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Summary. We consider the problem of multi-robot exploration and coverage in unknown
non-convex environments. The contributions of the work include (1) the presentation of a
distributed algorithm that computes the generalized Voronoi tessellation of non-convex envi-
ronments (using a discrete representation) in real-time for use in feedback control laws; and
(2) the extension of this method to entropy-based metrics that allow for cooperative coverage
control in unknown non-convex environments. Simulation results demonstrate the application
of the control methodology for cooperative exploration and coverage in an office environment.

1 Introduction

We are interested in considering the following scenario: a team of robots enter an unknown
and non-convex environment. The robots must control to explore the environment for map
construction and converge to a formation in the map that disperses the robots to locations that
permit them to continue to engage in activities such as persistent surveillance. This description
lends itself to a broad class of robotics applications. In this work, we focus on an essential
component toward this scenario: the development of decentralized individual robot control
laws based on uncertain estimates of the environment that drive the team of robots to explore
and cover the environment. The contributions of this work are:

1. the presentation of a distributed algorithm that computes the generalized Voronoi tessel-
lation of non-convex environments (using a discrete representation) in real-time for use
in feedback control laws; and

2. the extension of this method to entropy-based metrics that allow for cooperative coverage
control in unknown non-convex environments.

Therefore, to limit the scope of the presentation, we assume the robots are able to (A) localize
and build maps in a common frame; and (B) communicate.

The presentation begins by motivating the development of a geodesic Voronoi tessellation
in non-convex environments. We detail a search-based algorithm for computing an equiva-
lent tessellation in discrete environments (Sect. 4). We propose a method for computing the
centroid of the Voronoi cells given a tessellation of a discrete environment, permitting the ap-
plication of centroid-based robot control laws for cooperative coverage. In Sect. 5, uncertainty



in the environment description is introduced through the development of an entropy-based
metric; enabling the computation of the instantaneous geodesic Voronoi tessellation given an
uncertain environment. We comment on the coverage and convergence guarantees resulting
from this approach and present results that demonstrate through simulation its application in
an office environment.

2 Related Literature

This work is most closely related to methods proposed in the cooperative exploration litera-
ture and coverage control literature. A common approach toward exploration is frontier-based
exploration where control directions seek to minimize entropy or uncertainty in the robot
pose or map [1]. Coordination for multi-robot exploration is generally accomplished through
explicit coordination designed to reduce redundant exploration or implicit coordination that
occurs when robots communicate and coordinate (e.g. share maps) when in close proximity
but without considering other robots’ history or future plans.

In [2], the authors propose an exploration strategy with feedback control laws that max-
imize information gain by considering uncertainty in both the robot pose and map. A key
contribution of this work (and similar recent works) is the relaxation of the assumption of
robot localization. It is for this reason that we believe the first assumption in the prior sec-
tion is reasonable. A multi-robot exploration strategy is presented in [3, 4], where the robots
coordinate to determine targets best served by each robot that maximize the information gain
for the team of robots. The authors quantify the performance gain due to explicit coordination
and increasing numbers of robots. In [5], experimental results are presented that demonstrate
the use of a team of robots to address a scenario similar to the one described at the begin-
ning of this work. The authors do not consider explicit coordination between robots and note
that this results in redundant exploration. A similar multi-robot exploration study is presented
in [6], where robots explore an indoor office environment while simultaneously localizing
and mapping. Coordination is implicit as the robots exchange and merge maps when in close
proximity.

A common coverage control approach is through the definition of feedback control laws
defined with respect to the centroids of Voronoi cells resulting from the Voronoi tessellation
of an environment. In [7], the authors propose gradient descent-based individual robot con-
trol laws that guarantee optimal coverage of a convex environment given a density function
which represents the desired coverage distribution. The authors of [8] build upon this idea
and develop decentralized control laws that position a mobile sensor network optimally with
respect to a known probability distribution. In [9], this approach is extended to consider near-
optimal controllers that do not require prior knowledge of a desired coverage distribution. To
address the limitation of requiring a convex environment, the authors of [10] propose the use of
geodesic Voronoi tessellations determined by the geodesic distance rather than the Euclidean
distance. An approach that considers both exploration and coverage using Voronoi tessella-
tions is presented in [11]. However, this method differs greatly from ours and assumes that
the boundary of the environment is known. The Voronoi tessellation is computed based on
this assumed convex polygon and the robots control to the centroids of this tessellation and
explore en route.

The primary point of differentiation between our work and existing methods is due to the
fact that we are able to rapidly compute the Voronoi tessellation of non-convex environments
in a distributed manner. The consequence of this result is that we can use the instantaneous



tessellation to compute decentralized robot control laws. By considering exploration and cov-
erage simultaneously, we enforce explicit coordination between the robots and yield optimal
solutions.

3 Background

Let Ω ⊂ RN be a simply connected (in general non-convex) subset of RN that represents
the environment. There are n mobile robots in the environment with on-board range sen-
sors, and in particular the position of the ith robot is represented by pi ∈ Ω and the tes-
sellation associated with it by Wi, ∀i = 1, 2, . . . , n. By definition, the tessellations are
such that I(Wi) ∩ I(Wj) = ∅, ∀i 6= j, where I(·) denotes the interior of a set, and
∪ni=1Wi = Ω. For a given set of robot positions P = {p1, p2, . . . , pn} and tessellations
W = {W1, W2, . . . , Wn} such that pi ∈ Wi, ∀i = 1, 2, . . . , n, the coverage functional is
defined as:

H(P,W ) =

n∑
i=1

H(pi,Wi) =

n∑
i=1

∫
Wi

f(d(q,pi))φ(q)dq,

where d(·, ·) is a distance function defined on Ω, f : R→ R is a smooth and strictly increasing
function in the range of d, φ : Ω → R is a weight or density function, and dq represents an
infinitesimal area or volume element. Throughout this paper we choose f(x) = x2.

Lloyd’s algorithm [12] and its continuous-time asynchronous implementations [7] are dis-
tributed algorithms for minimizingH(P,W ) with guarantees on completeness and asymptotic
convergence to a local optimum when Ω is convex and in an Euclidean distance setting (i.e.
d(p,q) = ‖p− q‖2).

4 Coverage Without Uncertainty

4.1 Geodesic Voronoi Tessellation

An extension of the continuous-time Lloyd’s Algorithm algorithm to non-convex environ-
ments is presented in [10], where the distance function is defined as the geodesic distance
in Ω. Consequently, the Voronoi tessellations under consideration are the geodesic Voronoi
tessellations. That is, for a given P ,

V (P ) = argmin
W

H(P,W ) ⇐⇒ Vi(P ) = {q ∈ Ω | d(q,pi) ≤ d(q,pj), ∀j 6= i} . (1)

Geometric methods for computing such geodesic Voronoi tessellations in non-convex polyg-
onal environments are detailed in [10, 13]. These methods suffer from the inherent drawback
of high complexity in modeling cluttered real environments with noise and small obstacles.
Moreover, in this work we wish to modify the metric such that it is non-uniform in Ω, and
hence d(q,p) is no longer the Euclidean length of the shortest path between q and p lying in
Ω.



Fig. 1. An 8-connected grid graph created from a uniformly discretized environment.

4.2 A Search-Based Algorithm for Finding Geodesic Voronoi Tessellations

We propose a search-based algorithm for finding the geodesic Voronoi tessellations. We be-
gin by uniformly discretizing Ω and creating a graph such that each node or vertex of the
graph corresponds to a cell of the discretization with connections to admissible neighbors (see
Fig. 1). This graph, GΩ, consists of a vertex set, V(GΩ), and edge set, E(GΩ). For a vertex
q ∈ V(GΩ), we use the same notation q to denote the coordinate of the vertex in the con-
figuration space of the agents. N (q) := {s ∈ V(GΩ) | sq ∈ E(GΩ)} denotes the set of
neighboring vertices of q. The vertices joined by an edge ε ∈ E(GΩ) are denoted by vs(ε)
and vt(ε). We associate a cost, c(ε), with every edge ε = vs(ε)vt(ε) ∈ E(GΩ). In particular,
for elementary geodesic Voronoi tessellations, the cost of an edge is its Euclidean length (i.e.
c(ε) = ‖vs(ε)− vt(ε)‖2).

For each of the robots we perform a Dijkstra’s search [14, 15] in GΩ starting from the
vertex where the robot itself is located, pi, and expand all the vertices in GΩ. Thus, at the
end of the expansions, for each vertex q ∈ V(GΩ) we obtain the values of gi(q), ∀i =
1, 2, . . . , n, such that gi(q) gives the cost of the shortest path between pi and q in GΩ. The
geodesic Voronoi tessellation is created by assigning the cells or vertices to the robot which
has the least g-value at that node. That is, Vi = {q ∈ V(GΩ) | gi(q) ≤ gj(q), ∀j 6= i} and
q ∈ Vi ⇐⇒ gi(q) ≤ gj(q), ∀j 6= i. We use the same notation Vi to denote the sub-set of
vertices in V(GΩ) that belong to the Voronoi tessellation Vi.

For the distributed architecture, each robot maintains its own copy of GΩ, updating it (for
probability of occupancy) using its own sensor readings as well as information acquired from
its neighboring robots about parts of their copies of GΩ (described later).

Note that the least cost path between two points and hence the Voronoi tessellation, de-
pends on the discretization of the environment and the definition of connectivity between
neighboring vertices.

Figure 2 depicts geodesic Voronoi tessellations created using this algorithm. The boundary
between two adjacent tessellations is such that the costs of the least cost paths from any cell
on the boundary to either of the two robots that share the boundary are equal.

4.3 Continuous-Time Lloyd’s Algorithm for Discrete Non-Convex
Environments

The continuous-time Lloyd’s algorithm for non-convex environments requires that each mo-
bile robot follows the gradient ofH(P ) := H(P, V (P )) given by the formula [10]:

∂H
∂pi

=

∫
Vi(P )

∂

∂pi
f(d(q,pi))φ(q)dq. (2)



(a) 3 robots in a simple environ-
ment (200× 200 discretized).

(b) 5 robots in an office environ-
ment (170× 200 discretized).

Fig. 2. The geodesic Voronoi tessellation of non-convex workspaces created using a uniformly
discretized 8-connected grid-world. The robot locations are marked by enlarged magenta pix-
els.

In a discretized environment, finding the gradient in (2) approximately reduces to searching
among the neighboring vertices of the robot’s current location such that H(P ) is minimized
for the new robot position in the next time-step. That is, we seek to find

pt+1
i = argmin

p∈N (pt
i)

∫
Vi(P t)

f(d(q,p))φ(q)dq

u argmin
p∈N (pt

i)

∑
q∈Vi(P t)

f(d(q,p))φ(q)∆q,
(3)

where the superscripts denote the time-step, the summation is over all of the nodes in V(GΩ)
that are inside Vi(P t), and ∆q is the area of the discretization cell at q. Thus, the control law
for each mobile robot reduces to driving from the current positions pti to pt+1

i as prescribed
by (3). In order to find pt+1

i from (3) for the ith robot, at time instant t we perform Dijkstra’s
search and expand the states in Vi(P t) starting for each of the states in N (pti). This gives us
the values for d(q,p), ∀p ∈ N (pti),q ∈ Vi(P t); with pt+1

i computed directly from (3) by
computing and comparing the summations for each p ∈ N (pti).

Figures 3(a)-3(d) show the evolution of the geodesic Voronoi tessellations and the tra-
jectories followed by the mobile robots upon following the above control algorithm. In this
example, we set φ(q) = 1. The environment is a 170×200 uniformly discretized 8-connected
grid-world. Starting from the shown configuration convergence is achieved in less than 150
iterations. Running on a single Pentium processor (2.1 GHz, 4 GB RAM), each iteration takes
on average 0.1 s (including computation of the current tessellations and the desired positions
for the next time-step for all robots).

Projection of Centroid Method

In the previous section we do not discuss how to find the centroid, CVi , of the geodesic
Voronoi tessellation, Vi. In general, the direct computation of the generalized centroid,

Cgen
Vi

= argmin
pi∈Vi

∫
Vi

f(d(q,pi))φ(q)dq (4)



in a non-convex environment is difficult [10]. However, a coverage control law over Voronoi
tessellations such as that proposed in [7]:

ui = k(CVi − pi), (5)

requires knowledge of a centroid for the tessellations. Moreover, for exploration, we desire to
implement the standard Lloyd’s Algorithm or a semi-continuous version of it, which invariably
require the computation of a centroid. In order to find an analog of a centroid for a non-convex
tessellation, we project the geometric centroid inside the tessellation. We compute

CVi =

∫
Vi

qφ(q)dq∫
Vi
φ(q)dq

, (6)

and if CVi lies outside Vi, find the point in Vi closest to it:

CVi
= argmin

q∈Vi

‖q−CVi‖. (7)

This is an approximate method. In order to account for the non-uniformity of φ inside Vi, we
may compensate by projecting the centroid in a high φ region in Vi. We modify (7) as,

CVi =


argmin

q∈Vi,φ(q)≥τ
‖q−CVi‖ if it exists

argmin
q∈Vi

‖q−CVi‖ otherwise.
(8)

for some threshold τ , and use this projection.
The control law for the ith robot given a discrete formulation reduces to taking one step

towards CVi(P t) along the shortest path joining pti and CVi(P t) (found via a single Dijkstra’s
search in Vi). This approach requires less computation than the gradient search method of
(3). Further, simulation results suggest that the projection of centroid control method always
converges and in cluttered environments differs little from the results obtained by the gradient
search method. From these observations, we formulate the following conjecture.

Conjecture 1 (Convergence of Projection of Centroid Method). If φ(q) = k < τ is uniform
(constant) for all q, then there exists robot positionsP ∗ = {p∗1, . . . ,p∗n} such that CVi(P∗) =
p∗i , i.e. an equilibrium point, and the Projection of Centroid control method drives the robots
to such a configuration.

Proof for a special case. We present a partial proof for a certain type of Vi. For Euclidean
metric, if the CVi = Cgen

Vi
, this conjecture becomes a theorem and the control law described

above is guaranteed to converge [10]. We thus investigate the cases where CVi indeed is the
generalized centroid. Clearly, CVi = Cgen

Vi
⇒ CVi = Cgen

Vi
(since Cgen

Vi
always lies inside

Vi). The condition under which CVi = Cgen
Vi

is that d(q,CVi) = ‖q−CVi‖ ∀q ∈ Vi. This
condition is equivalent to saying that Vi be star-shaped [16] with respect to CVi . A trivial
case of this condition is when Vi is convex, when the algorithm becomes equivalent to the
continuous-time Lloyd’s Algorithm [7].

For comparison, Figs. 3(e)–3(h) show the evolution of the geodesic Voronoi tessellations
and the trajectories followed by the mobile robots using this control method. Once again, we
use φ(q) = 1, and convergence takes place in less than 150 iterations. However in this case
the computation time per iteration is on an average 0.03 s.



(a) t = 0 (b) t = 10 (c) t = 50 (d) t = 150 (con-
verged)

(e) t = 0 (f) t = 10 (g) t = 50 (h) t = 150 (con-
verged)

Fig. 3. Continuous-time Lloyd’s algorithm in a discretized setting for optimal coverage. Fig-
ures 3(a)-3(d) use the gradient search method while Figures 3(e)-3(h) use the projection of
centroid method.

5 Simultaneous Exploration and Coverage of Unknown or
Partially-known Environments

In this section, we consider the problem of deploying n mobile robots in an unknown or
partially known environment, which upon collaborative exploration of the environment, will
converge to an optimal or near-optimal coverage.

5.1 Entropy as density function

In order to address this problem each mobile robot maintains and communicates a probability
map for the discretized environment such that p(q) is the probability that the vertex q is inac-
cessible (i.e. occupied or represents an obstacle), for all q ∈ V(GΩ). A threshold on the value
of probability determines whether a particular node in V(GΩ) is occupied/inaccessible for
computation of the Geodesic Voronoi tessellations as well as control. Moreover the Shannon
entropy for each cell can be computed as follows,

e(q) = p(q) ln(p(q)) + (1− p(q)) ln(1− p(q)). (9)

This gives us an Entropy map, i.e. a value of entropy associated with each vertex q - a map that
represents uncertainty or the need to gather information within the environment. The Shannon
entropy is such that it assumes high values for vertices for which the uncertainty is high (i.e.
probability is close to 0.5), whereas it is low for known or visited vertices. Thus, we identify
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Fig. 4. Entropy-weighted Voronoi tessellation.

the weight or density function φ(·) with the entropy e(·). This, by the construction of the
control laws described before, will drive the mobile robots towards regions of high entropy
within the robot’s own tessellation, hence resulting in exploration of the environment.

For exploration of an unknown environment it is desired that we follow an analog of
the traditional Lloyd’s algorithm, where each robot visits completely a computed projected
centroid of a tessellation at an earlier time-step (we call it a target), hence exploring the region,
and subsequently recompute the next target, which is the projected centroid of the current
tessellation.

5.2 Entropy-Based Metric

The geodesic Voronoi tessellation performed according to (1) ensures that the boundaries of
the tessellations “bisect” the area lying between the robots. While the metric d for this can be
the geodesic distance in the case of the coverage problem, for exploration and for environments
with uncertainty the tessellation boundaries need to be such that they “bisect” the uncertainty
(or entropy) among the adjacent robots for cooperative exploration. This notion is illustrated
in Fig. 4, where a high entropy region is placed asymmetrically between two robots in a
convex environment without obstacles. The dashed line shows the boundary of a Voronoi
tessellation created using the standard distance metric. However, one mobile robot has a larger
unexplored region than the other. An alternate division is depicted with a solid line that splits
the unexplored region equally.

We now redefine d(·, ·) to accommodate uncertainty in the tessellation. Let Γ(p,q) rep-
resent the set of all paths in Ω connecting p and q. Then the original definition of the geodesic
distance is written as d(p,q) = minγ∈Γ(p,q)

∫
γ
dl, where dl represents an elemental length

along γ. We modify the definition as follows:

d(p,q) = min
γ∈Γ(p,q)

∫
γ

e(r)dl,

where r is a point on γ.
In terms of finding the Voronoi Tessellations by performing Dijkstra’s searches in GΩ as

described earlier, the only required change is to weigh the edges of the graph GΩ by entropy



in those regions instead of the Euclidean length of the edges. In particular, we now define the
cost of an edge ε as

c(ε) =
e (vs(ε)) + e(vt(ε))

2
+ η‖vs(ε)− vt(ε)‖2

where we add the second therm with a very small value of η in order to compensate for
noise in near-zero values of entropy and to make sure that the cost of an edge doesn’t vanish.
Performing Dijkstra searches in this weighted graph and creating tessellations using the same
procedure as before will split the unexplored regions between two neighboring robots equally.

5.3 Time Dependence of Entropy, Coverage, and Convergence

We now detail how the probability map is updated based on the sensor readings. For the
discussion that follows, pt(q) represents the estimated probability of occupancy of q at the tth

iteration based on all measurements.

Inter-robot Communication

As discussed earlier, for the distributed architecture, each robot maintains its own copy of
probability and entropy maps. Each updates its own maps based on readings from its own on-
board sensor as well as information acquired from its neighboring robots about parts of their
copies of their probability maps. A sensor fusion model (described in next section) is used
to aggregate the data. For communicating its own probability map to other robots, each robot
broadcasts the new information acquired by its own sensor over a time window or phase. Es-
sentially the broadcasting of probability maps by each robot is done in phases. During a phase,
a robot broadcasts a constant message (part of its own probability map) with a fixed times-
tamp over and over (repeatedly). This is to make sure that other robots receive this message.
The robot also broadcasts its unique identity along with the message. Also, instead of broad-
casting the whole probability map in each phase, each robot broadcasts only whatever new
it has sensed during the previous broadcast phase. Thus the broadcasted information actually
comprises of a small window in the whole probability map as well as in time, inside which the
probability readings have changed. This makes each broadcast messages rather small. Essen-
tially each robot maintains two buffers: The current sensing buffer, and the broadcast buffer.
New readings from a robot’s own laser sensor are added to the current sensing buffer, while
things in the broadcast buffer are broadcasted. At the end of a broadcast phase the content of
the broadcast buffer is pushed into the main probability map maintained by the robot, the con-
tent of the current sensing buffer is copied into the broadcast buffer, and the current sensing
buffer is cleared for new sensor data. The information received from other robots about their
map are directly added to the main probability map. This differential approach of communi-
cation significantly reduces the communication overhead required for sharing map data.

Sensor Model

We use a sensor model for each robot, si(r), which gives the probability that the ith robot’s
sensor measures the state of a grid cell located at a distance r from it correctly. In particular,
in our simulations we use,
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Fig. 5. The sensor model.

si(r) =

{
si,n + r2

R2
i
(si,f − si,n) if r ≤ Ri
0 otherwise,

where Ri is the sensor range, and 0 ≤ si,f ≤ si,n ≤ 1 gives the far and near values of the
confidence of the sensor.

Thus, if at time-step t the sensor of the ith robot receives a measurement zti(q) (which is
1 for occupied, and 0 for unoccupied) for the cell q, the probability that the cell is occupied
based only on this measurement is given by uti(q) = zti(q) si(‖q−pti‖) + (1− zti(q))(1−
si(‖q − pti‖)). We use a sensor fusion model to compute the net probability of occupancy
for the cells based on the individual measured probabilities. In particular, one can compute

pt(q) = g−1

(∑
i,t′ g(u

t′
i (q))∑

i,t′ 1

)
, where g is a strictly increasing function in [0, 1], and the

summations are taken over all the measurements by all sensors over all time instants [1].
For our experiments we choose g(x) = xm, m > 0. We note that by choosing m→∞, the
value of pt(q) essentially becomes the supremum of all the measurements for q. Alternatively,
choosing g(·) = log(·) gives the geometric mean of the measurements, which has also been
used in [1].

In order to compensate for the sensor noise the entropy map is smoothed by passing it
through a min-filter. The smoothed entropy map is consequently used for computing the den-
sity function.

Time-varying density function

A consequence of updating the probability map is that the entropies, and hence the weight
function, φ, becomes a function of time:

φ(q, t) = e(q, t) = pt(q) ln(pt(q)) + (1− pt(q)) ln(1− pt(q)).

Conjecture 2 (Exploration and Convergence Guarantee). Assuming Conjecture 1 is true and
the individual robot motion at each time step is determined by the Projection of Centroid
Method (8), there exists a τ ′, 0 < τ ′ ≤ τ such that choosing φ(q, t) = max(τ ′, e(q, t))
ensures complete exploration of the environment and convergence of the algorithm.

Proof. We assume there exists an ε radius around each mobile robot such that it is able to sense
the occupancy and reduce the entropy of the cells within this radius below the value of τ ′ in a
permanent manner. Due to the choice of our control method, each mobile robot drives closer



to CVi at every time-step. However, as long as there exists at least one cell q ∈ V(GΩ) such
that e(q, t) ≥ τ , a robot will drive to that cell where φ(q, t) = max(τ ′, e(q, t)) ≥ τ (due
to equation (8) and since τ ′ ≤ τ ), and subsequently reduce the entropy of the region around
q below τ ′. This process continues until the entropy of all the cells in the map goes below
τ such that φ(q, tcovered) = max(τ ′, e(q, tcovered)) ∈ [τ ′, τ) for all q. This guarantees
exploration of the environment with all cells having final entropy less than τ . Note that while
τ ′ is sensor specific, τ is a design variable. Thus, if we choose τ = τ ′, the density function
becomes φ(q, tcovered) = τ ′ = τ , which is constant and independent of time throughout the
environment. Consequently by Conjecture 1 convergence is achieved at some tconverged ≥
tcovered.

The overall algorithm

So far we have described the various components of the algorithm. To put those in perspective,
the steps below are what goes on at a higher level on each robot in sequence while exploring
and covering an unknown or partially known environment in a distributed fashion.

i. Each robot maintains its own probability, entropy and obstacle maps.
ii. Each robot use sensor data as well as communicate with its neighbors to update the maps.

They also communicate their locations.
iii. Each robot computes its own entropy-weighted Voronoi tesellation and the corresponding

weighted projected centroid, and take a step towards that along the shortest path.

5.4 Results

Figure 6 shows the screenshots from a simulation of four robots exploring a large (1000×783
uniformly discretized) cluttered environment. The boundaries of the tessellations are shown
by the bold blue lines. The robot positions are encircled by cyan circles. The dark lines show
the robot trajectories. The intensity of the pixels in the environment represent the entropy,
and the unreachable regions are colored in black. The mobile robots begin at the room in the
lower left with no prior knowledge about the environment, hence the highest value of entropy,
ln(0.5), is assigned to each cell. Besides collaboratively exploring the environment the robots
distribute themselves in such a way that they maintain proper coverage of the explored envi-
ronment both during exploration and after completely building the map. The mobile robots
attain full exploration, coverage, and convergence within t = 2750 iterations. Each iteration,
which involves computing the voronoi tessellations as well as the control commands for all
the robots, takes about 1.7s running on a single processor as described in earlier results.

6 Conclusion and Future Work

We presented a search-based algorithm for computing a geodesic Voronoi tessellation in dis-
crete environments. We propose a method for computing the centroid of the Voronoi cells
given a tessellation of a discrete environment, permitting the application of centroid-based
robot control laws for cooperative coverage. Uncertainty in the environment description is in-
troduced through the development of an entropy-based metric; enabling the computation of



(a) t = 0 (b) t = 500

(c) t = 1000 (d) t = 1600

(e) t = 2600 (complete map built) (f) t = 2750 (convergence)

Fig. 6. Exploration and coverage of a large unknown environment. Green indicates uncertainty.

the instantaneous geodesic Voronoi tessellation given an uncertain environment. We comment
on the coverage and convergence guarantees resulting from this approach and present results
that demonstrate through simulation its application in an office environment.

There are a few limitations in this paper that we are currently working on. First, as we
move to experimentation with real robots, we must address real world issues surround local-
ization and state estimation for the robots as well as inter-robot communication. To this end,
we have already integrated our simulation model within the ROS (Robot Operating System)



Fig. 7. The Scarab mobile robot platform.

framework, and have started extending the implementation for running preliminary exper-
iments on multiple Scarab robots [17] (see Fig. 7) which allow for on-board computation
and localization using laser range sensors and monocular cameras. We are incorporating the
anisotropy and finite field-of-view constraints that are characteristics of these sensors within
our sensor model and the uncertainty associated with localization in our entropic measure.
In addition, we are exploring models for inter-robot communication to relax the current as-
sumption of a complete communication graph in the paper. Finally, we are also addressing
algorithmic improvements to allow distributed computation and to enhance efficiency.
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