed by the University of Southern Californias
Robotic Embedded Systems Lab (RESL). Each ASV is an
OceanScience QBoat-I hull with a length of 2.1 m and a
width of 0.7 m at the widest section. Each boat weighs 48 kg
with instrumentation and batteries. The onboard computing
package consists of a Mini-ITX 2 GHz dual-core computer.
A 28 Ah sealed lead acid (SLA) battery is used to power
the computer and all sensors, and a 32 Ah AGM battery is
used for the drive motors and the rudder. The vehicles have
a nominal runtime of 6 hours.

The vehicle sensor suite used in the experiments reported
here is a navigation package. Both vehicles are equipped
with a uBlox EKF-5H GPS that provides global position
updates at 2 Hz, and a Microstrain 3D-M IMU with inte-
grated compass sampled at 50 Hz. The ASVs are controlled
by software built using the open-source framework Robot
Operating System (ROS) [8]. ROS provides a structured
communications layer on top of the operating system, allow-
ing intercommunicating nodes and services to be developed
easily.

Each data recording run in the field proceeded as follows.
Both ASVs were manually driven at linear speed v and an
initial separation distance D between them. Traces from
the following combinations of D and v were recorded.
D(m) v(m/s)
4 0.8, 1.0, 1.4
6 0.6, 0.9, 1.2
8 0.6, 0.7, 0.8, 0.9, 1.0
10 0.5, 0.7, 0.8
12 0.5, 0.75

For each combination, the ASVs were driven manually
at the chosen speeds with the initial separation distance D.
A 60 ft hollow diamond-braided polypropylene rope with



Fig. 5. A snapshot of one of the data-gathering trials. The two ASVs and
the rope are visible. The markers had not been placed on the rope in this
trial.

3/4 in diameter was attached to each ASV (one vehicle at
either end of the rope). The rope was chosen so it would float
on the water surface. Markers were placed evenly along the
rope for improved visibility and to help with verification of
the data processing. Figure 5 shows a snapshot of one of the
trials in progress.

Each boat is equipped with a single Microsoft LifeCam
Cinema USB video camera looking backwards towards the
dragged rope on the water surface. To obtain the rope shape
from the video images, the rope pixel coordinates were
manually extracted from selected frames. Since the rope lies
in a plane, a perspective transform [6] maps the image plane
to the real world plane. The transform was calculated for
each ASV using a set of measured point correspondences.
Since the data were gathered in a relatively still lake at a low
speed, the roll and pitch of the ASVs was minimal. Changes
in roll and pitch were ignored in the estimation of the shape
of the rope.

The cameras take snapshots of the shape of the rope when
the boats were moving parallel to each other in a straight
line and the rope was in a steady state. The perspective
transform, X = Hx, used to transform a point from pixel
coordinates, x = (x, y, 1)T , to a point in metric coordinates
relative to the ASVs, X = (X,Y,W ), was determined using
the non-homogeneous linear solution [3]. The transform was
applied to the manually extracted rope pixels along the
rope to transform them to a coordinate system relative to
each ASV. Using the position of each boat from GPS, the
orientation from the IMU, the rope coordinates for both
ASVs were transformed to the same coordinate system for
further processing.

Knowing the speeds of the boat and the separation D
between the boats at steady state, we compare the experimen-
tal shape of the rope with the steady-state shape predicted
by the discrete segment quasi-static model described earlier.
Figure 6(b) shows one such frame, where the red dots
represents points on the rope, and the model predictions are
overlayed on it. The configuration shown in light cyan is
the case where cS = 0.05, cV = 0.0, whereas the darker
blue configuration is the case where cS = cV = 0.05.
Clearly, cS = cV = 0.05 matches the experimental data, thus
substantiating the catenary analogy described in Section II-C.

VI. APPLICATIONS TO ROPE SHAPE CONTROL AND
COVERAGE MAXIMIZATION

We now have a quasi-static discrete model for the rope,
and realistic values of the drag coefficients for the experi-
mental ASVs (from field trials). We now apply the model to
two problems.

D

y' = cosh(0.88 x') - 1

(a) A catenary curve (green dotted)
overlayed on the complete dynamic
simulated steady-state shape of the rope
(blue) pulled by two boats (red) along
a straight line.
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(b) Steady-state shapes from sim-
ulation overlayed on experimen-
tal rope data, cyan configuration
for cS=0.05, cV =0.0, and blue
configuration for cS=cV=0.05.

Fig. 6.

A. Shape Control

In the first problem, a desired shape of the rope is specified
and a control law is designed to drive the discrete quasi-static
model described in Section IV to the specified shape.

Denote the desired shape of the discrete model by ΘD =
[θD1 , θ

D
2 , · · · , θDn ]T . We want to design the control speeds of

the two rope ends, ẋL, ẏL, ẋR, ẏR, so as to achieve θi =
θDi , i = 1, · · · , n. We propose the control law

Ṗ = −A+BK(ΘD −Θ) (17)
where, (·)+ is the Moore-Penrose pseudoinverse, and K is

an n× n gain matrix.
For n > 4 this control law is definitely not guaranteed to

achieve the desired shape exactly, since we do not have full
controllability of the system, but guarantees exponentially
converges to an invariant set. Figure 7 shows an attempt
to control the shape of a 10-segment model with the
gain matrix K = 0.1I , and the desired shape of ΘD =

[2.83, 2.20, 1.57, 0.94, 0.31,−0.31,−0.94,−1.57,−2.20,−2.83]T

(in radians) that approximates a circle with the boats places
at the south end of it. As evident from Figure 7(b), the
controller was able to achieve a satisfactory approximation
of the desired shape.

However we note that when n = 4, the inverse of A exists,
and hence we have full controllability of the system. From
Equation (16) and (17) the system dynamics becomes Θ̇ =
K(ΘD −Θ). Thus, for any K with positive eigenvalues, Θ
is guaranteed to converge to ΘD. Figure 8 illustrates such
a system made up of 4 links. Starting from a straight line
configuration, we consecutively attain the exact desired shape
of an “U” (Figure 8(b)), followed by that of a right-pointed
“V” (Figure 8(c)), and finally a square enclosure (Figure
8(d)). The gain matrix used is K = 0.1I .

B. Coverage Maximization

The second application is to maximize the coverage area
swept by the rope given a contraint on the maximum ASV
speeds. For this, consider a steady-state (and quasi-static)
motion of the ASVs parallel to each other in a straight line
(Figure 6(a)). Starting from an arbitrary initial configuration,
and letting ẋL = 0, ẏL = v0, ẋR = 0, ẏR = v0, we can
numerically obtain the steady state configurations and drags
by letting the system evolve according to (16) until steady-
state is achieved. The force that each boat needs to exert at
the steady state, fLx , fLy , fRx , fRy can then be computed
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Fig. 7. Shape control: Desired shape is an approximate circle. The dashed
magenta curves in (b) show the trajectories followed by the boats.
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(c) A right-pointed V.
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(d) Enclosure in a box.

Fig. 8. Shape control with complete controllability for a 4-link model. The
dashed magenta curves show the trajectories followed by the boats.

from the quasi-static model (Equations 14) or directly from
the force equations. Due to symmetry, the force applied by
each boat is f0 =

√
f2Lx + f2Ly =

√
f2Rx + f2Ry . At steady

state, this force, f0, depends on the separation D between
the boats. Figure 9(a) shows this dependence (numerically
evaluated) when the speed v0 = 1.0. In the plot, both the
values of f0 and D have been normalized by total length of
the linkage, L.

As noted in the previous section, from the experimental
results, the practical scenario is the case when cS = cV =
0.05. Thus in the following discussion we concentrate on the
cS = cV = 0.05 case. So far we have obtained the functional
form g such that f0/L = g(D/L) at v0 = 1.0. We also note
that f0 should be linear in v0 since in the steady state the
only external forces that the ASVs overcome are the drag
forces, which are linear in the speeds. Thus we conclude
f0/L = v0 g(D/L). Thus, if we know that the maximum
force that an ASV can exert is fmax, the maximum attainable
speed and the separation between the boats will be related by
fmax/L = vmax g(D/L). The rate at which area is swept
by the rope is thus given by

Φ = vmax D = (fmax/L)
D

g(D/L)
= fmax

D/L

g(D/L)
(18)
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Fig. 9.

A plot of Φ against normalized separation (i.e. D/L) for
fmax = 1.0 is shown in Figure 9(b). The maximum rate of
area sweep is attained when the inter-vehicle separation D
is close to 0.8 times the length of the rope.

VII. CONCLUSIONS

In this paper we derived from first principles the partial
differential equations governing that govern the dynamics of
a flexible rope being pulled by two Autonomous Surface
Vehicles. We proposed a discrete approximate model and
experimentally validated the model under certain special
cases. We proposed a control law for controlling the shape
of the discrete model under quasi-static assumptions. We
studied the relationship between coverage rate, the maximum
force that each vehicle can apply, the separation between
the vehicles and their speed. We derived the condition
under which the coverage rate is maximized - an important
capability for efficient skimming operations. In the future
we plan to extend this work to incorporate complex planning
problems and strategies for capturing oil patches on the water
surfaces via caging strategies. We also plan to perform novel
shape control using more than two ASVs.
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