
TOPOLOGICAL AND GEOMETRIC TECHNIQUES IN

GRAPH SEARCH-BASED ROBOT PLANNING

Subhrajit Bhattacharya

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2012

Supervisor of Dissertation Co-Supervisor

Vijay Kumar, Professor, Maxim Likhachev, Research Assistant Professor,
Department of Mechanical School of Computer Science,
Engineering and Applied Mechanics, Robotics Institute,
University of Pennsylvania. Carnegie Mellon University.

Graduate Group Chairperson

Jennifer Lukes, Associate Professor,
Department of Mechanical Engineering and Applied Mechanics.

Dissertation Committee
George J. Pappas, Professor, Department of Electrical and Systems Engineering.
Daniel E. Koditschek, Professor, Department of Electrical and Systems Engineering.
Robert Ghrist, Professor, Department of Mathematics.

TOPOLOGICAL AND GEOMETRIC TECHNIQUES IN

GRAPH SEARCH-BASED ROBOT PLANNING

COPYRIGHT

2012

Subhrajit Bhattacharya

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-

sa/3.0/.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

I would like to express my sincere gratitude towards my advisors, Dr. Vijay Kumar and Dr.

Maxim Likhachev, for their continuous support and guidance. Their mentoring and help all these

years have been indispensable in my research that has culminated in this thesis.

I would like to thank the rest of my thesis committee, Dr. George J. Pappas, Dr. Daniel E.

Koditschek and Dr. Robert Ghrist, for their valuable time, effort and suggestions.

My sincere gratitude goes to Dr. Robert Ghrist and Dr. David Lipsky for sharing their valuable

insights into topics on algebraic topology, and for collaborating on the work related to homology

of punctured Euclidean spaces. I would also like to thank Dr. Nathan Michael and Dr. Luciano

Pimenta for their collaboration on the work on exploration and coverage.

My sincere thanks to the Department of Mechanical Engineering and Applied Mechanics, and

the GRASP laboratory of University of Pennsylvania for providing such a wonderful opportunity

and an amazing academic experience throughout my doctoral studies.

My special thanks goes to the Wikimedia foundation for providing easy and quick reference to a

vast amount of knowledge through Wikipedia. Much of this thesis, especially the illustrations in it,

wouldn’t have been made possible without the amazing community-maintained software provided

by the Blender foundation, Apache software foundation and other open-source software – my sincere

appreciation and thanks to them. I would also like to thank Dr. N. J. Wildberger, UNSW, for his

online video lectures on algebraic topology, and Mr. D. Simeonov and Mr. M. Fleder, MIT, for

providing the example in Figure 3.3(a) of this thesis.

Finally, my heartiest thanks goes to my parents, friends and family for their support and en-

couragement all along.

iii

ABSTRACT

TOPOLOGICAL AND GEOMETRIC TECHNIQUES IN

GRAPH SEARCH-BASED ROBOT PLANNING

Subhrajit Bhattacharya

Vijay Kumar and Maxim Likhachev

Search-based techniques have been widely used in robot path planning for finding optimal or close-

to-optimal trajectories in configuration spaces. They have the advantages of being complete, optimal

(up to the metric induced by the discretization) and efficient (in low dimensional problems), and

broadly applicable, even to complex environments. Continuous techniques, on the other hand,

that incorporate concepts from differential and algebraic topology and geometry, have the ability

to exploit specific structures in the original configuration space and can be used to solve different

problems that do not lend themselves to graph-search based techniques. We propose several novel

ideas and develop new methodologies that will let us bring these two separate techniques under one

umbrella. Using tools from algebraic topology we define differential forms with special properties

whose integral reveal topological information about the solution path allowing us to impose topolog-

ical constraints on the planning problems. Metric information can be used along with search-based

techniques for creating Voronoi tessellations in coverage and exploration problems. In particular,

we use entropy as a metric for multi-robot exploration and coverage of unknown or partially known

non-convex environments. Finally, in multi-robot constrained planning problems we exploit certain

special product structure in the high dimensional configuration space that combine the advantages

of graph search methods and gradient descent algorithms allowing us to develop powerful tools to

solve very high-dimensional planning problems.

iv

Contents

1 Introduction 1

1.1 Configuration Spaces . 1

1.1.1 Continuous Approaches to Robot Motion Planning 2

1.1.2 The Discrete Approach . 4

1.2 Contributions of this Thesis . 7

2 Preliminaries 9

2.1 Basic Algebraic Topology . 9

2.1.1 Background: Point-set Topology . 9

2.1.2 Motivation of Algebraic Topology . 12

2.1.3 Formal Description of Homology . 16

2.1.4 Properties of Homology . 20

2.1.5 Cohomology . 22

2.2 Elementary Riemannian Geometry . 24

2.2.1 Manifolds, Coordinate Charts, Atlases and Tangent Space 24

2.2.2 Riemannian Metric, Geodesics and Curvature 29

2.3 Graph Search Algorithms . 34

2.3.1 Dijkstra’s Algorithm . 34

2.3.2 A* Algorithm . 35

3 Search-based Path Planning with Topological Constraints in 2 and 3 Dimensional

Euclidean Spaces 38

3.1 Introduction . 38

3.1.1 Motivation: Homotopy Classes of Trajectories 38

3.1.2 Capturing Topological Information in Search-based Planning 39

3.1.3 H-signature as Class Invariants for Trajectories 40

3.2 Homotopy and Homology Classes of Trajectories . 41

3.3 H-signature in 2-dimensional Euclidean Configuration Space 43

3.3.1 Background: Complex Analysis . 43

3.3.2 Designing a H-signature . 44

3.3.3 Computation for a Line Segment . 46

3.4 H-signature in 3-dimensional Euclidean Configuration Space 47

v

3.4.1 Background: Electromagnetism . 48

3.4.2 Designing a H-signature . 50

3.4.3 Computation for a Line Segment . 52

3.5 H-signature Augmented Graph . 54

3.5.1 Uses of the H-signature Augmented Graph 56

3.5.2 Theoretical Analysis . 57

3.6 Results . 57

3.6.1 Two-dimensional Configuration Space . 57

3.6.2 Three-dimensional Configuration Space . 64

4 Identification of Homology Classes in Euclidean Spaces with Punctures 68

4.1 Introduction . 68

4.2 Simplifying the Problem by Taking (D −N)-dimensional Equivalents of Obstacles . 69

4.2.1 Reduced Problem Definition . 72

4.3 Preliminaries on Linking Numbers . 73

4.3.1 Definitions . 73

4.3.2 Propositions on Linking Number . 76

4.3.3 Computation of Intersection/Linking Number for Given Cycles 77

4.4 Computation in Our Specific Problem . 78

4.4.1 Computation of the integral in φS . 80

4.4.2 Incorporating Multiple Connected Components of S̃ 82

4.5 Validations in Low Dimensions . 82

4.5.1 D = 2, N = 2 : . 83

4.5.2 D = 3, N = 2 : . 83

4.5.3 D = 3, N = 3 : . 85

4.6 Examples and Applications . 85

4.6.1 An Example for D = 5, N = 3 . 85

4.6.2 Exploring Paths in Different Homotopy Classes in a 4-dimensional Space . . 89

4.7 From Homology to Homotopy . 89

4.7.1 Results . 93

5 Coverage and Exploration Using Search-based Methods 95

5.1 Introduction . 95

5.2 Background: Coverage Functional, Voronoi Tessellation and Continuous-time Lloyd’s

Algorithm . 96

5.3 Generalization to non-Euclidean Distance Function 98

5.4 Graph-search Based Lloyd’s Algorithm . 103

5.4.1 Graph-search Based Voronoi Tessellation . 104

5.4.2 Algorithm for Tessellation and Control Computation 106

5.4.3 Overall Algorithm: Adapted Lloyd’s Algorithm 107

5.4.4 Results . 108

5.5 Application to Simultaneous Coverage and Exploration Problem 110

5.5.1 Entropy as Density Function . 111

vi

5.5.2 Entropy-Based Metric . 111

5.5.3 Time Dependence of Entropy, Coverage, and Convergence 112

5.5.4 Results . 115

6 Dimensional Decomposition for Efficient Planning 119

6.1 Motivation . 119

6.2 Problem Definition . 121

6.2.1 The Optimization Problem . 121

6.2.2 Problem Assumptions . 121

6.3 The Algorithm . 122

6.4 Theoretical Analysis . 124

6.4.1 Notations and Preliminaries . 124

6.4.2 Theorems . 125

6.5 Discrete Solution for the Sub-problems . 127

6.5.1 Basic Graph Construction . 128

6.5.2 Product with Task Graph . 128

6.6 Results . 130

6.6.1 An Exact Implementation . 130

6.6.2 A Discrete Implementation . 131

6.6.3 Additional Complexity with Tasks . 135

7 Coordinate Transformation for Efficient Optimal Planning in Environments with

Non-Euclidean Metric 139

7.1 Introduction and Motivation . 139

7.1.1 Problem Definition . 140

7.1.2 A Motivating Example in Two Dimensions 141

7.2 Embeddings in Euclidean Spaces . 144

7.2.1 Isometric Embedding in Euclidean Space . 144

7.2.2 Non-isometric Embedding with Geodesics Mapping to ‘Straight Lines’ 145

7.3 Orthogeodesic Embedding of Spaces of Constant Intrinsic Curvatures 145

7.3.1 Motivating Example: Gnomonic Projection of Half-sphere 145

7.3.2 Klein-Beltrami Model of the Hyperbolic Plane 147

7.3.3 Coordinate Charts that Induce Orthogeodesic Embedding 151

8 Conclusion 153

A Looping and Non-looping trajectories in 3-dimensional Configuration Space 155

B Proofs Related to Homology of Punctured Euclidean Spaces 158

B.1 Proof of Proposition 4.2.1 . 158

B.2 Proof of Proposition 4.3.5 . 160

B.3 Proof of Proposition 4.4.1 . 161

vii

C Proofs Related to Distributed Optimization 163

C.1 Proof of Theorem 6.4.2 . 163

C.2 Proof of Theorem 6.4.4 . 166

C.3 Proof of Theorem 6.4.5 . 166

viii

List of Tables

3.1 Statistics of searching least-cost paths in first 10 homotopy classes in 10 randomly

generated environments. 58

6.1 Performance of the algorithm tested for extended rendezvous in the scenario described

in Figure 6.6. 134

6.2 Performance of the algorithm tested in the scenario of Figure 6.11. The table shows

the min, max and average time required for finding solution over 10 runs. 138

ix

List of Figures

1.1 Examples of simple configuration spaces. 2

1.2 Configuration space of a unicycle point robot, and actions due to kinematic con-

straints. For simplicity we have eliminated obstacles in the environment. 3

1.3 Navigation function for robot path planning in R2 −O. 3

1.4 Graph created by uniform discretization of an environment. This specific type of

graph shown in the figures is referred to as the 8-connected grid. 5

1.5 Some vertices and edges emanating from them in a lattice graph created by discretiz-

ing the configuration space of a dynamic, non-holonomic car. 6

2.1 Homeomorphic spaces and homotopic functions. 10

2.2 A deformation retraction of X to A ⊆ X. For each t, the green area is F (X, t). . . . 11

2.3 A cylinder (hollow, without lids) and a solid torus are homotopy equivalent. Each of

them is homotopy equivalent to a circle. 12

2.4 Boundary operator acting on a chain twice gives an empty chain. 13

2.5 Distributivity of Boundary Operator. 14

2.6 A 2-chain and its boundary, with coefficients (which includes direction information)

represented by colors. 15

2.7 A schematic representation of a chain complex. 17

2.8 Illustration of chain, cycle and boundary. 18

2.9 Cycles in same and different homology classes. Discretization and color coding of

coefficients similar to before (Figure 2.8). 19

2.10 Relative chains on C1(X,S), and chains that are relative cycles and relative boundaries. 20

2.11 The rank of homology group gives the Betti number. 21

2.12 Two cocycles, α1, α2 : C1(X)→ R, acting on various cycles, σ. 23

2.13 Topological spaces that are manifolds (a) and that are not manifolds (b). 25

2.14 A chart and an atlas on the topological circle. 26

2.15 Chart Transition. 27

2.16 An infinitesimal element on a curve. 29

2.17 Curvature: Extrinsic vs. Intrinsic. 33

2.18 Illustration of progress of Dijkstra’s algorithm. 35

2.19 Illustration of progress of A* algorithm. The open set is marked by empty blue circles. 36

2.20 The two different types of heuristics for an 8-connected grid graph. 37

x

3.1 Additivity of integration can be exploited in graph search algorithm. 40

3.2 Illustration of homotopy and homology equivalences. In this example τ1 and τ2 are

both homotopic as well as homologous. 42

3.3 Examples where the trajectories are homologous, but not homotopic 42

3.4 Cauchy Integral Theorem and Residue Theorem . 44

3.5 Two trajectories in same and different homotopy classes 46

3.6 Application of Biot-Savart law and Ampere’s law to robot path planning with topo-

logical constraints in 3-D. 48

3.7 Examples of obstacles in 3-D. (a-e) induce homotopy classes, (f) does not. 49

3.8 Illustration of Constructions 3.4.3 and 3.4.4. 50

3.9 Closed-form computation of magnetic field. 53

3.10 A trajectory in the original configuration space is represented by a path in the discrete

graph. 54

3.11 The topology of the augmented graph, GH (right), compared against G (left), for a

cylindrically discretized 2-dimensional configuration space around a circular obstacle 56

3.12 Exploring homotopy classes in 1000×1000 discretized environments to find least cost

paths in each . 58

3.13 Exploring homotopy classes by blocking the class obtained from previous search. The

blue shaded region shows the projection of the nodes expanded in GH on to G. . . . 58

3.14 Homotopy class constraint determined using suboptimal key-point generated trajectory. 59

3.15 100 × 100 discretized environment with 2 representative points on the central large

connected walls. 60

3.16 Planning with non-Euclidean length as cost as well as homotopy class constraint . . 60

3.17 Planning with time as an additional coordinate. The postion of the agent is denoted

by R in figures (c)-(h). 61

3.18 Exploring homotopy classes using a Visibility Graph 62

3.19 The arm end effector fails to follow the shorter trajectory due to limited length of

the arm. 63

3.20 The longer trajectory can be followed by the end effector. 63

3.21 The arm end effector fails to follow the shorter trajectory due to joint angle limits. . 64

3.22 The arm end effector succeeds in following the longer trajectory. 64

3.23 Exploring homotopy classes in X − Y − Z space. 65

3.24 An environment with 7 unbounded pipes. 66

3.25 Cumulative time taken and number of states expanded while searching GH for 10

homotopy classes in the problem of Figure 3.24(a). 66

3.26 Screen-shots from an example with two moving obstacles showing the exploration of

4 homotopy classes in a dynamic environment. 67

4.1 Obstacles, O, can be replaced by their equivalents, S, and that will not alter the

homology class of the (N − 1)-cycles in the complement space. 69

4.2 A solid torus, and its valid/invalid replacements. 70

xi

4.3 A hollow (or thickened) torus as an obstacle in a D = 3 dimensional space, with

N = 2 for our problem. 71

4.4 Illustration of intersection number in R3 with N = 2 in light of Definition 4.3.1. . . . 73

4.5 A simplified illustration of intersection number and linking number in R3 with N = 2. 75

4.6 Examples and counter-examples of uniqueness of linking number – a consequence of

Proposition 4.3.3. 76

4.7 The specific problem under consideration, illustrated for D = 3, N = 2. 79

4.8 Schematic illustration of some lower dimensional cases of the problem. 82

4.9 A coarse triangulation using parameters θ′, φ′, θ and φ for creating a simplicial

complex for the example in Section 4.6.1. 87

4.10 Screenshots from exploration of 3 homotopy classes in a X − Y − Z − Time config-

uration space. 88

4.11 An arbitrary map f : S1 → (RD−S̃) is homotopic to summation of maps, f1+f2+f3,

such that ĩk ◦ fj is non-trivial for exactly one k (= κj). 90

4.12 Graphical proof for the fact that the proposed algorithm computes the semitopy class

of f . 93

4.13 The first 10 homology classes (Definition 3.2.2) of trajectories. They are in different

homotopy classes as well. 94

4.14 The first 10 homotopy classes of trajectories. The trajectory in the 9th homotopy

class was missing from Figure 4.13. 94

5.1 Voronoi tessellation of a rectangular region with n = 10 robots. 97

5.2 Presence of holes/punctures (due to obstacles) in the Euclidean space changes the

distance function in the punctured space. 98

5.3 Relationship between tangent to a geodesic and the derivative of the distance function. 99

5.4 The ‘geodesic Voronoi tessellation’ of non-convex workspaces. 104

5.5 Illustration of progress of the Basic Tessellation algorithm in a environment with

an L-shaped obstacle. 105

5.6 Adapted Lloyd’s algorithm in a L-shaped environment. 109

5.7 Adapted Lloyd’s algorithm in a real indoor environment. 110

5.8 Radii of the sensor footprints of the robots in simulation of Fig. 5.7. 110

5.9 Entropy-weighted Voronoi tessellation. 112

5.10 The sensor model. 113

5.11 Exploration and coverage of an unknown environment 115

5.12 Exploration and coverage of a large unknown environment. Green indicates uncertainty.116

5.13 ROS implementation of coverage and exploration. 117

6.1 Demonstration of convergence of the proposed distributed algorithm towards global

optimal solution with progress of iterations. 121

6.2 The task graph Υi, and its product with Hi. 129

6.3 Converged Solutions . 131

6.4 Planning in environment with three interconnected rooms 132

6.5 Extended rendezvous in environment with three interconnected rooms 133

xii

6.6 Extended rendezvous in a real environment . 134

6.7 Rendezvous to exchange information in a 3-dimensional environment. 135

6.8 Planning for two robots each with two tasks and a constraint to meet during their

travel. 136

6.9 Two robots exploring certain rooms and rendezvousing to exchange information. . . 137

6.10 Three robots exploring certain rooms and rendezvousing to exchange information. . 137

6.11 Two robots with one task each. This is the solution from one of the randomized runs.138

7.1 Suboptimality due to discretization. 140

7.2 The planning problem in a zero-curvature space. 142

7.3 Gnomonic projection gives an orthogeodesic embedding of the half sphere. 146

7.4 The metric in a constant positive curvature space, and gnomonic projection of the

space. 148

7.5 Robot planning problem in a metric space with constant positive curvature. 149

7.6 The hyperbolic plane. 150

A.1 Looping and non-looping trajectories. 156

A.2 An infinitely long skeleton and h-signature of a straight line segment. 157

xiii

Chapter Dependencies

Ch. 2
Sec. 2.1

Ch. 2
Sec. 2.2

Ch. 2
Sec. 2.3

Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7

Topology, Algebraic Topology

Riemannian Geometry

Graph Search Algorithm, Optimization

Appx. A

Legend:

Appx. B Appx. C

Ch. 1

Weak dependency

Strong dependency

Ch. 8

The above diagram gives an overview of how the chapters and sections in this thesis depend on

each other. The Chapter 2 discusses some of the preliminary mathematical and algorithmic tools

used in this thesis. How much depth those discussions attain is approximately indicated by the

length of the gray bar below each section of the chapter in the above diagram. The colored bars

below each chapter approximately indicate how much the corresponding chapter uses the respective

mathematical/algorithmic tools.

xiv

Chapter 1

Introduction

1.1 Configuration Spaces

Many problems in robotics involve a configuration space. Configuration space or C-space of a robot

or a system of robots is the abstract space of possible states or configurations that the system can

attain. Thus each point in the C-space corresponds to a possible state of the robot(s) in the real

environment. Robotics problems, especially planning problems, typically involve navigation of the

system through the C-space space in order to achieve certain tasks or objectives. This translates

to finding a 1-dimensional curve (a trajectory) in the C-space that the system needs to follow.

Typically C-spaces are smooth manifolds and any curve on it is a possible trajectory for the system.

However, presence of kinematic and dynamic constraints may require that the tangent at any point

on the trajectory lies within a specific subset of the tangent space at the point of the C-space.

Furthermore, in presence of a metric in the C-space or a more general measure for 1-dimensional

curves in the space, one can talk about optimality of the trajectory.

Typically the C-space of a system can be parametrized by the different state variables corre-

sponding to the different degrees of freedom. For example, the configuration space of a single point

mobile robot navigating in a unbounded 2-dimensional flat plane with obstacles is simply R2 −O,

where O represents the set of points on the plane that make up the obstacles (Figure 1.1(a)).

Similarly, the configuration space of a planar robot arm with two links and no joint angle limits

(Figure 1.1(b)) is a torus, T = S1 × S1, each point on which correspond to an unique pair of joint

angles θ1, θ2 (Figure 1.1(c)). One can generalize the notion of C-space for a system with multiple

robots. For example, if C = R2 − O is the configuration space of a point robot as described in

Figure 1.1(a), the presence of n robots in the environment will result in a joint configuration space

for the system of n robots described by C = C × C × · · · × C − ∆ = Cn − ∆, where we take the

product of n copies of the C-spaces corresponding to each robot, and remove from it the diagonal

that represents collision of the robots (i.e., ∆ = {[p1,p2, · · · ,pn] ∈ Cn | pi = pj for some i 6= j}).

Clearly, the joint configuration space is a 2n dimensional manifold.

We now impose a very simple additional structure to the C-space of a point robot. Let us

consider a unicycle model of the point robot [20], which means, in addition to the position (x, y),

the robot has an orientation (θ). Thus the configuration space of the robot is now (R2 − O) × S1

1

oo11

oo22

The robot

(a) The configuration space of a
point robot navigating on a plane
with obstacles o1 and o2 is R2−(o1∪
o2)

θ1

θ2

(b) A 2-link robotic arm is described
by the state variables θ1 and θ2.

θ1

θ2

(c) The configuration space of a 2-
link robotic arm is the 2-torus.

Figure 1.1: Examples of simple configuration spaces.

(a subset of SE(2)). Moreover, the unicycle model of the robot is non-holonomic since the robot

can only move forward along the direction it is oriented, or rotate at a fixed place (i.e. x, y remains

fixed, while θ changes). So at point p = (x, y, θ) in its configuration space, the robot can move

along (ẋ, ẏ, θ̇) = (v cos(θ), v sin(θ), ω), for some v ∈ R+ and ω ∈ R (representing forward and angular

speeds). Thus the possible directions of motion is a 2-dimensional manifold generated by v and ω.

This is the space of possible actions at (x, y, θ), which, in general, may not be a vector space, and in

this particular example is a half space (a subset of the tangent space TpC). Attaching this space of

possible actions to every point of the C-space (Figure 1.2(a)), we obtain a fiber bundle. The fiber

bundle itself is a 5-dimensional manifold, sections of which give vector fields in the configuration

space. A valid trajectory in the C-space needs to be such that the tangent at every point on it lies

in the set of possible actions at that point (Figure 1.2(c)).

1.1.1 Continuous Approaches to Robot Motion Planning

The problem of navigating a robot (or a system of robots) from a start coordinate to a goal coordi-

nate in the C-space is of much interest in robotics [55] and is typically referred to as “goal directed

navigation”. In continuous planning methods, one tries to derive either open loop trajectories [87]

or closed loop feedback policies [69, 15] that avoid obstacles while satisfying constraints on the

robot dynamics. However, it is difficult to establish completeness and convergence results except

in special cases. One school of approach in solving the problem of goal directed navigation for a

fixed goal coordinate in the C-space is to generate a vector field in the entire C-space that would

drive the system towards the goal coordinate. However in most C-spaces, non-trivial topology and

the presence of obstacles result in great challenges in generating such vector fields. In addition,

kinematic and dynamic constraints pose additional difficulties.

For a point robot navigating on a flat plane, one may hope to find a potential function, the

gradient of which would give the desired vector field. However, initial attempts to construct potential

functions like that suffered from lack of global convergence due to presence of local minima [51, 52,

15]. One of the most intriguing and elegant constructions to deal with the problem successfully

was that of a navigation function introduced in [70]. The basic version of this machinery lets one

2

x
y

θ

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π ≡ 0

identify

(a) The configuration space R2 × S1, and the ac-
tion space attached to every point in it (the arrows
in the figure are some representative actions – the
action spaces themselves are half-spaces).

θ = 0

θ = π/4

θ = π/2

θ = 3π/4

θ = π

θ = 5π/4

θ = 3π/2

θ = 7π/4

θ = 2π ≡ 0

X

Y

(b) Closer
look at how
the space
of possible
actions change
with θ.

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

2π ≡ 0

x y

θ

Invalid
trajectories

Valid
trajectories

(1,0,0)
(4,3,0)

(c) Some valid and invalid trajectories in the C-
space. The tangent at every point on the trajec-
tory must lie inside the action fiber at the point.

Figure 1.2: Configuration space of a unicycle point robot, and actions due to kinematic constraints.
For simplicity we have eliminated obstacles in the environment.

(a) Navigation function in a spheri-
cal environment with star-shaped ob-
stacles.

(b) A robot following the gradient of
the navigation function reaches goal.

Figure 1.3: Navigation function for robot path planning in R2 −O.

construct a potential function in a spherical environment with star-shaped obstacles such that it

has an unique stable minima at the the goal coordinate (Figure 1.3). While this ensures that in

presence of a very small noise the robot will converge to its goal, the method suffers from issues of

computational complexity, numerical difficulties and slow convergence. Besides, the approach works

for a very limited variety of obstacle, and it is difficult to incorporate additional constraints in the

problem. Generalizing such an approach for more complex nonlinear dynamical systems becomes

increasingly challenging [60].

Vector fields have also been used for applications other than goal directed navigation. In prob-

lems like generation of patterns using mobile robots [44], surveillance [45] and transportation of

objects via caging [29], vector fields have been successfully generated and employed for navigation

of teams of robots in environments with simple obstacles or abstracted obstacles.

3

In environments with a metric, typically the problem that one is faced with is to find an optimal

path. One can attempt to solve the Geodesic equation in a metric space [48]. However, even in

metric spaces without discontinuities, the computation of the geodesic passing through two given

points is highly non-trivial. One can employ a method like shooting method [82] for solving the

Geodesic equation posed as a boundary value problem. However, in general, such methods are

expensive. In presence of discontinuities due to obstacles, solving for the shortest path (which is

informally called the generalized geodesic) between two points becomes practically infeasible.

A more general optimal path planning problem arises when, instead of a metric, a general

measure in terms of a cost or action integral is provided. In such problems, often the method of

calculus of variation is adopted [31, 24, 54]. However, such approaches typically require an initial

guess of a suboptimal trajectory, are computationally expensive, and compromise on the optimality

when there are discontinuities in the environment (such as obstacles).

A related but different problem arises in robot coverage of an environment (i.e. how evenly the

robots are distributed in an environment). Typically this is a multi-robot problem, in which an

initial/start coordinates of the robots are provided (a single coordinate in the joint state-space).

However there is no specific single goal coordinate as in goal directed navigation. Instead, a flow (a

vector field) is given that governs the motion of the system. The vector field is typically a simple

gradient of a potential function (which is designed such that it gives a measure of how bad the

coverage is). This is the continuous-time version of the Lloyd’s Algorithm [58] due to Cortez, et al.

[18]. As with any potential function based approach, such a method suffers from problems of local

minima. In fact Lloyd’s algorithm only guarantees that the system will converge to a local minima

of the potential. In a convex environment without obstacles this local minima is at least guaranteed

to be one where the gradient is zero. However obstacles and non-convexity can result in creation

of highly suboptimal local minima. Moreover in non-convex environments and environments with

obstacles, the generalization of the potential function proposed in [18, 58] and computation of its

gradient, becomes highly non-trivial and extremely computationally expensive.

Planning in configuration spaces with arbitrary shaped obstacles, and in presence of nonholo-

nomic constraints, kinematic constraints and dynamic constrains using any continuous approach is

generally difficult. Vector field construction and calculus of variation can be employed, but it is

difficult to provide guarantees and robustness.

1.1.2 The Discrete Approach

A robust alternative to the continuous approaches described above is the discrete approach of

graph search-based planning. The basic idea behind the approach is to sample points from the

configuration space, and construct a graph by considering those points as vertices of the graph

and edges being sampled possible actions that can take the system from one vertex (a state) to

another. A simple example is that of a point robot navigating on a plane with obstacles modeled

as a 8-connected grid. The configuration space R2−O can be partitioned into uniform square cells,

and a vertex of the graph is placed at the center of each cell (Figure 1.4(a)). Edges are established

between 8 neighboring vertices of each vertex, representing the possible transitions of the robot (the

actions).

4

(a) A graph created by uniform square parti-
tioning/discretization of an environment. The
brown cells represent obstacles. Each vertex is
connected to its 8 neighbors (except inaccessible
vertices).

(b) A trajectory in the continuous configuration
space can be approximated by a path in the
graph.

Figure 1.4: Graph created by uniform discretization of an environment. This specific type of graph
shown in the figures is referred to as the 8-connected grid.

Following this construction, any trajectory in the original configuration space can be approxi-

mated by a path in the graph [7] (Figure 1.4(b)). This simple approximation eliminates much of the

problems that continuous methods suffer from. Firstly, for goal directed navigation, the problem

reduces to finding paths in the graph. One can then employ any search algorithm like Dijkstra’s

[26], A* [39], D* [81], ARA* [38] or R* [57] to search for the optimal path (or path with bounded

sub-optimality depending on the chosen algorithm) in the graph from the start vertex to the goal

vertex. Such algorithms are complete with guarantees on optimality or bounds on sub-optimality.

Moreover in the graph, it is easy to incorporate metric information by assigning weights to edges.

Thus, such discrete approaches work very well for planning trajectories in non-Euclidean metric

spaces. Moreover, since actions in a graph are modeled by discrete set of edges, systems with

non-holonomic constraints are effectively and easily modeled using this approach.

For example, in [28, 85], in order to effectively model the dynamics and non-holonomic con-

straints of a car, a lattice graph was used. The state variables consist of the position, orientation

and forward speed of the vehicle, making the configuration space SE(2) × R+. As discussed ear-

lier, depending on the current state of the vehicle, (x, y, θ, v), the possible actions (ẋ, ẏ, θ̇, v̇) are

limited by the non-holonomic and dynamic constraints. This is difficult to model using a contin-

uous approach, and even more difficult to find trajectories in such configuration space using any

continuous approach. However a discrete approach of discretization of the configuration space and

construction of a graph deals with this very effectively. The graph is constructed by partitioning the

4-dimensional configuration space into cells (may be an uniform partition with hypercubic cells). A

vertex is associated with each cell, and edges emanating from the vertex are created so that they

are samples from the space of possible actions at the vertex. Two configurations are considered to

be the same if they fall in the same partition of the configuration space.

It is quite evident that a graph created in such a way may be too large for effective computation

5

(a) A discrete sample from the set
of possible actions at a vertex at
(x, y, θ, v) make up the edges ema-
nating from the vertex.

(b) Actions from a vertex at
(x, y, θ′, v). Note that the orienta-
tion is different from the one shown
in (a), but the speed is the same.

(c) Actions from a vertex at
(x, y, θ′, v′), with v′ < v. Note that
due to lower speed, it is possible for
the car to take sharper turns.

Figure 1.5: Some vertices and edges emanating from them in a lattice graph created by discretizing
the configuration space of a dynamic, non-holonomic car. A vertex is associated with each dis-
cretized cell. From each vertex, edges emanate such that the actions corresponding to the edges are
sampled from the space of possible actions from the vertex. The figures show points and actions in
configuration space projected to the X − Y plane.

or even storage. However, as we will discuss later, graph search algorithms typically do not require

that we explicitly create the graph and store it in memory before starting to solve the problem. In

fact, in solving a goal directed navigation problem (i.e. searching for shortest path in the graph)

it may not even be necessary to create the full graph. A well-informed heuristic function can

guide heuristic searches to expand a small subset of the vertices in the graph. Moreover, efficient

graph construction algorithms like Rapidly-exploring Random Tree (RRT) [56] and Probabilistic

Roadmaps (PRM) [50] are often employed for efficient sampling of vertices and creating the graph

in high dimensional configuration spaces [13].

In spite of having all such tools at hand, it is worth mentioning that given a fixed algorithm, the

size of the graph (number of vertices and edges) as well as the complexity of the search algorithms

increase exponentially with the dimensionality of the configuration space (number of state variables).

While this does not pose a major problem for planning in low dimensional configuration spaces, in

higher dimensional configuration spaces (e.g. in multi-robot problems, the joint configuration space

of all the robots), this becomes a severe computational bottleneck.

Moreover, the process of discretization and sampling themselves tend to undermine much of the

richness that was present in the original configuration space. For example, much of the topological

information present in the original configuration space gets lost since the graph is rather indifferent

to the global topology of the space. Moreover, metric of the original configuration space gets

restricted to the graph. Thus, the shortest path in the graph need not necessarily be the shortest

path in the original continuous metric space (Figure 1.4(b)). There has been some recent very

interesting developments for addressing this later issue [21]. However such methods work reliably

only in Euclidean metric spaces.

Most practical implementations in robotics, however, widely employ graph search-based ap-

proaches. The ease of implementation, robustness, completeness and guarantees on optimality

6

within the graph most of the time outweigh the problems of sub-optimality due to discretization

and loss of geometric and topological information due to graph construction. For example, almost

every team in the DARPA Urban Challenge, 2007, used graph-search based planning approaches

[85, 62, 42] for finding optimal paths in complex cluttered environments. Planning for robotic

arms like that of the PR2 in cluttered environments has been achieved successfully using graph

search-based planning [14].

1.2 Contributions of this Thesis

We thus observe that search-based techniques have been widely used in robot path planning for

finding optimal trajectories in configuration spaces. They have the advantages of being complete,

optimal (up to the metric induced by the discretization), robust and efficient (in low dimensional

problems), even in complex environments. Moreover, there is a wide class of search-based techniques

that allow one to trade-off optimality (with guaranteed bounds on sub-optimality) at substantial

gain on search efficiency. Continuous techniques, on the other hand, lending concepts from differ-

ential and algebraic geometry and topology, have the ability of exploit specific structures in the

original configuration space and help in solving a host of different problems that rarely come under

the scope of graph-search based techniques. The main objective of this thesis is to propose certain

ideas and methods that will let us bring these two separate techniques under one umbrella.

The first contribution of the thesis lies in the characterization of the topology of the configura-

tion space and the solution using applications of algebraic topology. Search-based techniques, by

virtue of discretization and graph construction, ignore the topological properties of the underlying

configuration space and the solution trajectories. We try to account for that by defining differential

forms whose integrals reveal topological information about the solution path. Appropriately de-

fined 1-forms allow us to establish equivalence classes of trajectories (e.g., homotopy or homology

classes) and use it to guide the search. We show how to find trajectories that are constrained to lie

in specified homotopy/homology classes or that avoid other specified classes.

The second contribution is to use search techniques to follow gradient of a potential function

that is a generalization of the one used by Lloyd’s Algorithm in coverage problems. We use graph

search technique to partition the configuration space based on a metric, and hence create generalized

Voronoi tessellations. The same search technique is used to compute gradient of the function that

is to be minimized for attaining good coverage. We show application of this method to multi-robot

coverage and exploration tasks in unknown or partially known non-convex environments.

In our third contribution we address the curse of dimensionality that is inherent in path planning

for multi-robot systems. One of the main drawbacks of graph search algorithms is that with increase

in the dimensionality of the configuration space, the number of nodes and edges in the graph

increase exponentially. This poses a major challenge for finding optimal paths in high dimensional

configuration spaces using graph search techniques. While gradient descent approaches scale much

better with the dimensionality of the configuration space, these methods suffer from local minima,

especially in non-convex environments. However, multirobot problems endow a special product

structure to the configuration space allowing us to decouple robot directions and parallelize the

search. Such decompositions can let us use a combination of graph search methods and gradient

7

descent algorithms in complementary directions. We demonstrate how such decompositions are

particularly suitable for multi-robot path planning problems with communication constraints.

Finally we address the problem of determining optimal trajectories for specified metrics. Trajec-

tories found by discrete graph representations and searches suffer from sub-optimality induced by

the discretization. However there are certain metric spaces (a trivial example being the Euclidean

metric) in which we can conveniently use the notion of visibility to obtain the optimal trajectory

with respect to the metric in the original space from the optimal trajectory on the graph. Our goal

is to identify such special metric spaces and study the conditions under which we can transform a

given non-Euclidean metric space into such special metric spaces.

8

Chapter 2

Preliminaries

2.1 Basic Algebraic Topology

2.1.1 Background: Point-set Topology

Set theory is the study of collections of some objects. In many cases that collection can be infinite

and uncountable. For example, one may talk about the set of all the points on the surface of a

sphere. However, set theory does little in establishing relationship between the objects in a set. For

example, if we consider the set consisting of the points on a sphere, it’s just a collection of points,

each of which is distinct and there is no way of telling which point is “connected” to which other

point in the set to give the sphere its familiar shape. That’s where topology comes to the rescue. A

topology consists of a set, along with the additional information on “grouping”/“collection” of the

objects inside the set. Such “groupings” are called open subsets of the set.

Definition 2.1.1 (Topology [63]). A topology on a set X is a collection, T , of subsets of X,

containing both X and ∅, and closed under the operations of intersection and union. Together,

the tuple (X,T) is called a topological space, and the elements of T are called open sets of the

topological space.

Often, when there is a standard topology, by convention, for a space X, one can refer to the

topological space simply as X. One of the most important consequences of defining topology is that

we now have the notion of continuity.

Definition 2.1.2 (Continuous Functions Between Topological Spaces [63]). Given two topological

spaces, (X1, T1) and (X2, T2), consider a map f : X1 → X2. For any subset U ⊆ X2, define

f−1(U) = {x ∈ X1 | f(x) ∈ U} (note that if f−1 : Y → X exists, this definition simply generalizes

it to subsets of Y). Then f is said to be continuous if for each open set V ∈ T2, the set f−1(V) is

in T1 (i.e. an open set).

Note that for continuity, f need not map open sets to open sets. That is, for W ∈ T1, its image

f(W) need not be in T2. When a continuous function is also injective, it is called an embedding

(embedding of X in Y).

9

(a) Homeomorphic spaces (both equivalent to S1).
The apparent difference between the two spaces is due
to their embedding in R2. The spaces themselves are
topologically equivalent.

O1

O2

f1

f2

f3

(b) Continuous functions, fi : S1 → (R2 − O1∪O2),
which are also embeddings (injective). f1 can be con-
tinuously deformed to f2 (they are homotopic), but
not to f3 (f1 and f3 are not homotopic).

Figure 2.1: Homeomorphic spaces and homotopic functions.

Starting with these basic definitions, one can make assertions on certain properties of the topo-

logical space, construct one topological space from another, and establish relationships between

them. This is the primary affair of the field of point-set topology. However, one can do little algebra

or actual computation on a topological space using this. That’s where the field of algebraic topology

gets introduced.

Before we proceed to algebraic topology, we state a few definitions that follow from basic point-

set topology.

Homeomorphism, Homotopy, Deformation Retract and Homotopy Equivalence

The first fundamental equivalence relation among topological spaces is that of homeomorphism.

Topologically, two topological spaces are homeomorphic if they essentially are the same topological

space (with, possibly, ‘renaming’/‘relabeling’ of the items in one of the set and its topology to

obtain the other). In presence of an embedding, informally, two spaces are homeomorphic if one

can be continuously deformed into the other without causing cuts or tears in the space (i.e. open

sets remain open). This is popularly exemplified using a donut and a coffee cup with a handle, and

how, to a topologist, they are one and the same. Figure 2.1(a) shows a more modest example of

homeomorphism.

Definition 2.1.3 (Homeomorphism [63], Fig. 2.1(a)). Two topological spaces X and Y are home-

omorphic if there exists a bijective function f : X → Y (which implies the inverse, f−1 : Y → X,

exists and is bijective) such that both f and f−1 are continuous. f (which may not be unique) is

called a homeomorphism between the spaces.

A fundamental equivalence relation among continuous functions defined between two fixed topo-

logical spaces is homotopy. Informally, two functions are homotopic if one can be continuously

changed into another.

Definition 2.1.4 (Homotopy [40], Fig. 2.1(b)). Two continuous function between the same

topological spaces, f1, f2 : X → Y , are called homotopic if there exists a continuous function

F : X × [0, 1] → Y (where, [0, 1] is assumed to have the standard Euclidean topology, and ‘×’

10

X

A
A

(a) t = 0.0 (b) t = 0.3 (c) t = 0.7 (d) t = 1.0

Figure 2.2: A deformation retraction of X to A ⊆ X. For each t, the green area is F (X, t).

induces the product topology to the product space) such that F (x, 0) = f1(x) and F (x, 1) = f2(x),

for all x ∈ X. Concisely we express this relationship as f1 ' f2. The function F (which may not

be unique) is call a homotopy between f1 and f2. Informally, we say that f1 can be homotoped to

f2 and vise-versa.

The idea of deformation retract is that given a topological space X, and a subspace A (a subset

with subspace topology [63]), we ask the question whether or not the space X may be continuously

‘shrunk’ and ‘deformed’ to A without causing any ‘cut’ or ‘tear’. If it can, we call A a deformation

retract of X (Figure 2.2). Consider the identity map idX : X → X (Figure 2.2(a)). Now start

‘shrinking’ X gradually to ‘collapse’ on to A. At every step of the shrinking process what we have

is an embedding of X into itself such that the image of the embedding is the ‘shrunk’ version of X

at that step (Figure 2.2(b,c)). Eventually we ‘shrink’ X to A (Figure 2.2(d)).

Definition 2.1.5 (Deformation Retract [40], Fig. 2.2). A subspace A (with subspace topology)

is called a deformation retract of a topological space X if there exists a continuous function F :

X × [0, 1]→ X such that

• F (x, 0) = x, ∀x ∈ X (i.e. F (·, 0) ≡ idX is the identity map on X),

• F (a, t) = a, ∀a ∈ A, t ∈ [0, 1], and,

• F (x, 1) ∈ A, ∀x ∈ X.

F (which may not be unique) is called a deformation retraction from X to A. Since A is a subspace

of X, we can interpret F as a homotopy between the identity map idX and the map f1 ≡ F (·, 1)

whose image is in A.

It is important to note that f1 ≡ F (·, 1) : X → X is homotopic to the identity map on X. Had A

not been given beforehand, and instead, we were given a function f1 : X → X that is homotopic to

idX , the image of f1 would clearly be a deformation retract of X.

The fact that A needs to be a subspace of X in the definition of deformation retract essentially

implies that there is an embedding i : A ↪→ X, called the inclusion. However A, as an independent

topological space, should not require an embedding in X to be described (e.g A in Figure 2.2 is

topologically just a circle S1). We still should be able to describe a similar relationship between

them. That’s where a generalization of a deformation retract, called homotopy equivalence, comes

into the picture.

The idea of homotopy equivalence is that instead of explicitly mentioning a subspace A of X,

we look at the continuous functions from X to itself via a second space Y (the final image is of

course a subspace of X). We then ask if this combination map is homotopic to the identity map

11

X Y

A=g○f(X)
B=f○g(Y)

f

g

Figure 2.3: A cylinder (hollow, without lids) and a solid torus are homotopy equivalent. Each of
them is homotopy equivalent to a circle.

on X. We do the same thing with the role of X and Y reversed. If the answer is ‘yes’ in both the

cases, the spaces X and Y are said to be homotopy equivalents.

Definition 2.1.6 (Homotopy Equivalence [40], Fig. 2.3). Two topological spaces X and Y are

called homotopy equivalent if there exists continuous functions f : X → Y and g : Y → X such

that g ◦ f is homotopic to the identity map idX , and f ◦ g is homotopic to the identity map idY .

The function f (and likewise g) is called a homotopy equivalence. X and Y are said to have same

homotopy type, and informally we say one can be homotoped to the other.

If A is a deformation retract of X, then they are of course homotopy equivalents. However the

converse is not always true. Out of many ways of determining if two spaces X and Y are homotopy

equivalents, one approach is to check if each of them deformation retracts to a subspace that is

topologically equivalent (homeomorphic). Then they are homotopy equivalent (Figure 2.3). The

other, more formal, approach is to check if there exists a larger space with embeddings of X and Y

into it, such that this larger space deformation retracts to both X and Y .

Contractible Space

Definition 2.1.7 (Contractible Space [40]). A topological space X is called contractible if the

identity map on it, idX , is homotopic to a constant map (a function taking every points in X to a

fixed point x0 ∈ X).

The intuition behind contractibility is that the space can be pulled (contracted) continuously

towards a point inside it. It is important to note that a contractible space need not be finite.

For example, RD is contractible for any finite D. This is because, for any point p ∈ RD one can

construct a map fp : [0, 1] → RD so that fp(0) = p, fp(0) = 0 (the origin), and F (p, t) = fp(t) is

continuous.

2.1.2 Motivation of Algebraic Topology

Algebraic topology imparts certain algebraic (primarily group) structures to a topological space, and

allows interpretation of the structure of the topological space by analysis of the algebraic structures.

12

A1

A3

A2 A4

A5

(a) An area (a 2-chain).

l1

l2

l3

l5

l4

l7l6

(b) The boundary of the area (a 1-
cycle).

(c) The boundary of the boundary is
empty.

Figure 2.4: Boundary operator acting on a chain twice gives an empty chain.

In this section we will motivate some basic ideas behind algebraic topology without going into too

much technical details. Instead, we will use some simple illustrations to explain them.

The first step in imparting an algebraic structure to a topological space is to describe the space

in terms of a sequence of groups (in simple cases, vector spaces, which are themselves groups with

additional structures), and maps between them. This algebraic object will be called a chain complex.

While it is not necessary to discretize/triangulate a topological space to describe a chain complex

on it (as we will shortly do), for ease of understanding we make this simplifying discretization. Each

discrete element in this discritization is called a simplex (Figure 2.4) – the vertices will be called

0-simplices, the edges 1-simplices, the triangles 2-simplices, tetrahedrons 3-simplices, etc. Formally,

a n-simplex on a topological space, X, is a map from a standard n-simplex [40] to X. However,

most often, we will informally refer to the image of a n-simplex as the n-simplex itself.

Boundary Operator: Consider a patch of area on the plane that is discretized into simplices as

in Figure 2.4. Out of all the 2-simplices (triangles), we pick a few – ones marked by green color as

in Figure 2.4(a). We simply call those triangles A1, A2, · · · , A5 (note that by Ai we do not mean

the ‘area’, but the whole triangle as an abstract object/set). Thus the region they cover is denoted

by A1 + A2 + · · · + A5 (where, for now, we can interpret ‘+’ as an union). Figure 2.4(b) shows

the boundary of the chosen area and is likewise represented by
∑7
i=1 li (each 1-simplex or edge is

arbitrarily labeled li). However, if we now look at the boundary of
∑7
i=1 li, it is clearly empty (in

general, such boundary could have been made up of 0-simplices or vertices). This last observation

is a key motivation behind constructing a chain complex. This observation extends to higher

dimensions and any topological space as well. For example, in a 3 dimensional space discretized

into tetrahedrons, if we pick a few of those tetrahedrons (3-simplices) to define a volume, and take

the boundary of that volume (which will be a closed surface), this boundary will itself have an

empty boundary. Thus, boundary of a boundary is always empty. In a naive notation, if ∂2(A)

represents the boundary of an area A, and ∂1(l) represents the boundary of a curve l, what we just

stated can be summarized as ∂2(
∑5
j=1Aj) =

∑7
i=1 li, and ∂1(

∑7
i=1 li) = 0 = ∂1 ◦ ∂2(

∑5
j=1Aj).

In general, ∂n ◦ ∂n+1 = 0.

13

A2

l11

l15

l12

(a) In the boundary of A2 we have
already labeled the edge l12.

A3l13

l14

-l12

(b) The boundary of A3 needs to
have −l12 as an edge. We can re-
label it to, say, l21, but then we will
need to equate it to −l12 to ensure
distributivity of ∂2.

A3l13

l14

A2

l11

l15

(c) Upon adding the boundaries of
A2 and A3, the edges l12 and −l12
cancel out, and we obtain the bound-
ary of A2 +A3.

Figure 2.5: Distributivity of Boundary Operator.

Distributivity of Boundary Operator and Orientation: One of the properties that we would like

the boundary operator, ∂n, to have is distributivity. That is, for example, we would like to be able

to write ∂2(Ai+Aj) = ∂2(Ai)+∂2(Aj). This will let us assert that boundary of boundary is empty,

purely from algebraic conditions, without looking at a picture: ∂1 ◦ ∂2(
∑
iAi) =

∑
i ∂1 ◦ ∂2(Ai) =∑

i 0 = 0 (since boundary of boundary of an individual triangle is always empty). This would

enable us develop a linear algebra. This requires that we assign some sign (directionality) to each of

li. Consider a single 2-simplex, A2, as shown in Figure 2.5(a). Its boundary is l11 + l15 + l12. Now

consider the 2-simplex A3 (Figure 2.5(b)). Since A2 and A3 share the common edge, l12, which will

lie inside A2 + A3, we need to make sure that somehow this edge gets canceled out when we add

∂2(A2) to ∂2(A3) to obtain ∂2(A2 +A3) (Figure 2.5(c)). This is attained by giving a directionality of

every segment li, represented as ±li, and noting that li + (−li) = 0. There is nothing special about

the dimension 1 of the 1-simplices, and we can in fact assign directionality to simplices of every

dimension (vertices, edges, triangles, tertahedrons, etc.). The definition of direction has to be such

that it admits distributivity of the boundary operators ∂n. For example, if one considers −A2 in

Figure 2.5(a), in order to be consistent with the fact that ∂2(A2 + (−A2)) = ∂2(A2) +∂2(−A2) = 0,

we need to have the boundary of −A2 (i.e. ∂2(−A2)) as (−l11)+(−l15)+(−l12), that is the original

line segments with reverse orientation.

Group Construction: By now it is easy to see a group structure emerging. For example, for

every line segment li we have defined an inverse element, −li so that they add up to 0, the identity

element. Also, we have developed the intuition of how the binary operator ‘+’ works between li

and lj for i 6= j or lj = −li. All that we now need to do to make the set of possible combinations

of the 1-simplices (e.g. li1 + li2 + · · · is an arbitrary combination – called a 1-chain) an algebraic

group is to close it under the operation of addition. Earlier we have related li + lj with taking

union of the line segments li and lj . However, if we write li + li, an interpretation in terms of

union, will simply mean li. This will not be consistent with our attempt to define a group. Thus,

14

A3

2A2

-A5

(a) A graphical representation of
A3 + 2A2 + (−A5) ∈ C2(X). Col-
ors represent the integer coefficients
– green positive, red negative, darker
is higher. Note how the coefficient for
the other 2-simplices is 0 represented
by light blue. This type of arbitrary
combination is called a chain (a 2-
chain in this case). Thus, one can
interpret this as a order set of coef-
ficients, [0, 2, 1, 0,−1, 0, 0, 0, · · ·], for
the corresponding 2-simplices.

l13

l14

2l11
2l15

l12

-l4

-l7-l9

(b) The boundary of the 2-chain
shown in (a). The boundary is l13 +
l14 + l12 + 2l11 + 2l15 − l4 − l9 − l7.
Note that we no more use an ‘arrow’
to represent the direction of the 1-
simplices. Since we can now have ar-
bitrary integer coefficients, color rep-
resentation of the coefficients is the
preferred way of visualization. Green
indicates positive, red indicates neg-
ative. Note how a −l12 from ∂2(A3)
adds to 2l12 from ∂(A2) to give the
l12 in the figure.

lA

(c) However, one can set lA = l13 +
l14 + l12 + 2l11 + 2l15 − l4 − l9 − l7,
and considered to be a generating el-
ement of C1(X) (by change of ba-
sis). Then we will be using light
green to represent lA with coefficient
1. Then, for example, lA + l12 will
be represented by this same figure as
above, except with the edge corre-
sponding to l12 being marked with
darker green.

Figure 2.6: A 2-chain and its boundary, with coefficients (which includes direction information)
represented by colors.

we define a new element 2li := li + li. This can be interpreted as taking the line segment two

times on top of itself (similar to disjoint union). However it is to be kept in mind that this is

absolutely an algebraic construction. Following along similar lines, we can define 2li, 3li, 4li, · · · ,
and the corresponding inverses −2li,−3li,−4li, · · · . In general nli := li + li + · · · (n times), and

−mlj := (−lj) + (−lj) + · · · (m times). Thus we have constructed an abelian group that is freely

generated by l1, l2, l3, · · · . We represent this group by C1(X) (where, X is the topological space

which we discretized to create the simplices), where the subscript 1 refers to the dimension of the

simplices. Of course we can do similar treatment for simplices of all dimensions (e.g. Figure 2.6).

The group for the n-dimensional simplices is written as Cn(X).

Coefficients: One further generalization of the said group construction is that with arbitrary co-

efficients. The idea can be described as follows: So far we have constructed elements like 2li, 3li, · · ·
(i.e. li with integer coefficients). However, very often, one may come across problems where non-

integer coefficients arise very naturally. One typical inspiration comes from an electrical network

that can be modeled as a simplicial 1-complex (the coefficients on the 1-simplices represent the

currents passing through them, and the coefficients on the 0-simplices represent the voltage at the

nodes). Then, because of Kirchhoff’s law, the sum of the incoming currents at any node is equal to

the sum of the outgoing currents at the node. Consequently, any closed loop of current represents

a 1-cycle in the complex [34]. However, note that now we need to define coefficients over R since

the currents can assume any real number (e.g. 2.56 li). Moreover, due to the superposition theorem

15

for electrical circuits [11], one can add currents, and hence add the 1-cycles. For such additions

we naturally borrow the definition of additions from the real numbers, R (which is a group under

‘+’ operator with 0 as identity element), and the additions happen simply on the coefficients of

li. In fact we can generalize the coefficients to arbitrary algebraic structures (like groups, rings,

fields, etc.). Thus, if G is an algebraic structure and an abelian group under an addition oper-

ation, ‘+’, then we define C1(X;G) (as a generalization of C1(X)) to be abelian group in which

every element is represented by an ordered set of coefficients [g1, g2, g3, · · ·], gi ∈ G (these are the

coefficient of l1, l2, l3, · · ·), that inherits the operator ‘+’ from G by the element-wise operation

[g1, g2, g3, · · ·] + [g′1, g
′
2, g
′
3, · · ·] = [g1 + g′1, g2 + g′2, g3 + g′3, · · ·]. It is to be noted that the addi-

tion operator is a chosen preferred operator of G. The inheritance of other operators from G to

C1(X;G) are subject to independent definitions. Of course, once again, this is general for arbitrary

dimensions, and for n-dimensional simplices we have the algebraic structures Cn(X;G).

The boundary operator, which was distributive, is extended to being linear (informally. More

precisely it is a group homomorphism) when we have the coefficients (this is mostly by definition

than anything else – by extending the definition of boundary operator to chains with coefficients).

Thus, from our previous example, if A = gaA2 + gbA3 ∈ C2(X;G) for ga, gb ∈ G, we have ∂2(A) =

ga∂2(A2)+gb∂2(A3) = ga(l11 +l15 +l12)+gb(l13−l12 +l14) = ga(l11 +l15)+gb(l13 +l14)+(ga−gb)l12.

Substituting ga = gb = 1 for G = Z, we obtain our previous result. Also, by linearity, ∂1◦∂2(A) =

ga∂1◦∂2(A2) + gb∂1◦∂2(A3) = ga0 + gb0 = 0. In general ∂n ◦ ∂n+1 = 0 due to linearity and the fact

that for a (n + 1)-simplex σn+1, ∂n◦∂n+1σ
n+1 = 0. More precisely, the boundary operator is a

group homomorphism.

Vector Space: One can very well compare Cn(X) to a vector space (especially when the co-

efficients are in field R). For example, in Figure 2.6, each li may be thought to be an basis

vector forming a basis set in a N -dimensional vector space (where N is the total number of ‘edges’

or 1-simplices in the discretization of X). Thus, any linear combination of the basis vectors,

σ = a1l1 + a2l2 + · · · + aN lN , will represent some 1-chain (Figure 2.6(b)). Then, Cn(X) is very

much like a vector space spanned by those basis vectors. One can even talk about change of basis

(Figure 2.6(c)). In particular, if the coefficients are in a field, then Cn(X) is indeed a vector space.

If elements from this vector space can be represented by coefficient vectors [a1, a2, a3, · · · , aN]T (as

described earlier, and assuming there are N numbers of n-simplices in the representation of X), and

the elements of the vector space Cn−1(X) is represented by coefficient vectors [b1, b2, b3, · · · , bM]T

(where we assume that there are M numbers of (n − 1)-simplices in the finitely discretized repre-

sentation of X), then the boundary operator ∂n may be represented by a M × N matrix. Thus,

when a N -dimensional coefficient vector representing a vector from from Cn(X) is left-multiplied by

this matrix, we obtain a M -dimensional coefficient vector representing a vector in Cn−1(X). Then

the kernel and image of ∂n have simple interpretations borrowing the corresponding concepts from

linear algebra.

2.1.3 Formal Description of Homology

Once we have established the motivation behind defining chain complexes, we can formally define

it in the most general way as follows.

16

.

Cn Cn-1Cn+1
∂n+1 ∂n

0 ∈ Cn-1Img(∂n+1) Ker(∂n)
∂nCn+1

∂n+1 ⊆

Figure 2.7: A schematic representation of a chain complex (see [34]). It consists of the sequence
of groups, C•, along with homomorphisms ∂•, with the property that ∂n ◦ ∂n+1(σ) = 0 for any
σ ∈ Cn+1.

Definition 2.1.8 (Chain Complex [40], Fig. 2.7). A chain complex is a sequence of abelian groups,

· · · , C3, C2, C1, C0, C−1, · · · , along with homomorphisms ∂n : Cn → Cn−1 such that ∂n−1◦∂n = 0

for all n = · · · , 3, 2, 1, 0,−1, · · · . It is commonly represented using the following diagram:

· · · −−→ Cn+3
∂n+3−−−−→ Cn+2

∂n+2−−−−→ Cn+1
∂n+1−−−−→ Cn

∂n−−−→ Cn−1
∂n−1−−−−→ · · ·

with, ∂n−1 ◦ ∂n = 0, ∀n.

Note that in general, chain complexes need not be related to any topological space, as in the

independent definition stated above. It is simply a sequence of abelian groups C• with the operators

∂• (by subscript ‘•’ we informally mean the collection for all n). Such independent studies of chain

complex without any reference to topology is known as homological algebra and is a field of study

by its own right. Algebraic topology borrows significant amount of tools from that field.

In algebraic topology, these groups Cn obviously corresponds to the groups freely generated by

the n-simplices on the topological space X, and are written as Cn(X). Chain complexes generated

by a finite number of simplices as described earlier are known as simplicial complex. However there

are other, and more general forms of chain complex that one can define on a topological space –

∆-complex, singular complex, cellular complex, cubical complex, etc.

Since ∂n ◦ ∂n+1 = 0, we have (see Figure 2.7)

Img(∂n+1) ⊆ Ker(∂n) ⊆ Cn(X)

Definition 2.1.9 (Subgroup of Boundaries [40]). Bn(X) := Img(∂n+1) ⊆ Cn(X) is called the

group of n-boundaries (a subgroup of Cn), and is the image of the whole of Cn+1(X) under the

action of ∂n+1. Elements in Bn(X) (called n-boundaries) are n-chains, each of which are boundaries

of some (n+ 1)-chains in X (Figure 2.8(c)).

Definition 2.1.10 (Subgroup of Cycles [40]). Zn(X) := Ker(∂n) ⊆ Cn(X) is called the group of

n-cycles (a subgroup of Cn), and is the kernel of ∂n (i.e. all the elements in Cn that maps to the

identity element in Cn−1(X) under the action of ∂n). Elements in Zn(X) (called n-cycles) are n-

chains that have empty boundary under the action of ∂n (Figure 2.8(b)). Of course all n-boundaries

are n-cycles as well, but the converse is not true.

17

X

σ

(a) A 1-chain. The boundary of this
chain is not empty since the curves
have end-points (0-chains). This is
an arbitrary element of C1(X).

X

z

(b) A 1-chain without a boundary
is a 1-cycle. This is an element of
Z1(X).

X

A

b

(c) A chain which is boundary of a
2-chain (the one marked by A). This
is an element of B1(X).

Figure 2.8: Illustration of chain, cycle and boundary. The topological space X is shown in blue.
The figures do not show a discretization explicitly, however one can think it to be discretized into
very small simplices (much like what we had in Figure 2.5 or 2.6) in order to accommodate almost
arbitrary-shaped chains. Every 1-chain shown in this figure are made of 1-simplices, being labeled
for the first time, with coefficients as 1 (indicated by the color light green – refer to Figure 2.6(b)).

It is easy to see that both Zn(X) and Bn(X) are closed under addition and also the inverse of

elements in each of them belong to the sets themselves. Thus they are subgroups.

As discussed earlier, an element σ ∈ Cn(X) is an arbitrary linear combination of n-simplices

on X (Figure 2.8(a)). However, a subset of those will be such that the boundary operator, ∂n,

acts on them to give zero (i.e. they are in Ker(∂n)). These are elements z ∈ Zn(X) ⊆ Cn(X)

(Figure 2.8(b)). Furthermore, some out of those are such that they themselves are boundaries of

some one higher dimensional chain (i.e. they are in Img(∂n+1)). Those are elements b ∈ Bn(X) ⊆
Zn(X) (Figure 2.8(c)).

Since, by definition, for any b ∈ Bn(X) we can find a ω ∈ Cn+1(X) such that ∂n(b) = ∂n ◦
∂n+1(ω) = 0 (by definition of chain complex), we have Bn(X) a subgroup of Zn(X). Thus, one can

now construct the following quotient group,

Definition 2.1.11 (Homology Groups [40]). We define the nth homology group of X as ,

Hn(X) = Zn(X) / Bn(X)

The intuitive description of Hn(X) is as follows: We look at two n-cycles z1, z2 ∈ Zn(X)

(Figure 2.9). If their difference is boundary of some one-dimensional higher chain (i.e. z1 − z2 ∈
Bn(X)), we say that they belong to the same homology class or are homologous (Figure 2.9(a) and

2.9(d)), otherwise we say that they are in different homology classes (Figure 2.9(b) and 2.9(c)).

Thus, we have several different homology classes of n-cycles. Hn(X) essentially is the set of all

those homology classes. This can be seen clearly by the definition of group quotient. Each element

of Hn(X) is a partition of Zn(X) such within each partitions (i.e. a homology class) two elements

z1 and z1 can be related as z1 = z1 + b for some b ∈ Bn(X).

Group Structure of Hn(X): For a given z ∈ Zn(X), we write [z] ∈ Hn(X) for the homology class

of Z. The addition operator of Hn(X) is inherited from Zn(X) in a rather natural way – we define

18

X

z1

z2 A

(a) z1 and z2 are 1-cycles that are in the same
homology class. This is because z1 and −z2 (z2
with reversed orientation) forms the boundary
of a 2-chain, A, (one consisting of all the 2-
simplices in the annular region with unit coef-
ficients). That is, z1 − z2 = ∂2(A) ∈ B1(X)

X

z'1

z2

(b) z′1 and z2 are 1-cycles that are in different
homology classes. This is because one cannot
find a 2-cycle A such that z1 − z2 = ∂2(A) ∈
Bn(X)

X

2z1

z2

A

(c) 2z1 (where z1 is the same as in (a)) and
z2 are 1-cycles that are in different homology
classes. The coefficient 2 for z1 (which may be
thought of as 2 copies of z1 placed on top of one
another) is indicated by the darker color (refer
to Figure 2.6(b)).

X

2z1

2A' A1 A2 A3

z'2

(d) 2z1 and z′2 are 1-cycles that are in same ho-
mology classes. This is because we can write
2z1 − z2 = ∂2(2A′ −A1 −A2 −A3) ∈ B1(X).

Figure 2.9: Cycles in same and different homology classes. Discretization and color coding of
coefficients similar to before (Figure 2.8).

[z1] + [z2] = [z1 + z2], where the first addition is the one in Hn(X) (one we are defining), while the

addition on the right is well-known for Zn(X). Also, the identity element (or ‘zero’) of Hn(X) is

the homology class of the boundaries (elements of BN (X)). This can be observed as follows: If z1

and z1 belong to the same homology class (i.e. z1 = z1 + b for some b ∈ Bn(X)), then by definition,

[z1] = [z1] =⇒ [z1 + b] = [z1] =⇒ [z1] + [b] = [z1] =⇒ [b] = 0.

Resorting briefly to our earlier comparison of Cn(X) with a vector space, we can see that Zn(X)

is like a vector subspace (a vector space by its own right). Thus, Bn(X) is a subspace of Zn(X).

19

X

S

(a) Relative chains. The 1-chains in
X have some boundary (end point,
0-chain) lying outside S.

X

S

(b) Relative cycles. The 1-chains in
X have boundaries lying inside S.
Thus in the relative form (i.e. their
image under quotient map j), they
have no boundary. Hence these are
relative cycles.

X

S

(c) Relative boundaries. For these 1-
chains in X, either the whole of it lies
inside S, thus making it trivial, or
they are boundaries of some relative
2-chain.

Figure 2.10: Relative chains on C1(X,S), and chains that are relative cycles and relative boundaries.

Then Hn(X) may be thought of as the vector subspace of Zn(X) which is orthogonal to Bn(X)

such that Hn(X) and Bn(X) spans the whole of Zn(X).

Relative Homology: Given C•(X), a chain complex on X, and a subspace S of X (S and X

are together written as (X,S) and is called a pair of spaces), one can construct the subcomplex

C•(S), where each Cn(S) is a subgroup of Cn(X) freely generated by the n-simplices that fall inside

S. Then one can talk about quotient groups Cn(X)/Cn(S). These quotient groups are written as

Cn(X,S) for brevity. Thus, there is a quotient map j : Cn(X)→ Cn(X,S) such that given any n-

chain σ ∈ Cn(X), if we trivialize the part of the chain that lies inside S, we obtain j(σ) ∈ Cn(X,S).

It is analogous to taking projection of σ on the subspace orthogonal to the subspace Cn(S). One

can then extend the boundary operator ∂n quite naturally to define ∂n : Cn(X,S) → Cn−1(X,S).

Then it is not difficult to see that C•(X,S) form a chain complex,

· · · −−→ Cn+1(X,S)
∂n+1−−−−→ Cn(X,S)

∂n−−−→ Cn−1(X,S)
∂n−1−−−−→ · · ·

with ∂n−1 ◦ ∂n = 0, ∀n. The image of a n-chain σ ∈ Cn(X) under the action of j is typically

called a relative chain and is an element of Cn(X,S). We can compute homology groups for the

above chain complex. Those are called relative homology groups, and are represented by Hn(X,S).

It is to be noted that these, in general, are not same as Hn(X)/Hn(S). Any σ ∈ Cn(X) lying

inside completely S will be a trivial relative chain j(σ) = 0 ∈ Cn(X,S) and is a relative boundary

(Figure 2.10(c)). And any n-chain σ ∈ Cn(X) with boundary lying completely inside S will be a

relative n-cycle j(σ) ∈ Zn(X,S) (Figure 2.10(b)).

2.1.4 Properties of Homology

In this section we will mostly state some results and explain their implications, but without detailed

proofs. The reader may refer to [40] for the proofs and detailed discussion.

Interpretation of Homology Groups: Each element of the nth homology group, Hn(X), as we

20

X

za

(a) [za] is a generator of H1(X).

X

zb

(b) [zb] is another generator of
H1(X).

X

zpzq

(c) z = azp + bzq ∈ Z1(X) is an ar-
bitrary 1-cycle. Its homology class
however is [z] = a[zp] + b[zq] =
a[za] + b[zb], i.e. can be expressed
as a linear combination of the gener-
ating homology classes.

Figure 2.11: The rank of homology group gives the Betti number. The homology class of an
arbitrary cycle can be expressed as the linear combination of the generators of the homology group.

just saw, represents a class of n-cycles that differ by n-boundaries. There is however an even

more intuitive and useful interpretation of the homology groups – the rank (or informally, the

dimensionality) of the group tells us about the nth Betti number (informally, the number of (n +

1)-dimensional ‘holes’ when n > 0, and number of connected components when n = 0) of the

topological space X. This is not difficult to see from the example in Figure 2.9. One can see that

corresponding to the two holes in the space X, there are two distinct types of cycles that are not

boundary (called non-trivial cycles) – one that goes around the right hole (Figure 2.11(a)), and

other that goes around the left hole (Figure 2.11(b)). These are the generators of H1(X). In fact

a direct computation of H1(X) reveals that it is isomorphic to the group Z2 (direct sum of two

copies of the integers’ group, which is a group under addition) – thus, the first Betti number of the

space, b1, is 2. The homology class of any other cycle in the space can be expressed as a linear

combination of these two homology classes (Figure 2.11(c)).

Indifference to Method of Construction of Chain Complex: The homology groups of a topological

space are indifferent to the method of construction of the chain complex used to compute the

homology groups. The intuitive idea is that given a topological space X, one can create a chain

complex in many different ways on it. Even a finite simplicial discretization (e.g. Figure 2.6) can be

created in infinite variety. Besides, there are other types of chain complexes that can be constructed

on a topological space (like ∆-complex, singular complex, cellular complex, cubical complex – see

[40] for details). Although these create vastly different chain complexes, {C•(X), ∂•}, the homology

groups Hn(X) computed using any of them will however be the same as long as we stick to the

same coefficient group. This may be intuitive from the discussion in the previous paragraph, where

we saw that the homology groups provide information about the Betti numbers of X – a topological

invariant of X. However a rigorous proof of this fact is quite elaborate and involved [40].

Functoriality: Homology is a functor from the category of topological spaces to the category of

groups [40]. The simple meaning of this statement is that if there are two topological spaces X and

21

Y , and if there is a continuous function f : X → Y , then there exists a group homomorphism f∗:n :

Hn(X) → Hn(Y), ∀n such that for a cycle z ∈ Zn(X) the following holds: f∗:n([z]X) = [f(z)]Y .

Here, by f(z) we mean the image of z in Y under the action of f (which will still be a cycle), and

by the subscripts X and Y of the square brackets we mean the homology class of the cycle in the

respective topological space (i.e. elements of Hn(X) or Hn(Y) respectively). We say that the map f

induces the homomorphisms f∗ between the homology groups (where, by the subscript ‘∗’ we mean

the collection of all the induced homomorphisms · · · , f∗:2, f∗:1, f∗:0). Also, due to functionality, if

there are maps f : X → Y and g : Y → Z, then (g ◦ f)∗ = g∗ ◦ f∗.

Homotopy Invariance: If two spaces X and Y are homotopy equivalent (Definition 2.1.6), then

their homology groups are isomorphic (i.e. they essentially are the same groups). In notation,

Hn(X) u Hn(Y), ∀n. This is an important result in algebraic topology.

However, if we know that the nth homology groups of two spaces are isomorphic (i.e. Hn(X) u
Hn(Y)), it is often nontrivial to find a map f : X → Y that induces the isomorphism. For example

we can have Hn(X) u Hn(Y) u Zp, but if f : X → Y is such that every point on X is mapped

to a single point y0 ∈ Y (i.e. a constant map), then the map f∗:n is a zero map (which is still

a homomorphism, but not an isomorphism). On the other hand, if f is a homotopy equivalence

between X and Y , then f∗ are isomorphisms.

Long Exact Sequence (LES): A long exact sequence is a special type of chain complex consisting

of sequence of abelian groups, A•, and chain maps between the groups, p•, with the property that

Img(pn+1) = Ker(pn), ∀n (instead of just being subset as it was the case for chain complex). Thus

long exact sequences are obviously chain complexes as well. The sequence can be finite or infinite

as in the case of chain complex.

An important result in algebraic topology is that given a pair of spaces, (X,S), the following

sequence is a LES:

· · · −−→ Hn(S)
i∗−−→ Hn(X)

j∗−−→ Hn(X,S)
∂∗−−−→ Hn−1(S)

i∗−−→ Hn−1(X)
j∗−−→ · · ·

where, by the subscripts ‘∗’ we mean the corresponding induced homomorphism to be used for

appropriate value of n. i∗ is the homomorphism induced (due to functoriality of homology) by

the inclusion map i : S ↪→ X. j∗ is induced by the quotient map at the chain level (as opposed

to the topological space) j : Cn(X) → Cn(X)/Cn(S). And ∂∗ is a homomorphism that maps the

homology class of relative cycles in (X,S) to the homology class of its boundary in S. A more

detailed discussion on properties of LES can be found in pp. 114 of [40].

2.1.5 Cohomology

Before we conclude, we will briefly describe the concept of cohomology [40] and in particular, the

de Rham cohomology [8]. The concept of cohomology is very closely related to homology, and most

of the concepts in cohomology (e.g. cochain, cocycle and coboundary) are derived from the related

concepts in homology.

Given a chain complex {C•, ∂•} (with coefficients in group G), consider a homomorphism (in-

formally, a linear function) α : Cn → G′ for some group G′. That is, given any chain σ ∈ Cn we can

22

X

0

1

2

3

-1

-2

0

1

2

3

-1

-2
R R

α1(σ) α2(σ)

Figure 2.12: Two cocycles, α1, α2 : C1(X)→ R, acting on various cycles, σ. The cohomology class
of these two cocycles are generators of H1(X). In this example, H1(X) u R2 as well as H1(X) u R2

(with all coefficients in R).

compute α(σ), which will give us a value in G′. Now consider the set of all such linear functions

Cn → G′ that are possible, and call this set Cn. Thus α ∈ Cn. One can define an addition,],

on elements of Cn: For α1, α2 ∈ Cn, we define (α1] α2)(σ) = α1(σ) +′ α2(σ), where ‘+′’ is

the addition operator in G′. It is easy to see that Cn, along with the addition], forms a group.

Concisely one writes Cn = Hom(Cn, G
′) and call it the dual group of Cn. Elements of Cn are called

n-cochains, which essentially are functions from Cn to G′. Thus, for every cochain α ∈ Cn and

every chain σ ∈ Cn, the evaluation of α on σ, i.e., α(σ), gives a value in G′.

Also, corresponding to every ∂n in the chain complex, one can define a dual map δn−1 : Cn−1 →
Cn as follows: Consider a β ∈ Cn−1 (which is a function from Cn−1 to G′). Then δn−1(β) is an

element of Cn such that for every σ ∈ Cn the following holds: (δn−1(β))(σ) = β(∂n(σ)). It is easily

seen that {C•, δ•} forms a sequence

· · · ←−− Cn+3 δn+2

←−−−− Cn+2 δn+1

←−−−− Cn+1 δn←−−− Cn
δn−1

←−−−− Cn−1 δn−1

←−−−− · · ·

with δn+1 ◦ δn = 0, ∀n. This, in fact, is a chain complex with a increasing sequence of indices

(which is no different from a standard chain complex since it can always be converted to a decreasing

sequence by a variable substitution). This chain complex is however called a cochain complex, the

dual of a chain complex. Just as in a chain complex, we can compute the homologies. Such groups

are called the cohomology groups: Hn(X) = Ker(δn)/Img(δn−1).

n-cocycles are elements of the group Zn := Ker(δn). They have the property that they evaluate

to zero on every n-boundary. n-coboundaries are elements of the group Bn := Img(δn−1). They

have the property that they evaluate to zero on every n-cycle and n-boundary. Cohomology classes

of cocycles have similar interpretation as homology classes: Each cohomology class contains the

23

cocycles that differ by a coboundary. Thus, two cocycles from the same cohomology class will

evaluate to give the same value on two cycles from the same homology class. Figure 2.12 illustrates

how two cocycles evaluate on different cycles in the space X.

De Rham Cohomology Groups

A related concept is that of the De Rham Cohomology. Here, instead of looking at functions from

Cn(X) to a groupG′ (functions that can be evaluated on n-cycles), we look at differential n-forms [8]

that can be integrated on n-cycles. In fact, due to the linearity of the cochains (i.e. the functions

Cn(X)→ G′), one would expect that the cochains can be written as some form of an integral – for

example,
∫
σ1+σ2

ω =
∫
σ1
ω+

∫
σ2
ω lets us define a cochain α(σ) =

∫
σ
ω. It can in fact be shown that

there is a 1-to-1 correspondence between the cohomology classes of n-cocycles and the de Rham

cohomology classes of closed differential n-forms. This is formalized by the de Rham theorem that

gives an isomorphism between the cohomology groups with coefficients in R (i.e. H∗(X;R)) and

the de Rham cohomology groups, H∗dR(X), of a space X.

2.2 Elementary Riemannian Geometry

Topology, due to its invariance to homeomorphism, does not tell us anything about the distance

between points on a topological space. One needs to define a metric or distance function on a

topological space for that.

Definition 2.2.1 (Distance Function [47]). A distance function on a topological space X is a

function d : X ×X → R such that, for any p, q ∈ X, the following conditions are satisfied,

i. d(p, q) ≥ 0,

ii. d(p, q) = 0 if and only if p = q,

iii. d(p, q) = d(q, p), and,

iv. d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r,∈ X (this is called the triangle inequality).

A distance function is also called a metric. However, we will reserve that term for informally

referring to Riemannian metric, and will avoid using the term to indicate a distance function in

order to avoid confusion.

Simple example of distance functions include the p-norm in the familiar vector space of RD

(which is a topological space with the standard Euclidean topology, with additional structure of

a vector space). Thus, if x = [x1, x2, · · · , xD] and y = [y1, y2, · · · , yD] are points in RD, then

d(x, y) =
(
|x1 − y1|p + |x2 − y2|p + · · ·+ |xD − yD|p

)1/p
, p > 0, defines a distance function on

RD.

2.2.1 Manifolds, Coordinate Charts, Atlases and Tangent Space

In Riemannian Geometry we will mostly be concerned with a specific class of topological spaces,

namely manifolds.

24

P

(a) A circle is a 1-manifold. A
open neighborhood of every point
on it resembles an open segment of
R.

P P
P

(b) Topological spaces that are not manifolds. The spaces look locally Eu-
clidean everywhere, except for the points marked as ‘P ’.

Figure 2.13: Topological spaces that are manifolds (a) and that are not manifolds (b).

Definition 2.2.2 (Manifold [47]). A manifold is a topological space that locally looks like an

Euclidean space everywhere. That is, if M is a topological space, and p ∈ M is a point in it,

then there exists a open neighborhood U of p (i.e. an open set U with p ∈ U), such that one can

construct homeomorphisms ψ : U → RD for some nonnegative integer D. The minimum value of

D for which it is possible to construct such homeomorphisms is called dimension of the manifold.

Of course all manifolds are topological spaces, but the converse is not true. A circle is a 1-

dimensional manifold since the neighborhood of every point on it resembles a line segment, a subset

of R1 (Figure 2.13(a)). Similarly a sphere or a torus are 2-dimensional manifolds. A solid ball is

a 3-dimensional manifold with boundary (i.e. points on the boundary locally looks like half-space

instead of R3). Figure 2.13(b) shows some simple topological spaces that are not manifolds. This

is because at least at some point in the spaces there does not exist an open neighborhood that

resembles an Euclidean space.

Next we proceed towards defining a coordinate chart on a manifold. There are many natural

algebraic tools associated with the standard Euclidean space, RD (e.g. its vector-space structure,

natural definition of differentiation along the axes, etc.). The main purpose of defining a coordinate

chart is to borrow those concepts to arbitrary manifolds.

Definition 2.2.3 (Coordinate Chart). Given an open subset U of a D-dimensional manifold M ,

and a continuous injective function φ : U → RD, we say C = (U, φ) is a coordinate chart on U . φ

in fact needs to be a homeomorphism as well (i.e. have a continuous inverse over its image).

Thus, the polar coordinate θ ∈ (0, 2π) used to describe points on a circle (Figure 2.14(a))

constitutes a coordinate chart. The map φ : (S1 − O) → (0, 2π) maps every points on the circle,

except one (exclusion of which makes the pre-image of φ an open subset of S1, and the image an

open subset of R1), to the open interval (0, 2π) on R. Similarly, the familiar polar coordinate on

a 2-sphere constitutes a coordinate chart. The open subset under consideration here is the entire

surface of the sphere except the polar points and one longitudinal line, and the function φ maps

every point on it to a point in R2, namely, (θ, γ) – the latitudinal and longitudinal angles.

The variables (θ in case of the circle, (θ, γ) in case of a sphere), natural to RD, can now be used

25

θ

P

0 θ 2π

φ

O

(a) The map φ : (S1 − O) → (0, 2π) constitutes a co-
ordinate chart. Note that (S1 − O) is an open subset
of S1.

P

θ

φ1

η

φ2

A

(b) Two maps, φ1 : (S1 − O) → R and φ2 : A → R,
with A being an open subset of S1, constitutes an atlas
on S1. This is because (S1 −O) ∪A = S1.

Figure 2.14: A chart and an atlas on the topological circle.

to describe points on the pre-image of φ, i.e. the open subset U (since φ has a continuous inverse as

well). These are called the coordinate variables of the chart C. Very often, if x = (x1, x2, · · · , xD)

are the coordinate variables corresponding to a given chart, one simply writes x to refer to points

on U instead of writing φ(x).

Definition 2.2.4 (Atlas [47], Fig. 2.14(b)). An atlas is a collection of coordinate charts {Uα, φα}
on a manifold M , such that the union of the open subsets covers the entire of M (we say Uα is an

open covering of M). That is ∪αUα ⊇M .

Going back to the example of the chart on a open subset of circle, we were unable to incorporate

one single point on the circle for being described by the chart in Figure 2.14(a). However, with an

atlas (Figure 2.14(b)), we can have multiple separate charts, using which we can cover the entire

circle.

Definition 2.2.5 (Chart Transition [47], Fig. 2.15). Consider two charts (Um, φm) and (Un, φn),

for some open subsets Um and Un of a D-dimensional manifold M such that Um ∩ Un 6= ∅. Then

one can define the map φn ◦ φ−1
m : φm(Um ∩ Un) → φn(Um ∩ Un). Note that both the pre-image

and image of this map are subsets of RD. Such a map is called a chart transition or a coordinate

transformation or simply a coordinate change (the later two terms are used more frequently when

Um = Un = Um ∩ Un).

Thus, if x ∈ RD are the coordinate variables for (Um, φm), and x ∈ RD are the ones for (Un, φn),

then the chart transition is given by x = φn ◦ φ−1
m (x). If the charts are assumed to be implicitly

defined with the coordinate variables, one simply writes x = f(x), or informally, x = x(x) (i.e. the

variables xi are functions of the variables xj).

A manifold is said to be differentiable if for every pair of charts, (Um, φm) and (Un, φn), the

transitions φn ◦ φ−1
m are differentiable functions of class C∞ (where the notion of differentiability

on RD is natural due to the vector-space structure on it). Most of the manifolds that we will be

concerned with in this thesis are differentiable.

26

M

Um ∩ Un

φm

φn

f := φn ○ φm
-1

R2

R2

x

x

d(φn ○ φm
-1)

v

v

Figure 2.15: Chart Transition.

Tangent Space

We are familiar with the notion of a tangent to a curve or the tangent plane to a surface embedded in

R3. The notion of such tangents is generalized to arbitrary manifolds by tangent space. Consider a

chart (Um, φm). A point, p, in Um is represented by its image, x = [x1, x2, · · · , xD] ∈ RD, under the

action of φ. By the virtue of the vector-space structure of RD, one can imagine a vector centered at

x and having components v1, v2, · · · , vD along the directions of increasing values of x1, x2, · · · , xD

(Figure 2.15).

Fundamental to the definition of such a vector is the notion of transformation of the coefficients,

[v1, v2, · · · , vD], under a chart transition. Consider the chart transition x = f(x) as discussed

earlier. The vector (sitting at x) with components [v1, v2, · · · , vD] in the un-barred coordinate

variables will have certain components [v1, v2, · · · , vD] in the barred coordinates (sitting at x) (Fig-

ure 2.15), which is determined by some transformation rule that we are yet to define. However,

whatever that definition be, the property that such a transformation rule on coefficient vectors

attached to points, x or x, must satisfy is invariance under a composition of forward and inverse

transformation. That is, if corresponding to the chart transition x = f(x) the transformation

of the vector components (at the specific point p) is given by some function d[]fx : RD → RD

such that [v1, v2, · · · , vD] = d[]fx([v1, v2, · · · , vD]), and if corresponding to the inverse chart tran-

sition x = g(x) the transformation of the previously transformed vector components is given by

some function d[]gx such that [v
1
, v

2
, · · · , vD] = d[]gx([v1, v2, · · · , vD]), then we should have

[v
1
, v

2
, · · · , vD] = [v1, v2, · · · , vD]. That is, d[]gx ◦ d[]fx acts as an identity transformation on the

vector components whenever g = f−1. Moreover it should also satisfy the composition property

d[](h◦f)x = d[]hf(x) ◦ d[]fx, where f and h are two chart transitions. These properties should hold

true at every x and every component vector of vector attached to x. The conditions are known as

cocycle conditions [53, 8].

27

Contravariant Vectors: One such transformation rule for vectors that satisfies the above condi-

tions is vj =
∑D
i=1

∂fj

∂xi

∣∣∣
x
vi (where by f j we simply mean the jth component of the vector function

f). This can be easily seen by noting that [v] = Jf [v] (where Jf is the Jacobian matrix of f at

x, and [v] represents the coefficient vector as a column vector). Then a subsequent transformation

under d[]g will give Jg[v] = JgJf [v] = [v] (since g is the inverse transformation of f , the product

of the Jacobian matrices, JgJf , is the identity matrix). Moreover, it is a standard exercise to check

that JhJf = Jh◦f . Such vectors, the coefficients of which follow such transformation rules, are

known as contravariant vectors (or simply, vectors). There are other types of vectors that trans-

form differently, but satisfy the said properties under composition of transformations. One such

example is that of covariant vectors, which we will not discuss in details in this section.

A systematic way of writing contravariant vectors is by choosing ∂
∂xi as basis for such vectors (i.e.

quantities to which we ‘multiply’ the said coefficients/components, vi, and take sum to write the

full vector). This is purely done to avoid writing the said transformation rule for vector components

explicitly, and instead take advantage of the standard rule for transformation of partial derivatives

from one set of variables to another. Thus, under this representation, one would write for a vector,

v =
∑D
i=1 v

i ∂
∂xi (where as usual the vi are the components in the specific chart), and asserts that

this v is independent of the choice of coordinate chart. That is,

v =

D∑
i=1

vi
∂

∂xi
=

D∑
j=1

vj
∂

∂xj
(2.2.1)

Now, from the property of partial derivatives,

∂

∂xi
=

D∑
j=1

∂xj

∂xi
∂

∂xj

Plugging this in the middle terms of (2.2.1) naturally reveals the transformation rule

vj =

D∑
i=1

∂xj

∂xi
vi (2.2.2)

where, we have used the informal notation for transformation, x = x(x).

Definition 2.2.6 (Tangent Space [47]). Given a coordinate chart (U, φ) on a smooth manifold M ,

the tangent space at a point p on it represented by the coordinate variable x ∈ Ω = Img(φ) ⊂ RD

is a D-dimensional vector space, TpM = TxΩ, spanned by the basis ∂
∂x1 ,

∂
∂x2 , · · · , ∂

∂xD
.

The whole point of choosing such a basis is to make the vectors in the tangent space independent

of the choice of the coordinate chart, as described earlier, and to make the components of the vectors

in each coordinate chart follow certain transformation rule.

Einstein’s Summation Convention for Repeated Indices: Purely for the convenience of writing,

we would often drop the summation sign (capital sigma) inside expressions like
∑D
j=1

∂xj

∂xi
∂
∂xj

and∑D
i=1 v

i ∂
∂xi , and whenever there is a repeated index (j and i in these cases respectively), we will

assume the summation to be implied. Thus, for these expressions we will simply write ∂xj

∂xi
∂
∂xj

and

28

M

RD

0 tm

λ

φ

Δx1

Δx2

γ(t)

R

Figure 2.16: An infinitesimal element on a curve.

vi ∂
∂xi respectively.

2.2.2 Riemannian Metric, Geodesics and Curvature

We have previously described the notion of a distance function on a general topological space. There

is a more restricted (and probably more intuitive) notion of distance – one that is induced by the

‘length’ of the shortest curve connecting two points. Before we can describe the shortest curve,

we need to define length of a curve. Throughout, we will mostly be working with differentiable

manifolds as our topological spaces.

Informal Description

The definition of length of a curve on a D-dimensional manifold, M , represented by λ : [0, tm]→M ,

is closely related with the definition of the length of an infinitesimal element on the curve. One can

then integrate the infinitesimal lengths to obtain the total length of the curve. While the length of

an infinitesimal element on a curve can have a variety of possible definitions (including ones based

on arbitrary norms and higher order derivatives of the curve), the type of definition that we will be

interested in is based on quadratic forms on the tangent spaces of the manifold. Such a definition

of length arises naturally in many physical and practical applications, and forms the motivation for

Riemannian metric.

For a given coordinate chart C = (U, φ) with coordinate variables xi, such that the curve

λ lies entirely in U , we define the curve in the given coordinates as γ = φ ◦ λ : [0, tm] → RD

(Figure 2.16). The domain of γ is called the parameter space of the curve. A small infinitesimal

element on the curve between t and t+∆t in the parameter space is then represented by γ̇(t)∆t =:

[∆x1,∆x2, · · · ,∆xD] (where ∆xi represent the change in the ith coordinate variable across the

infinitesimal element in the chart C). It is not difficult to note that [∆x] := [∆x1,∆x2, · · · ,∆xD]

behaves like coefficients of a contravariant vector (since in a different coordinate chart one would

get ∆xj = ∂xj

∂xi ∆xi – a consequence of elementary calculus).

29

Then we define the ‘length’ of the element as

∆s =
√
gij∆x

i∆xj (2.2.3)

where, as agreed, we have assumed summation over the repeated indices. gij hence represents

elements of a matrix, g (which is specific to the given coordinate chart), such that the length is

given by [∆x]T g[∆x] (where we assumed [∆x] to be a column vector of the coefficients).

The condition that the definition of length must satisfy is that the length of an infinitesimal

element should not change upon change of coordinates. Thus, if we are given another coordinate

chart with coordinate variables xi, the following condition must hold,

(∆s)2 = gij∆x
i∆xj = gpq∆x

p∆xq (2.2.4)

Using the transformation rule for coefficients of contravariant vector, ∆xi = ∂xi

∂xp∆xp, and substi-

tuting it in the middle term of the above equation, one gets the relationship between gij and gij ,

gpq =
∂xi

∂xp
∂xj

∂xq
gij (2.2.5)

This gives a transformation rule for the elements of the matrix used to define length as in (2.2.3).

The discussion so far indicates the definition of a bilinear scalar product on contravariant vectors

(e.g. acting on two copies of ∆x = ∆xi ∂
∂xi to give the square of length of the segment as prescribed

by (2.2.4)). It is important to note that the value of this product for two contravariant vectors does

not depend on the choice of the coordinate chart (this is achieved by the way we constructed the

transformation rule (2.2.5)). Thus it is a product defined on the tangent spaces of the manifold

itself.

Definition 2.2.7 (Riemannian Metric [47]). A Riemannian metric on a differentiable manifold, M ,

is a symmetric bilinear scalar product on each tangent space, TpM , for every p ∈ M , such that it

varies smoothly with p. That is, it is a bilinear function g(p) : TpM ×TpM → R, that is symmetric

in its two parameters, and it itself is smooth in p.

g is called the metric tensor, and the gij , from our previous discussion, the matrix representation

of the metric in a particular coordinate chart. The symmetry condition implies that the matrix

representation is a symmetric matrix in any coordinate chart.

It is important to note that matrix representation of the metric in a particular coordinate chart

simply constitutes a collections of D(D + 1)/2 functions in the coordinate variables. That is,

g =


g11(x) g12(x) · · · g1D(x)

g21(x) g22(x) · · · g2D(x)
...

...
. . .

...

gD1(x) gD2(x) · · · gDD(x)


with gij(x) = gji(x).

We use the following notation to write derivatives of the components of the matrix representation

30

of the metric in a particular coordinate chart,

gij,k :=
∂gij
∂xk

Thus, for a different coordinate system, gij,k :=
∂gij
∂xk

.

One can write the inverse of the matrix g. The components of the inverse matrix are once again

functions of the coordinate variables. The components of the matrix of g−1 are written as gij (note

that the indices are written as superscript). It is easy to verify that gikg
kj gives components of the

product of the two matrices. Thus,

gikg
kj = δji

where, δji represents the Kronecker delta (i.e. the components of the identity matrix).

We will next describe a few quantities (specific to a particular coordinate chart) derived directly

from the components of the matrix representation of the metric tensor on a particular coordinate

system without detailing their immediate significance. We will hence use those quantities in order

to state some results. The reader can refer to [47] for more detailed discussion on these quantities.

Definition 2.2.8 (Christoffel Symbols).

Γikl :=
1

2
gim (gmk,l + gml,k − gkl,m) (2.2.6)

Similar to the components of the metric, for notational convenience we define

Γikl,p :=
∂Γikl
∂xp

Definition 2.2.9 (Ricci Scalar Curvature).

We define the Riemannian curvature tensor as

Rρσµν = Γρνσ,µ − Γρµσ,ν + ΓρµλΓλνσ − ΓρνλΓλµσ

We hence define the Ricci curvature tensor,

Rij = Rkikj

Following that, we define the Ricci scalar curvature,

R = gijRij

= gij(Γkij,k − Γkik,j + ΓlijΓ
k
kl − ΓlikΓkjl) (2.2.7)

It is to be noted that Ricci scalar curvature is a scalar function on a manifold, and is independent

of the choice of the coordinate system.

In spite of all the intricacies in the definitions and their interpretations, both Γikl and R are

essentially functions of the components of the matrix representation of the metric, gij , and their

31

derivatives. Hence both of these quantities can be expressed as functions of the coordinate variables

x1, x2, · · · , xD.

Geodesic

Consider the length of a curve γ : [0, tm]→ RD on a Riemannian manifold (expressed in a particular

coordinate chart – i.e. if λ : [0, tm] → U ⊆ M was the original curve, and (U, φ) is a coordinate

chart, then we define γ = φ ◦ λ),

L(γ) =

∫ tm

0

√
gij γ̇i γ̇j dt (2.2.8)

where γ̇i represent the ith component of the coefficients of the tangent vector in the particular

coordinate. Due to the way we defined g and its transformation, the length of a fixed curve on M

is independent of the choice of the coordinate system.

If the start and end points of γ are constrained to two specific points (i.e. γ(0) = s ∈ RD and

γ(tm) = e ∈ RD are the constraints), then one can consider the problem of minimizing L(γ) over

the different curves, γ, that connect the two points. It can be shown that the γ that minimizes L,

also minimizes the integral

E(γ) =

∫ tm

0

gij γ̇
i γ̇j dt

Typically a calculus of variation approach is taken to solve this problem. The solution thus obtained

is in form of differential equation, known as the Geodesic Equation,

d2γi

dt2
+ Γijk

dγj

dt

dγk

dt
= 0 (2.2.9)

That is, any curve that minimizes the integral of (2.2.8) between any two points (even arbitrarily

close) satisfies the geodesic equation (2.2.9), and is called a geodesic.

Geodesics are of course independent of the choice of the coordinate chart – a geodesic computed

in one coordinate chart will map to the corresponding geodesic computed in a different coordinate

chart under the coordinate transformation.

The solution by the calculus of variation approach to obtain (2.2.9) is a locally optimal one,

not a globally optimal one. Thus, it is possible that more than one curve connecting two points

satisfy the geodesic equation. In fact it can be shown [47] that there is an unique geodesic in every

homotopy class of curves connecting two points in a Riemannian metric space.

The length of the shortest geodesic (i.e. minimum over the lengths of all the possible geodesics

between those points) between two points describe a distance function.

Curvature

There are essentially two notions of curvature of any metric space – extrinsic and intrinsic. The

Ricci Scalar (Definition 2.2.9) is a measure of intrinsic curvature. Intrinsic curvatures are more

fundamental to a metric space, whereas extrinsic curvature arises mostly due to embedding.

Intuitively, a space (or a subset of a space) has zero intrinsic curvature everywhere if it can

32

Figure 2.17: Curvature: Extrinsic vs. Intrinsic. A small patch on the cylinder can be flattened
without stretching or compressing any part of it. However that is not possible for a patch from a
sphere. Thus the curvature of a cylinder is extrinsic, while that of a sphere is intrinsic. The Ricci
scalar curvature computed using any coordinate chart on an open set on the surface of a symmetric
cylinder will give a constant value of zero. While the same for a symmetric sphere will be a constant
positive value.

be deformed isometrically (i.e. without stretching/squeezing any part) so as to embed it in a flat

Euclidean space of same dimension (Figure 2.17).

Topology and Metric

Since metric itself is described by its matrix representation in a specific chart (and possibly multiple

representations in an atlas), in order to describe metric on a topological space independent of a

coordinate chart, one often refers to certain description of the Ricci scalar curvature of the space or

properties of geodesics on the space (since Ricci scalar curvature and properties, like intersection,

of geodesics are independent of the choice of the coordinate chart). For example, one can refer to

a metric space with zero Ricci scalar curvature everywhere on it. An example of such a space is a

flat Euclidean space with Euclidean metric. The surface of a cylinder also has zero scalar curvature

(Figure 2.17). Again, one can refer to a space with constant positive scalar curvature everywhere.

A sphere is such a space. Similarly, a hyperbolic space is one with constant negative Ricci scalar

curvature everywhere.

However, such a description of a metric using intrinsic curvature, although describes a space

locally, is not enough to define the global topology of a space. The zero curvature of R2 and the

cylinder was one such example. Again, the same topological space can admit two totally different

descriptions of metric. An interesting example of such a case is that of a flat torus. The flat torus

is a specific embedding of the standard topological 2-torus in R4. The metric inherited from the

embedding space by the torus due to the specific embedding turns out to be flat (i.e. the Ricci

33

scalar curvature of the flat torus is zero everywhere). However, in the standard embedding of the

torus in R3, it is not possible to achieve zero scalar curvature at every point on it.

A particular topological space can admit a variety of metrics. However it may not admit an

arbitrary description of a metric. For example, one cannot construct a metric on a topological

2-sphere so that the Ricci curvature is zero everywhere on it. This is closely related to the notion

of total curvature of a space, which is indicative of the global topology of the space.

2.3 Graph Search Algorithms

As discussed in Section 1.1.2, in the discrete approach towards planning path, a graph is constructed

by distritizing the configuration space and placing a vertex/node at each discretized cell. Edges are

established based on available actions between neighboring vertices.

Thus a graph consists of 3 components: A vertex set V(G), an edge set E(G) ⊆ V(G) × V(G),

and a cost function CG : E(G)→ R+. An element in V(G) is called a vertex or a node. An element

in E(G) is represented by the ordered pair [a, b] ∈ E(G), which implies that there exists an edge in

G connecting a ∈ V(G) to b ∈ V(G).

2.3.1 Dijkstra’s Algorithm

Dijkstra’s Algorithm [26] is the most fundamental in finding minimum cost (or shortest distance)

paths between a vertex, p ∈ V(G), in the graph to every other vertex in the graph that is reachable

from p. It is complete and guaranteed to be optimal. The intuition behind the Dijkstra’s Algorithm

is that starting from the start node p, a ‘wavefront’ of almost equal geodesic distances (i.e. cost of

shortest paths) is propagated through the graph. Figure 2.18 illustrates the progress of Dijkstra’s

algorithm. Notice the wavefront marked by the empty blue circles. This is the set of nodes {u ∈
Q
∣∣ g(u) is finite}.

Algorithm 2.3.1

g = Dijkstras (G, p)
Inputs: a. Graph G

b. Start node p ∈ V(G)
Outputs: a. The shortest distance map g : V(G)→ R+

1 Initiate g: Set g(v) :=∞, for all v ∈ V(G) // Minimum distance
2 Set g(p) = 0
3 Set Q := V(G) // Set of un-expanded nodes
4 while (Q 6= ∅)
5 q := argminq′∈Q g(q′) // Vertex to expand. Q is maintained by a heap data-structure.
6 if (g(q) ==∞)
7 break
8 Q = Q− q // Remove q from Q
9 for each ({w ∈ NG(q)}) // For each neighbor of q

10 Set g′ := g(q) + CG([q, w])
11 if (g′ < g(w))
12 Set g(w) = g′

13 return g

where, NG(u) = {w′ ∈ V(G)
∣∣ [u,w′] ∈ E(G)}, the set of neighbors of u.

34

(a) iter = 0. Start
node in red.

(b) iter = 96. The
wave front (empty
blue circles) is visible.

(c) iter = 190. (d) iter = 286. (e) iter = 376.

Figure 2.18: Illustration of progress of Dijkstra’s algorithm.

Once one has the map g : V(G)→ R+, one can construct a shortest path from any given node,

r, to the start node p using Algorithm 2.3.2.

Algorithm 2.3.2

P = Reconstruct Path (G, g, r)
Inputs: a. Graph G

b. The shortest distance map g : V(G)→ R+

c. Vertex to which to find the shortest path, r ∈ V(G)
Outputs: a. A path (ordered set of vertices) in the graph, P = [ρ1, ρ2, ρ3, · · · , ρn=r]

1 Initiate P = []
2 if (g(r) ==∞) // r unreachable from the start node
3 return P
4 Set v := r
5 while (g(v) 6= 0)
6 P = v ⊕ P // Insert v at the beginning of P .
7 v = argmin

w∈N−1
G

(v)
g(w) // back-trace predecessor that led to v.

8 P = v ⊕ P // Insert the final vertex (the start node) at the beginning of P .
9 return P

where, N−1
G (u) = {w′ ∈ V(G)

∣∣ [w′, u] ∈ E(G)}, the set of vertices in G that has u as a neighbor.

Note that for undirected graphs N−1
G (u) = NG(u).

Note that the shortest path may not be unique, since in many cases there can be multiple paths

with the same least cost.

2.3.2 A* Algorithm

The A* Algorithm [39] is, in essence, much similar to the Dijkstra’s algorithm. While in Dijkstra’s

algorithm one is typically interested in finding least cost paths to every vertex in the graph from

the start vertex, in A* search typically a fixed goal is provided. This allows us to direct the search

in a more informed manner. Instead of expanding the ‘wavefront’ (mentioned earlier) uniformly in

all direction, we expand it with a bias towards the direction of the goal vertex (Figure 2.19). This

bias is governed by what is known as a heuristic function. A heuristic function for a graph G is a

function h : V(G) × V(G) → R+, such that h(va, vb) give some estimate of the minimum distance

(i.e. total cost of shortest path) between the vertices va and vb. An admissible heuristic function

is such a heuristic function that always underestimates the actual minimum cost. It can be shown

that the A* algorithm (Algorithm 2.3.3) with an admissible heuristic returns the optimal (least

35

(a) iter = 8. Goal
vertex in green.

(b) iter = 57. (c) iter = 114. (d) iter = 171. (e) iter = 376.

Figure 2.19: Illustration of progress of A* algorithm. The open set is marked by empty blue circles.

cost) path to the goal. Of course, the constant function h(va, vb) = 0 is an admissible heuristic, and

in that case it can be shown that the A* algorithm becomes equivalent to the Dijkstra’s algorithm.

In fact, the only major algorithmic difference of A* from Dijkstra’s (besides a few other structural

differences) is that in place of line 7 of Algorithm 2.3.1, one selects the vertex q to be expanded as

the one with lowest value of f instead of g (line 8 of Algorithm 2.3.3), where the f -value is g-value

plus the heuristic from that vertex to the goal.

Algorithm 2.3.3

g = A star (G, p, r, h)
Inputs: a. Graph G

b. Start node p ∈ V(G)
c. Goal node r ∈ V(G)
d. An admissible heuristic function h : V(G)× V(G)→ R+

Outputs: a. A path connecting start vertex to goal vertex, P = [p=ρ1, ρ2, ρ3, · · · , ρn=r]

1 Initiate g: Set g(v) :=∞, for all v ∈ V(G) // Minimum distance
2 Set g(p) = 0
3 Initiate f : Set f(v) :=∞, for all v ∈ V(G) // f -values
4 Set f(p) = h(p)

5 Set Q := ∅ // Closed set (set of expanded nodes)
6 Set R := {p} // Open set (candidate nodes for expansion)
7 while (R 6= ∅ && r /∈ R)
8 q := argminq′∈R f(q′) // Vertex to expand. R is maintained by a heap data-structure.
9 if (q == r) // Goal vertex reached.

10 return Reconstruct Path (G, g, r)
11 R = R− q // Remove q from open set.

12 Q = Q ∪ q // Add q to closed set.

13 for each ({w |w ∈ NG(q) and w /∈ Q}) // For each neighbor of q that’s not in closed set
14 R = R ∪ w // Add w to open set.
15 Set g′ := g(q) + CG([q, w])
16 if (g′ < g(w))
17 Set g(w) = g′

18 Set f(w) = g′ + h(w, r)
19 return [] // Goal vertex is not reachable.

Heuristic Function

The choice of the heuristic function, h, is extremely crucial in an A* search. A heuristic function is

a positive scalar function of the vertices in the search graph. For A* to return an optimal solution,

36

Figure 2.20: The two different types of heuristics for an 8-connected grid graph: The green is the
start state and red is the goal vertex. Dashed arrow represents hE , solid black arrow represents h8,
light blue path represents the actual least cost path. Obstacles are in dark gray.

the heuristic function needs to be an admissible one – that is, it should be such that it never

overestimates the actual minimum cost for reaching the goal. However to make the search more

efficient and minimize the number of vertices expanded, the heuristic must be as close as possible

to the actual minimum cost to the goal. For a graph constructed by discretization of an Euclidean

space (like the one in Figure 1.4(a)), one obvious and commonly used heuristic function is the

Euclidean distance to the goal, i.e. hE(u, v) = ‖u − v‖2 (where, z represent the coordinate of the

vertex, z, in the original configuration space). But, for particular types of discretization one can use

heuristic functions with tighter bounds. For example, for an 8-connected grid graph (one created

by uniform square discretization of a plane as in Figure 2.20), one can use a more efficient heuristic

given by h8(u, v) =
√

2 min(∆x,∆y) + |∆x−∆y|, where ∆x = |ux−vx| and ∆y = |uy −vy|, with

zx and zy respectively representing the x and y coordinates of the point z in the original coordinate

space. This is illustrated in Figure 2.20.

On-the-fly Graph Construction

Before we conclude this section, we would like to emphasize an important properties of the search

algorithms (not just limited to Dijkstra’s and A*, but generalizes to almost all search algorithms

in general): Although in both Algorithms 2.3.1 and 2.3.3, a graph G was mentioned as an input

parameter, it is in fact not necessary to construct the entire graph from before and pass it on to

the algorithm. If a graph can be constructed from a set of simple rules we may just need to pass

those rules to the algorithms. In that case the Dijkstra’s or A* algorithm can construct the graph

on-the-fly as it progresses (not very different from the way vertices are ‘created’ with the progress

of iterations in Figures 2.18 and 2.19). In fact, the entire graph G may very well be infinite, but

we still can find a path from a given start to a given goal vertex in the graph using either of the

algorithms.

37

Chapter 3

Search-based Path Planning with

Topological Constraints in 2 and 3

Dimensional Euclidean Spaces

3.1 Introduction

3.1.1 Motivation: Homotopy Classes of Trajectories

In Euclidean configuration spaces homotopy classes of trajectories arise due to presence of obstacles

in an environment. Two trajectories connecting the same start and goal coordinates are in the

same homotopy class if they can be smoothly deformed into one another without intersecting any

obstacle in the environment, otherwise they are in different homotopy classes. In many applications,

it is important to distinguish between trajectories in different homotopy classes, as well as identify

the different homotopy classes in an environment (e.g., trajectories that go left around a circle in

two dimensions versus right). For example, in order to deploy a group of agents to explore an

environment [9], an efficient strategy ought to be able to identify the different homotopy classes

and deploy one robot in each homotopy class. One may also wish to determine the least cost path

for each robot constrained to or avoiding specified homotopy classes. In many problems the notion

of visibility is linked intrinsically with homotopy classes. In tracking of uncertain agents in an

environment with dynamic obstacles, the ability to deal with occlusions during a certain time frame

is important [89]. A knowledge of the possible homotopy classes of trajectories that a target can

take in the environment when it is occluded can help more efficient belief propagation.

Despite being mostly an uncharted research area, homotopy class constraints often appear in

path planning problems. For example, in multi-agent planning problems [88, 49], the trajectories

often need to satisfy certain proximity or resource constraints or constraints arising due to tasks

allocated to agents, which translates into restricting the solution trajectories to certain homotopy

classes that respect those constraints. In exploration and mapping problems [9], agents often need

to plan trajectories based on their mission or part of the environment they are assigned for mapping

38

or exploration, and hence restrict their trajectories to certain homotopy classes.

Classification of homotopy classes in two-dimensional workspaces has been studied in the robotics

literature using geometric methods [37, 41], probabilistic road-map construction [75] techniques and

triangulation-based path planning [22]. However, efficient planning for least cost trajectories with

homotopy class constraints is difficult using such representations even in 2-dimensions. Neither

it is possible to efficiently explore/find optimal trajectories in different homotopy classes in an

environment.

In this chapter we propose a novel way of classifying and representing homology classes, a

close analog of homotopy classes, in two and three dimensional Euclidean configuration spaces,

which are the types of configuration spaces we encounter most often in robot planning problems.

For the 2-dimensional case we use theorems from complex analysis for developing a compact way

of representing homology classes of trajectories, while for 3-dimensional configuration spaces we

exploit theorems from electromagnetism. In later chapter we show that the formulae for 2 and 3

dimensional cases can in fact be generalized to arbitrary D-dimensional Euclidean configuration

spaces with obstacles.

The novelty of our work lies in the fact that our proposed representation allows us to iden-

tify/distinguish trajectories in different classes and compute least-cost paths in non trivial con-

figuration spaces with topological constraints using graph search-based planning algorithms. The

representation we propose is designed to be independent of the type of the environment, the dis-

cretization scheme or cost function. Our proposed representation can also be used in configuration

spaces with additional degrees of freedom that do not effect homotopy classes of the trajectories

(e.g. for unicycle modes of mobile robots, the configuration space consists of variables x, y and θ.

But the last variable, θ, does not effect the homotopy classes of trajectories. Only the projection

of the X − Y plane is enough to capture the topological information).

Using such a representation we show that topological constraints can be seamlessly integrated

with graph search techniques for determining optimal paths subject to constraints. We also discuss

how this method can be used to explore multiple homotopy classes in an environment using a single

graph search.

3.1.2 Capturing Topological Information in Search-based Planning

In search-based planning algorithms one typically starts by discretizing a given environment to

create a graph G = (V, E). Starting form an initial vertex, vs ∈ V, a typical graph-search algorithm

expands the nodes of the graph by traversing the edges. Values are maintained and associated with

each expanded node that capture the metric information (distance/cost) of shortest path leading

to the expanded node from vs. For example, A* search algorithm (Algorithm 2.3.3) maintains two

functions g, f : V → R. g(v) is the cost of the current path from the start node to node v, and

f(v) = g(v) + h(v) is an estimate of the total distance from start to goal going through v. The

algorithm maintains an open set, the set of nodes to be expanded. Each time it expands a node

v, it updates the values of g(v′) for each neighbor v′ of v, by adding to g(v) the cost of the edge

c(vv′) (the update happens only if the newly computed value is lower than the previous value).

This process continues until a desired vertex vg ∈ V is reached [39].

39

α β

(a) Given an arbitrary differential 1-form (or a

measure) “(·)”,

∫
αtβ

(·) =

∫
α

(·) +

∫
β

(·),

where α t β is the total curve formed by α and
β together.

v1
v2

e

vs Parent node

Child node

(b) We want to design a differential 1-form, in-
tegration of which along curves, give the desired
H-signature. In a graph-search setup, due to the
additivity property, H(ṽsv2) = H(ṽsv1) +

∫
e ω –

the value for a path up to a vertex can be easily
computed from the value up to one of its chil-
dren.

Figure 3.1: Additivity of integration can be exploited in graph search algorithm.

The fact that the value of g(v′) can be computed from g(v) + c(vv′) is due to the fact that

the cost function is additive (Figure 3.1(a)). This is because the metric information about the

underlying space is captured using a differential 1-form, namely the infinitesimal length/cost, dl

(strictly speaking, it is a measure, but we will compare it with a 1-form since they share the

property of integrability). The cost of an edge, e, of the graph is then computed as an integral

of the form c(e) =
∫
e
J (l) dl (with some scaling function J). By the virtue of integration, the

cost function, c, is additive (i.e. if α and β are two curves that share a common end point, then

c(α t β) = c(α) + c(β), where “t” indicates the disjoint union, and represent the total curve

formed by the two curves together). This implies, in an arbitrary graph search algorithm, during

the expansion of the vertices of the graph, the cost of the shortest path up to a vertex that is

being expanded can simply be computed by adding to that of its parent (in terms of sequence of

expansions) the cost of the edge connecting to it. This additive property of length/cost is key in

developing such graph search algorithms.

While the quantity, J (l) dl, yields metric information, there are other differential 1-forms that

can incorporate other information about the underlying space and can be used for guiding the

search algorithm. The main idea in this thesis is to determine a differential 1-forms that encodes

topological information about the space and let us guide the search accordingly. In particular, we

will be trying to find generators of the De Rham’s cohomology group, H1
dR(RD − O) [8], for the

Euclidean space RD punctured by the obstacles O. A more detailed discussion from the algebraic

topology view point will be provided in the next chapter. In this chapter we introduce the basic

concepts using more familiar tools.

3.1.3 H-signature as Class Invariants for Trajectories

We consider a very general differential 1-form in a given D-dimensional configuration space C. If

x1, x2, · · · , xD are the coordinate variables describing the configuration space, a general differential

1-form can be written as dh := f1(x) dx1 + f2(x) dx2 + · · · + fD(x) dxD. Thus, for any given

trajectory/curve, τ , in this configuration space, one can compute H(τ) =
∫
τ

dh. We call this the

40

H-signature of τ (Figure 3.1(b)).

We want to design the 1-form dh and the H-signature of a trajectory such that it is an invariant

across trajectories in the same homotopy class. However, because we use 1-forms and their integrals

along closed curves to classify trajectories, we naturally obtain invariants for homology classes

of trajectories [40, 71, 8]. But in most practical robotics problems the notion of homology and

homotopy of trajectories can be used interchangeably, especially when finding the least cost path.

This is discussed in greater detail with examples in Sections 3.5.1 and 3.6.

3.2 Homotopy and Homology Classes of Trajectories

Let C be the D-dimensional configuration space (which exclude the inaccessible regions, e.g. the

obstacles). Let x1, x2, · · · , xD be the coordinate variables used to describe the configuration space.

A point in C is thus represented by x.

Definition 3.2.1 (Homotopic trajectories). Two trajectories τ1 and τ2 connecting the same start

and end coordinates, xs and xg respectively, are homotopic iff one can be continuously deformed

into the other without intersecting any obstacle.

Formally, if τ1 : [0, 1] → C and τ2 : [0, 1] → C represent the two trajectories (with τ1(0) =

τ2(0) = xs and τ1(1) = τ2(1) = xg), then τ1 is homotopic to τ2 iff there exists a continuous map

η : [0, 1] × [0, 1] → C such that η(α, 0) = τ1(α) ∀α ∈ [0, 1], η(β, 1) = τ2(β) ∀β ∈ [0, 1], and

η(0, γ) = xs, η(1, γ) = xs ∀γ ∈ [0, 1]. Alternatively, τ1 and τ2 are homotopic iff τ1 t −τ2 belongs

to the trivial class of the first homotopy group of C, denoted by π1(C). In the notation of [40],

[τ1 t −τ2] = 0 ∈ π1(C).

Definition 3.2.2 (Homologous trajectories). Two trajectories τ1 and τ2 connecting the same start

and end coordinates, xs and xg respectively, are homologous iff τ1 together with τ2 (the later with

opposite orientation) forms the complete boundary of a 2-dimensional manifold embedded in C not

containing/intersecting any of the obstacles.

Formally, τ1 and τ2 are homologous iff τ1 t−τ2 belongs to the trivial class of the first homology

group of C, denoted by H1(C) . In the notation of [40], [τ1 t −τ2] = 0 ∈ H1(C).

A set of homotopic trajectories form a homotopy class, while a set of homologous trajectories

form a homology class.

At an intuitive level the above two definitions may appear equivalent. For example, in Fig-

ure 3.2(a), τ1 is homotopic to τ2 since one can be continuously deformed into the other via a

sequence of trajectories marked by the dashed curves. As a consequence, the area swept by this

continuous deformation, A, forms a 2-dimensional region in the free configuration space whose

boundary is the closed loop τ1 t −τ2. Indeed, the one-way implication is true as shown below.

Lemma 3.2.3. If two trajectories are homotopic, they are homologous.

Proof. This follows directly from the Hurewicz theorem [40] that guarantees the existence of an

homomorphism from the homotopy groups to the homology groups of an arbitrary space.

41

xs

xg

O1

O2

O3

τ1

τ2
τ3

-τ2

(a) τ1 is homotopic to τ2 since there is a
continuous sequence of trajectories repre-
senting deformation of one into the other.
τ3 belongs to a different homotopy class
since it cannot be continuously deformed
into any of the other two.

xs

xg

O1

O2

O3

τ1

τ2
τ3

-τ2
A

(b) τ1 is homologous to τ2 since there ex-
ists an area A (shaded region) such that
τ1 t −τ2 is the boundary of A. τ3 belongs
to a different homology class since such an
area does not exist between τ3 and any of
the other two trajectories.

Figure 3.2: Illustration of homotopy and homology equivalences. In this example τ1 and τ2 are both
homotopic as well as homologous.

vs

vg

τ1 τ2

A1

A2

(a) In 2-dimensions

τ1

τ2

S1

S2

(b) In 3-dimensions

Figure 3.3: Examples where the trajectories are homologous, but not homotopic

The converse of Lemma 3.2.3, however, does not always hold true. There are subtle difference

between homology and homotopy in spite of their similar notions, and one can create examples

where two trajectories are not homotopic in spite of being homologous.

Homotopy equivalence arises naturally in many robotics problems. On the other hand, homology

is less natural. However it is much simpler to compute homologies. One can establish direct

correspondence between homology groups of trajectories and differential 1-forms whose integrals

yield homology class invariants for trajectories via the De Rham theorem [8]. Since, according

to the discussion of Section 3.1.2 we desire such differential forms, the rest of the paper will be

developed with homology classes of trajectories under consideration rather than their homotopy

classes. The assumption will be that in many of the practical robotics problems where homotopy

classes of trajectories are of greater significance, homology classes of trajectories will serve as a fair

analog. We will justify this claim in Section 3.5.1 and through experimental results (Section 3.6).

42

To clarify the distinction between homotopy equivalence and homology equivalence of trajecto-

ries, we present two examples where homology is not same as homotopy. The first example is in

2-dimensions. In Figure 3.3(a) we observe that the trajectories τ1 and τ2 are not homotopic, but

they are homologous (since their H-signatures, as defined in Section 3.3.2, are equal). This is seen

perhaps more easily by considering the interior defined by the union of the areas marked by A1

and A2 which indeed forms the boundary for τ1 t −τ2. In Figure 3.3(b), one can observe that the

two trajectories are not homotopic. However, they are homotopic if we only consider S1 or S2 but

not both. Hence their H -signatures are the same (i.e. they are homologous). Thus, if we were

exploring different homotopy classes in this environment using the described method, we would be

finding one trajectory for these two homotopy classes.

3.3 H-signature in 2-dimensional Euclidean Configuration

Space

We consider a 2-dimensional subset of R2 as the configuration space. The obstacles are thus

punctures or discontinuities in that subset. The approach for designing a H-signature for such

a 2-dimensional configuration space is based on theorems from Complex Analysis, specifically the

Cauchy Integral theorem and Residue theorem.

3.3.1 Background: Complex Analysis

Cauchy Integral Theorem

The Cauchy Integral Theorem states that if f : C → C is an holomorphic (analytic) function in

some simply connected region R ⊂ C, and γ is a closed oriented (i.e. directed) contour completely

contained in R, then the following holds, ∮
γ

f(z) dz = 0 (3.3.1)

Moreover, if z0 is a point inside the region enclosed by γ, which has an anti-clockwise (or positive)

orientation, then for the function F (z) = f(z)/(z− z0) with a simple pole at z0, the following holds∮
γ

f(z) dz

z − z0
= 2πif(z0) (3.3.2)

The Residue Theorem

A direct consequence of the Cauchy Integral Theorem, the Residue Theorem, states that, if F :

R → C is a function defined in some simply connected region R ⊂ C that has simple poles at the

distinct points a1, a2, · · · , aM ∈ R, and holomorphic (analytic) everywhere else in R, and say γ is

a closed positively oriented Jordan curve completely contained in R and enclosing only the points

43

z0

γ1

γ2

z1

z2

R

(a) The integrals over contours γ1
and γ2 are equal

ak3

γ

R

ak2

ak1

aq

ar

ap

(b) Only the poles enclosed by γ influ-
ence the value of the integral of F .

Figure 3.4: Cauchy Integral Theorem and Residue Theorem

ak1 , ak1 , · · · , akm out of the poles of F , then the following holds,

∮
γ

F (z) dz = 2πi

m∑
l=1

lim
ξ→akl

(ξ − akl)F (ξ) (3.3.3)

The scenario is illustrated in Figure 3.4(b).

It is important to note that in both the Cauchy Integral Theorem and the Residue Theorem the

value of the integrals are independent of the exact choice of the contour γ as long as the mentioned

conditions are satisfied (see Figure 3.4(a)).

At this point it is worth mentioning that the Cauchy Integral Theorem and the Residue Theorem

are simply particular manifestations of a more general formulation in which one can compute linking

numbers between manifolds embedded in Euclidean spaces of arbitrary dimensions. We will in fact

discuss this general formulation in Chapter 4, and hence derive the aforesaid theorems as special

cases of that formulation.

3.3.2 Designing a H-signature

We exploit the above theorems for designing a differential 1-form that can be used to construct a

homology class invariant for 2-dimensional configuration space.

We start by representing the 2-dimensional configuration space as a subset of the complex plane

C. Thus a point in the configuration space, (x, y) ∈ C, is represented as x+ iy ∈ C. The obstacles

are assumed to be simply-connected regions in C and are represented by O1,O2, · · · ,ON .

Definition 3.3.1 (Representative points). We define one “representative point” in each connected

obstacle such that it lies in the interior of the obstacle. The exact location of the representative

points is not of particular significance as long as they each lie inside the respective obstacles. Thus

we define the points ζl ∈ Ol, ∀l = 1, · · · , N . Figure 3.5(a) shows such representative points inside

three obstacles.

As we will see in results presented in Section 3.6.1, it is not necessary that we choose repre-

sentative points for all obstacles. We need to choose such points only on the larger and relevant

44

obstacles that contribute towards the practical notion of homotopy classes. In practical scenarios,

for example when constructed from sensors on-board a robot, environments often contain small

obstacles and noise. It’s important that we choose the ζl carefully only inside relevant (large) ob-

stacles which influence our notion of homotopy class of the trajectories. This can be achieved by

putting a threshold on the minimum diameter of the obstacles on which we put the representative

points. Smaller obstacles can be disregarded.

Definition 3.3.2 (Obstacle Marker Function). For a given set of “representative points”, we define

the “Obstacle Marker Function” function F : C→ CN as follows,

F(z) =


f1(z)
z−ζ1
f2(z)
z−ζ2

...
fN (z)
z−ζN

 (3.3.4)

where fl, l = 1, 2, · · · , N are analytic functions over entire C such that fl(ζl) 6= 0, ∀l. Typical

examples of such fl are polynomials in z.

Thus, F is a complex vector function, the lth component of which has a single simple

pole/singularity at ζl.

Definition 3.3.3 (H-signature in 2-dimensional configuration space). For the given configuration

space and set of obstacles, we define the obstacle marker function as described above, and hence

define the H-signature of a trajectory τ the vector function H2 : C1(C)→ CN

H2(τ) =

∫
τ

F(z) dz

where C1(C) is the set of all curves/trajectories in C.

Lemma 3.3.4. Two trajectories τ1 and τ2 connecting the same points in the described 2-dimensional

configuration space are homologous if and only if H2(τ1) = H2(τ2)

Sketch of Proof. We note that by changing the orientation of a path over which an integration

is being performed, we change the sign of the integral. If τ is a path, its oppositely oriented path

is represented as −τ . Thus, as we see from Figure 3.5(a), τ1 along with −τ2 forms a positively

oriented closed loop.

If τ1 and τ2 are in the same homology class, the area enclosed by τ1 and τ2 does not contain any

of the “representative points”, ζi, hence rendering the function F analytic in that region. Hence

from the Cauchy Integral Theorem we obtain,∫
τ1t−τ2

F(z) dz = 0

⇒
∫
τ1

F(z) dz +

∫
−τ2
F(z) dz = 0

⇒
∫
τ1

F(z) dz −
∫
τ2

F(z) dz = 0

⇒
∫
τ1

F(z) dz =

∫
τ2

F(z) dz

45

τ1S

G

τ2

-τ2
ζ1

ζ3

ζ2

(a) In same Homotopy class, forming a
closed contour

τ1

S

G

ζa

τ2

ζκ1

ζκ2

ζb

ζc

(b) In different Homotopy classes, enclos-
ing obstacles

Figure 3.5: Two trajectories in same and different homotopy classes

where the 0 in bold implies that it is a N -vetor of zeros.

If τ1 and τ2 are in different homology classes, we can easily note that the closed positive contour

formed by τ1 and −τ2 will enclose one or more of the obstacles, and hence their corresponding

“representative points”. This is illustrated in Figure 3.5(b). Let us assume that enclosed “repre-

sentative points” are ζκ1 , ζκ2 , · · · , ζκn . Moreover we note that at least one component of the vector

function F has a simple pole at ζl for each l = 1, 2, · · · , N . Thus, by the Residue Theorem and

Definition 3.3.2, ∫
τ1

F(z) dz +

∫
−τ2
F(z) dz =

2πi
∑n
u=1 limξ→ζκu (ξ − ζκu)


f1(ξ)
ξ−ζ1
f2(ξ)
ξ−ζ2

.

.

.
fN (ξ)

ξ−ζN



⇒
∫
τ1

F(z)dz −
∫
τ2

F(z)dz =



· · ·
fκ1

(ζκ1
)

.

.

.

fκ2
(ζκ2

)

.

.

.

fκn (ζκn)

· · ·


6= 0

Hence proved.

We have hence shown that H2 gives a homology invariant for trajectories in 2-dimensional

Euclidean configuration space with obstacles.

3.3.3 Computation for a Line Segment

As discussed earlier in Section 3.1.2, and will be discussed later in Section 3.5, we discretized the

given configuration space and create a graph out of it. In many practical implementations we assume

46

that every edge in the graph is a line segment. Thus it is for those line segments that we really

need to compute the H-signatures. Thus it is important that we are able to do so efficiently. In this

section we will show how to compute the H-signature for a small line segment in a 2-dimensional

configuration space using a closed-form formula.

Given a line segment e connecting points z1 and z2, we can parametrize the segment using the

variable z = (1− λ)z1 + λz2, where λ ∈ [0, 1] is the parameter. Thus we have,

H2(e) =

∫
e

F(z) dz

=

∫ 1

0

F
(

(1− λ)z1 + λz2

)
(z2 − z1) dλ (3.3.5)

For computing the H-signature of e = {z1 → z2} analytically, we assume that fl are chosen to be

constants. Let fl = Al (const.) for all l = 1, 2, · · · , N .

Now, a standard integration result gives for the lth component of H2(e)∫ 1

0

Al
(1− λ)z1 + λz2 − ζl

(z2 − z1) dλ

= Al (ln(z2 − ζi)− ln(z1 − ζl))

However we note that the logarithm of a complex number does not have an unique value. For any

z′ ∈ C, ln(z′) = ln(|z′|ei(arg(z′)+2kπ)) = ln(|z′|) + i (arg(z′) + 2kπ) , ∀k = 0,±1,±2, . . . (where

arg(x + iy) = atan2(y, x)). Hence, following the assumption that e is a small line segment, we

choose the smallest of all the possible values over different k’s. Thus, the lth component of H2(e)

is computed as,

Al

[
ln(|z2 − ζl|)− ln(|z1 − ζl|) +

i absmink∈Z

(
arg(z2 − ζl)− arg(z1 − ζl) + 2kπ

)]
where absmink∈ZG(k) returns the value of G(k) that has the minimum absolute value (i.e. closest

to 0) over all k ∈ Z. Typically, we can do away with checking a few values of k around 0 and picking

the local minimum, since the value of arg(z2 − ζl)− arg(z1 − ζl) + 2kπ is monotonic in k.

3.4 H-signature in 3-dimensional Euclidean Configuration

Space

While in the two-dimensional case, theoretically any finite obstacle on the plane can induce mul-

tiple homotopy and homology classes for trajectories joining two points, the notion of homo-

topy/homology classes in three dimensions can only be induced by obstacles with genus 1 one

or more, or with obstacles stretching to infinity. For example, a torus-shaped obstacle in a three-

dimensional environment creates two primary homotopy classes, which can be informally described

as: i. The trajectories passing through the “hole” of the torus, and ii. the trajectories passing

1The genus of an obstacle refers to the number of handles [63]).

47

B
r

x
dx

I = 1

S
γ1

γ2

dl

(a) Magnetic field due to current in
S, & its integration along closed loop
γi.

Ĳ
1

Ĳ
2

pA

pB

Sp

Sq

-Ĳ
2

(b) 2 trajectories, τ1 & τ2, connect-
ing the same points form a closed
loop.

Figure 3.6: Application of Biot-Savart law and Ampere’s law to robot path planning with topological
constraints in 3-D.

outside the “hole” of the torus. Figure 3.7 shows some examples of obstacles that can or cannot

induce such classes for trajectories. A sphere or a solid cube, for example, cannot induce multiple

homotopy classes in an environment.

3.4.1 Background: Electromagnetism

Biot-Savart Law

Consider a single hypothetical current-carrying curve (a current conducting wire) embedded in a

3-dimensional space carrying a steady current of unit magnitude (Figure 3.6(a)). There is no source

for the current nor any sink - only a steady flow persisting inside the conductor due to absence of

any dissipation. It is to be noted that such a steady current is possible iff the curve is closed (or

open, but extending to infinity, where we close the curve using a loop at infinity. See Figure 3.8(a)

and Construction 3.4.3). We denote the curve by S. Then, according to the Biot-Savart Law [36],

the magnetic field B at any arbitrary point r in the space, due to the current flow in S, is given by,

B(r) =
µ0

4π

∫
S

(x− r)× dx

‖x− r‖3
(3.4.1)

where, x, the integration variable, represents the coordinate of a point on S, and dx is an infinites-

imal element on S along the direction of the current flow.

Ampere’s Law

While Biot-Savart law gives a recipe for computing the magnetic field from a given current config-

uration, Ampere’s Law [36], in a sense, gives the inverse of it. Given the magnetic field B at every

point in the space, and a closed loop γ (Figure 3.6(a)), the line integral of B along γ gives the

48

(a) Skeleton of a generic genus
1 obstacle is modeled as a
current-carrying conductor.

(b) A torus-shaped genus 1
obstacle.

(c) A genus 2 obstacle.

(d) An infinite tube is a
genus 1 obstacle.

(e) A knot-shaped obstacle
with genus 1.

(f) A sphere does not in-
duce homotopy classes and
has genus 0.

Figure 3.7: Examples of obstacles in 3-D. (a-e) induce homotopy classes, (f) does not.

current enclosed by the loop γ. That is,

Ξ(C) :=

∫
γ

B(l) · dl = µ0Iencl (3.4.2)

where, l, the integration variable, represents the coordinate of a point on γ, and dl is an infinitesimal

element on C.
In Biot-Savart Law and Ampere’s Law one can conveniently choose the constant µ0 to be equal

to 1 by proper choice of units. Moreover, by choice, the value of the current flowing in the conductor

is unity. Thus, for any closed loop γ, the value of Ξ(γ) is zero iff γ does not enclose the conductor,

otherwise it is ±1 (the sign depends on the direction of integration performed on γ). Thus in

Figure 3.6(a), Ξ(γ1) = 1 and Ξ(γ2) = 0.

Once again, we would like to emphasize that the above mentioned laws, though appearing

naturally in physical systems, are simply special cases of a general formulation in algebraic topology

that we will discuss in Chapter 4. We will also explicitly derive these laws from that general

formulation.

Definition 3.4.1 (Simple Homotopy-Inducing Obstacle in 3-dimensional Configuration Space). A

Simple Homotopy-inducing Obstacle (SHIO) is a bounded obstacle of genus 1, for example a torus

(Figure 3.7(a), 3.7(b)) or a knot (Figure 3.7(e)).

49

(a) An unbounded obstacle and its skele-
ton can be closed at a large distance to
create a closed loop.

O

O
1

O
2

(b) An obstacle with genus 2, O, can be de-
composed into 2 obstacles, each with genus
one, O1 and O2.

Figure 3.8: Illustration of Constructions 3.4.3 and 3.4.4.

3.4.2 Designing a H-signature

For the 2-dimensional case, each obstacle on the plane that induces the notion of multiple homotopy

classes was assigned a representative point. Analogously, for the 3-dimensional case, we need to

define a skeleton for every SHIO. Intuitively, a skeleton of a 3-dimensional obstacle is a 1-dimensional

curve that is completely contained inside the obstacle such that the surface of the obstacle can be

“shrunk” onto the skeleton in a continuous fashion without altering the topology of the surface of

the obstacle. Formally, we define the skeleton of an obstacle in terms of deformation retract [40].

Definition 3.4.2 (Skeleton). A 1-dimensional manifold, S, is called a skeleton of a SHIO, O, iff

S is homeomorphic to S1 (a circle), S is completely contained inside O, and if S is a deformation

retract (Definition 2.1.5) of O.

Thus, the fact that τ1 and τ2 are of the same or of different homotopy/homology classes is not

altered by replacing O by S.

In the literature, algorithms for constructing skeletons of solid objects is a well-studied [6, 46].

However in the present context we have a much relaxed notion of skeleton. While we can adopt

any of the different existing algorithms for automated construction of skeleton from a 3-dimensional

obstacles, this discussion is out of the scope of the present work. Figure 3.7(a) demonstrates

skeletons for several genus 1 obstacles.

Conversion of Generic Obstacles into SHIOs

Given a set of obstacles in a three-dimensional environment, we perform the following two construc-

tions/reduction on the obstacles so that the only kind of obstacle we have in the environment are

Simple Homotopy-Inducing Obstacles. The Construction 3.4.3 is mostly trivial in the sense that

it can be easily automated for arbitrary obstacles. Construction 3.4.4 on the other hand is linked

with the construction of skeleton of the obstacles (Definition 3.4.2).

50

Construction 3.4.3. Closing infinite, unbounded obstacles In most of the problems that we are

concerned with, the domain in which the trajectories of the robots lie is finite and bounded. This

gives us the freedom of altering/modifying the obstacles or parts of obstacles lying outside that

domain without altering the problem. One consequence of this freedom is that we can close infinite

and unbounded obstacles (e.g. Figure 3.7(d)) at a large distance from the domain of interest (Figure

3.8(a)).

Construction 3.4.4. Decomposing obstacles with genus > 1 After closing all infinite, unbounded

obstacles in an environment according to Construction 3.4.3, if there is an obstacle with genus k (e.g.

Figure 3.7(c)), we can decomposed/split it into k obstacles, possibly overlapping and touching each

other, but each with genus 1 (Figure 3.8(b)). This does not change the obstacles or the problem in

any way. This construction just changes the way we identify obstacles and construct their skeletons.

For example in Figure 3.8(b) the original obstacle O with genus 2 is realized as two obstacles O1

and O2, each with genus 1 and overlapping each other. The decomposition of obstacles into SHIOs

allows us define k skeletons for each obstacle of genus k and simplify computations of h-signatures

of trajectories.

Note that neither of these constructions effect the original problem or the result. In the results

presented in this thesis we do both constructions manually.

Skeleton of SHIOs as Current Carrying Curves for H-signature Construction

Construction 3.4.5. Modeling skeleton of a SHIO as a current carrying manifold Given m ob-

stacles in an environment, O1,O2, . . . ,Om, with genus k1, k2, . . . , km respectively, we can construct

M = k1 + k2 + · · · + km skeletons from M SHIOs (obtained using Constructions 3.4.3 and 3.4.4),

namely S1, S2, . . . , SM . Each Si is a closed, connected, boundary-less 1-dimensional manifold. We

model each of them as a current-carrying conductor carrying current of unit magnitude (Figures

3.7(a), 3.8(a)). The direction of the currents is not of importance, but by convention, each is of

unit magnitude.

Definition 3.4.6 (Virtual Magnetic Field due to a Skeleton). Given Si, the skeletons of a Simple

Homotopy-Inducing Obstacle, we define a Virtual Magnetic Field vector at a point r in the space

due to the current in Si using Biot-Savart Law as follows,

Bi(r) =
1

4π

∫
Si

(x− r)× dx

‖x− r‖3
(3.4.3)

where, x, the integration variable, represents the coordinates of a point on Si, and dx is an

infinitesimal element on Si along the chosen direction of the current flow in Si.

Definition 3.4.7 (H-signature in 3-dimensional Configuration Space). Given an arbitrary trajec-

tory, τ , in the 3-dimensional environment with M skeletons, we define the H-signature of τ to be

the function H3 : C1(R3)→ RM ,

H3(τ) = [h1(τ), h2(τ), . . . , hM (τ)]T (3.4.4)

51

where, C1(R3) is the space of all curves/trajectories in R3, and

hi(τ) =

∫
τ

Bi(l) · dl (3.4.5)

is defined in an analogous manner as the integral in Ampere’s Law. In defining hi, Bi is the Virtual

Magnetic Field vector due to the unit current through skeleton Si, l is the integration variable that

represents the coordinate of a point on τ , and dl is an infinitesimal element on τ .

Lemma 3.4.8. Two trajectories τ1 and τ2 connecting the same points in the described 3-dimensional

configuration space are homologous if and only if H3(τ1) = H3(τ2).

Sketch of Proof. Since τ1 and τ2 connect the same points, τ1 t −τ2, i.e. τ1 and −τ2 together

(where −τ indicates the same curve as τ , but with the opposite orientation) form a closed loop

in the 3-dimensional environment (Figure 3.6(b)). We replace the obstacles O1,O2, . . . ,Om in the

environments with the skeletons S1, S2, . . . , SM .

Consider the presence of just the skeleton Si. By the direct consequence of Ampere’s Law and

our construction in which a unit current flows through Si, the value of

hi(τ1 t −τ2) =

∫
τ1t−τ2

Bi(l) · dl

is non-zero if and only if the closed loop formed by τ1t−τ2 encloses the current carrying conductor

Si (i.e. there does not exist a surface not intersecting Si, the boundary of which is τ1 t −τ2). For

example, in Figure 3.6(b), hp(τ1 t −τ2) = 1 and hq(τ1 t −τ2) = 0. Now, by the definition of line

integration we have the following identity,

hi(τ1 t −τ2) =
∫
τ1t−τ2Bi(l) · dl

=
∫
τ1

Bi(l) · dl−
∫
τ2

Bi(l) · dl = hi(τ1)− hi(τ2)
(3.4.6)

Thus, hi(τ1) = hi(τ2) if and only if the closed loop formed by τ1 and τ2 does not enclose Si (i.e.

homologous in presence of Si).

Now in presence of skeletons S1, S2, . . . , SM the same argument extends for each skeleton indi-

vidually. Thus τ1 and τ2 are homologous if an only if H3(τ1) = H3(τ2).

Hence we have shown that the proposed formula for H-signature is a homology class invariant

for trajectories in 3-D.

3.4.3 Computation for a Line Segment

Once again, we are interested in efficient computation of the H-signature for small line segments

since those are the ones that will make up edges of the graph formed by discretization of the

environment. For all practical applications we assume that a skeleton of an obstacle, Si, is made

up of finite number (ni) of line segments: Si = {
−−→
s1
i s

2
i ,
−−→
s2
i s

3
i , . . . ,

−−−−−→
sni−1
i snii ,

−−−→
snii s1

i } (Figure 3.9(a)).

52

s1

s2

sn

�

�

�

s j

s j+1
Bi

(a) A skeleton of an obstacle can be
constructed/approximated so that it
is made up of n line segments.

sj

sj'

Į
Į'

r

d

p

p'
n�

(b) Magnetic field at r due to the cur-

rent in a line segment sji s
j′
i .

Figure 3.9: Closed-form computation of magnetic field.

Thus, the integration of equation (3.4.3) can be split into summation of ni integrations,

Bi(r) =
1

4π

ni∑
j=1

∫
−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
(3.4.7)

where j′ ≡ 1 + (j mod ni). It is to be notes that a skeleton of an unbounded obstacle created

from Construction 3.4.3 can be made up of finite and few line segments. The only feature of such

a skeleton might be that some of the points that make up the line segments (sji) might be located

at a large distance from the domain of interest, which is used to close the skeleton.

One advantage of this representation of skeletons is that for the straight line segments,
−−−→
sjis

j′
i ,

the integration can be computed analytically. Specifically, using a result from [36] (also, see Fig-

ure 3.9(b)), ∫
−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
=

1

‖d‖
(sin(α′)− sin(α)) n̂

=
1

‖d‖2

(
d× p′

‖p′‖
− d× p

‖p‖

)
(3.4.8)

where, d,p and p′ are functions of sji , s
j′

i and r (Figure 3.9(b)), and can be expressed as,

p=sji−r, p′=sj
′

i −r, d=
(sj
′

i −sji)× (p×p′)

‖sj′i −sji‖2
(3.4.9)

We define and write Φ(sji , s
j′

i , r) for the RHS of Equation (3.4.8) for notational convenience. Thus

we have,

Bi(r) =
1

4π

ni∑
j=1

Φ(sji , s
j′

i , r) (3.4.10)

where, j′ ≡ 1 + (j mod ni).

53

τ

Figure 3.10: A trajectory in the original configuration space is represented by a path in the discrete
graph.

Given a small line segment, e, we can now compute the H -signature, H(e) =

[h1(e), h2(e), . . . , hM (e)]T , where,

hi(e) =
1

4π

∫
e

ni∑
j=1

Φ(sji , s
j′

i , l) · dl (3.4.11)

can be computed numerically. For the numerical integration, in all our experimental results we

used the GSL (GNU Scientific Library), which has a highly efficient implementation of adaptive

integration algorithms with desired precision. We used a cache for storing the H-signature of edges

that has been computed in order to avoid re-computation.

3.5 H-signature Augmented Graph

Once we have the means of computing H -signature for each edge (small line segments), we introduce

the concept of H-signature augmented graph. Typically, a graph, G = {V, E}, is created for the

purpose of graph-search based planning by discretization of an environment, placing a vertex at

each discretized cell, and by connecting the neighboring cells with edges (See Figure 1.4(a) for

an example in 2-dimensional configuration space). Paths in such a graph represent trajectories

in the original configuration space (Figure 3.10). However, it should be kept in mind that this

representation is approximate, and any arbitrary trajectory in the continuous configuration space

will not be faithfully represented at scales smaller than the discretization size.

In the following discussion we perform a construction using G, without distinguishing between

2 and 3-dimensional configuration spaces explicitly, once we have discretized the environment, and

perform a general treatment with the graph G. For H-signature trajectories or line segments we

use the generic function H, which we understand to be H2 or H3 depending on the dimensionality

of the configuration space.

Let vs be the start coordinate in the configuration space, and vg be the goal coordinate (by

the boldface v’s, with a slight abuse of notation, we will indicate both the vertex in the graph

as well as the coordinate of the vertex in the original configuration space). By Lemma 3.3.4 or

3.4.8, any two trajectories from vs to v that belong to the same homology class will have the same

54

H -signature. The H -signature can assume different, but discrete values corresponding on the class

of the trajectory. We also write P(vs,v) to denote the set of all trajectories from vs to v, and

ṽsv ∈ P(vs,v) to denote a particular trajectory in that set.

Definition 3.5.1 (Allowed and Blocked Homology Classes). Suppose it is required that we restrict

all our search for trajectories connecting vs and vg to certain homology classes, or not allow some

other. We denote the set of allowed H -signatures of trajectories leading up to vg by the set A, and

the set of blocked H -signatures as B. A and B are essentially complement of each other (A∪B = U ,

where the universal set, U , is the set of the H -signatures of all the classes of trajectories joining vs

and vg), and B can be an empty set when all classes are allowed.

Following the discussion in Appendix A, for the 3-dimensional configuration space it is also

possible to restrict search to non-looping trajectories by putting all h-signatures that have at least

one element outside (−1, 1) into the set B.

We define the H-signature augmented graph of G as the graph GH(G) = {VH , EH}, such that

each node in this new graph has the H -signature of a trajectory leading up to the coordinate

of the node from vs appended to it. That is, each node in this augmented graph is given by

{v,H(ṽsv)}, for some ṽsv ∈ P(vs,v). Thus, corresponding to a given v ∈ V, since there are

discrete homology classes of trajectories from vs to v, there are a discrete number of the augmented

states, {v,h} ∈ VH , where h is a M -vector (M being the number of representative points or the

number of SHIOs depending on whether it’s a 2 or 3-dimensional configuration space) and assumes

the values of the H -signatures corresponding to the discrete homology classes. Thus, we define the

H-signature augmented graph of G as follows,

GH = {VH , EH}

where,

1.

VH =


{v,h}

∣∣∣∣∣∣∣∣∣∣∣∣

v ∈ V, and,

h = H(ṽsv) for some trajectory

ṽsv ∈ P(vs,v), and,

h ∈ A (equivalently, h /∈ B)

when v = vg


2. An edge {{v,h} → {v′,h′}} is in EH for {v,h} ∈ VH and {v′,h′} ∈ VH , iff

i. The edge {v→ v′} ∈ E , and,

ii. h′ = h +H(v→ v′), where, H(v→ v′) is the H-signature of the edge {v→ v′} ∈ E .

3. The cost/weight associated with an edge {{v,h} → {v′,h′}} is same as that associated with

edge {v→v′}∈E .

The consequence of point 3 in the above definition is that an admissible heuristics for search in

G will remain admissible in GH . That is, if f(v,vg) was the heuristic function in G, we define

fH({v,h}, {vg,h′}) = f(v,vg) as the heuristic function in GH for any h′ ∈ A.

The consequence of augmenting each node of G with a H -signature is that now nodes are

distinguished not only by their coordinates, but also the H -signature of the trajectory followed

55

{vs , 0}

vg

{vg , h'g}

{vg , hg}

τ1

τ2

vs

G G
H

Figure 3.11: The topology of the augmented graph, GH (right), compared against G (left), for a
cylindrically discretized 2-dimensional configuration space around a circular obstacle

to reach it. Typically we use graph search algorithms like A* (or variants like D* or D*-lite)

where nodes in the graph GH are expanded starting from the node {vs,0} (where by 0 we mean a

M -dimensional vector of zeros).

The topology of this augmented graph for a 2-dimensional case is illustrated in Figure 3.11.

A goal state vg is the same in G irrespective for the path (τ1 or τ2) taken to reach it. Whereas

in the H-signature augmented graph, the states are differentiated by the additional value of hg.

We can perform a graph search in the augmented graph, GH , using any standard graph search

algorithm starting from the state {vs,0}. The goal state (i.e. the state, upon expansion of which

we stop the graph search) is potentially any of the states {vg,hg} for any hg ∈ A (or hg /∈ B if B
is provided instead of A). We can use the same heuristic that we would have used for searching in

G, i.e. fH(v,h) = f(v). It is to be noted that GH is essentially an infinite graph, even if G is finite.

However the search algorithm needs to expand only a finite number of states. Since for a given v,

the states {v,h} can assume some discrete values of h (corresponding to the different homology

classes). To determine if {v,h′g} and {v,hg} are the same states, we can simply compare the values

of h′g and hg.

3.5.1 Uses of the H-signature Augmented Graph

There are primarily two distinct but related ways we would like to use the H-signature augmented

graph with search algorithms:

i. Exploration of environment for different homotopy classes of trajectories connecting vs and

vg: For this problem, whenever we expand a state {vg, h̃} ∈ VH , for some h̃ /∈ B, we store the

path up to that node, and continue expanding more states until the desired number of classes

are explored. Although H-signature is a homology class invariant, and not a homotopy class

invariant, by Lemma 3.2.3, two trajectories are homotopic implies that they are homologous.

Thus, two trajectories that are homotopic will be in the same homology class, and hence their

H-signatures will be the same. Thus, in such problems where we find least cost trajectories

with different H-signatures in a configuration space using the said method, we are always

56

guaranteed to obtain trajectories in distinct homotopy classes as well.

ii. Planning with H-signature constraint: For searches with H-signature constraint, we stop upon

expansion of a goal coordinate {vg, h̃} for some h̃ /∈ B (or equivalently, h̃ ∈ A).

3.5.2 Theoretical Analysis

Theorem 3.5.2. If P∗H = {{v1,h1}, {v2,h2}, · · · , {vp,hp}} is an optimal path in GH , then the

path P∗ = {v1,v2, · · · ,vp} is an optimal path in the graph G satisfying the H-signature constraints

specified by A and B

Proof. By construction of GH , the path {v1,v2, · · · ,vp} satisfies the given H -signature constraints.

Moreover by definition, P∗H is a minimum cost path in GH . Since the cost function in GH is the

same as the one in G and does not involve hj , it follows that the projection of P∗H on G given by

P∗ = {v1,v2, · · · ,vp} is an optimal path in the graph G satisfying the constraints defined in GH .

3.6 Results

The method described in this paper was implemented in C++ and MATLAB. In the sections below

we present results in 2 and 3-dimensional configuration spaces.

3.6.1 Two-dimensional Configuration Space

Path Prediction by Homotopy Class Exploration

Figure 3.12(a) shows a large 1000 × 1000 discretized environment with circular and rectangular

obstacles. We explore trajectories in different classes in order of their path costs using the method

‘i.’ described in Section 3.5.1. The implementation was done in C++ running on an Intel Core 2

Duo processor with 2.1 GHz clock-speed and 4GB RAM. All the different trajectories in different

homotopy classes were determined in a single run of graph search on GH as described earlier.

Figure 3.13 shows similar exploration of multiple homotopy classes in a smaller environment.

As discussed earlier, in such exploration problems, although we use the H-signature as the

class invariants in the search algorithms, since non-homologous trajectories are guaranteed to be

non-homotopic, we are guaranteed to obtain trajectories in different homotopy classes.

We also constructed 10 such environments using random circular and rectangular obstacles.

Table 3.1 demonstrate the efficiency of the searches. The time indicates the cumulative time during

the search until a shortest-path trajectory in a particular homotopy class is found. This is relevant

to problems of tracking dynamic entities, such as people, where one often needs to predict possible

paths in order to bias the tracker or to deal with occlusion by anticipating where the dynamic entity

will appear. Since people can choose different paths to their destinations, we need to be able to

predict least cost paths that lie in different homotopy classes.

57

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

1234567891011121314151617181920

(a) Paths in 20 different homotopy classes

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

Homotopy Class (in order of least cost path)

run time (s)

states expanded (10
5
)

(b) Run-time & states expanded for finding the
least-cost paths in a particular run

Figure 3.12: Exploring homotopy classes in 1000× 1000 discretized environments to find least cost
paths in each

Hmtp. time ellapsed until ith states expanded
class hmtp. class explored (s) cumulative (106)
(i) min max mean min max mean
1 1.41 2.01 1.71 0.021 0.039 0.032
2 3.58 8.58 5.15 0.099 0.313 0.170
3 5.09 9.69 6.77 0.180 0.375 0.244
4 6.13 12.46 8.92 0.237 0.494 0.345
5 7.80 17.74 11.50 0.285 0.776 0.472
6 10.53 18.56 13.05 0.422 0.825 0.555
7 10.92 19.74 15.38 0.473 0.888 0.681
8 13.35 20.32 17.01 0.604 0.935 0.773
9 15.08 21.76 18.60 0.693 1.027 0.858
10 15.53 26.28 20.87 0.720 1.252 0.978

Table 3.1: Statistics of searching least-cost paths in first 10 homotopy classes in 10 randomly
generated environments. The numbers represent the cumulative values till the ith homotopy class
is explored.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

 z
s

 z
g

(a)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

 z
s

 z
g

(b)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

 z
s

 z
g

(c)

Figure 3.13: Exploring homotopy classes by blocking the class obtained from previous search. The
blue shaded region shows the projection of the nodes expanded in GH on to G.

58

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

 z
s

 z
g

(a) Suboptimal key-point generated
trajectory.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

 z
s

 z
g

(b) Optimal trajectory in same class
as key-point generated trajectory.

Figure 3.14: Homotopy class constraint determined using suboptimal key-point generated trajectory.

H-signature Constraint: H-signature Defined by Key-points

Figure 3.14(a) demonstrates an example where we define homology classes using a sample (sub-

optimal) trajectory specified by key-points. One can then compute the H-signature for such a

trajectory. It can then be used to search GH for an optimal path in the same class (or different) as

the sample trajectory (Figure 3.14(b)).

Although technically we have imposed homology class constraint by imposing the H-signature

constraint, we observe that the optimal trajectory that we obtain is in fact in the same homotopy

class as the key-point generated trajectory. In fact we observe that in most robotics planning prob-

lems imposing H-signature constraints indeed impose the corresponding homotopy class constraint

as well.

Multiple Robot Visibility Problem

The problem of path planning for multiple robots with visibility constraints can also make use

of our approach. If one robot needs to plan its path such that it is never obstructed from the

view of another robot by some obstacle, we can apply the technique of planning with H-signature

constraint to obtain the desired trajectories. In Figure 3.15(a)-(c) two robots plan trajectories to

their respective goals. The robot on the right needs to plan a trajectory such that it is in the

“visibility” of the robot on the left, whose trajectory is given. Thus, in order to determine the

H-signature of the desired homotology class it first constructs a suboptimal path by connecting its

own start and goal points to the start and goal of the left robot, such that the trajectory of the left

robot is completely contained in it (Figure 3.15(b))) as key points. The H-signature of this path

gives the desired homology class, thus re-planning with that class as the only allowed class gives

the desired optimal plan (Figure 3.15(c)).

The natural constraint in this situation is that of homotopy. But we once again observe that

even imposing the H-signature constraint we do obtain trajectory in the desired homotopy class.

59

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

 z1s

 z1g

 z2s

 z2g

(a) Unconstrained plans of two
robots.

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

 z1s

 z1g

 z2s

 z2g

(b) Suboptimal path con-
structed for robot on the
right – used to determine H-
signature of desired homology
class.

0 20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

 z1s

 z1g

 z2s

 z2g

(c) Optimal plan with visibility
constraint satisfied.

Figure 3.15: 100 × 100 discretized environment with 2 representative points on the central large
connected walls.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

1

(a) w = 0.0, B = {}
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1

(b) w = 0.01, B = {}
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1

(c) w = 0.0, B = {h0}
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1

(d) w = 0.01, B = {h0}

Figure 3.16: Planning with non-Euclidean length as cost as well as homotopy class constraint

Arbitrary Cost Functions

Our method is not limited to Euclidean length cost functions. It can deal with arbitrary cost

functions. For example, in Figure 3.16 there are two large obstacles and a communication base to

the left of the environment marked by the bold dotted line, x = 0. An agent is supposed to plan its

path from the bottom to the top of the environment, while minimizing a weighted sum of the length

of the trajectory and the distance of the trajectory from the communication base. Thus, in this case,

besides the transition costs of the states in G, each state, z = x+ iy ∈ G, is assigned a cost w ·x, the

penalty on separation from the communication base. Thus the net penalized cost of the trajectory,

τ , that is being minimized is of the form c =
∫
τ
ds + w

∫
τ
x(s)ds, where x is the x-coordinate of

the points on the trajectory, parametrized by s, the length of the trajectory. The trajectories in

figures 3.16(a) and (b) with penalty weights w = 0 and w = 0.01 respectively have H-signature of

h0. Blocking this class, but having a small penalty over distance from communication base gives

the trajectory in 3.16(d) that passes close to the communication base.

60

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

R

(a) No dynamic obstacles

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

10

40

70

100

10

20
30

40

50

60

70

80

90

100

110

120

R

(b) Dynamic obstacles

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

R

(c) t = 1

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

R

(d) t = 30

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

R

(e) t = 113

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

R

(f) t = 1

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

R

(g) t = 19

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

R

(h) t = 81

Figure 3.17: Planning with time as an additional coordinate. The postion of the agent is denoted
by R in figures (c)-(h).

Planning with Additional Coordinates

In Figure 3.17, besides x and y, we have used time as a third coordinate in G. There are two

dynamic obstacles in the environment - the one at the bottom only translates, while one near

the top both translates as well as expands in size. We have two representative points on the two

static obstacles. Figure 3.17(a) shows the solution upon blocking the first homotopy class in the

environment without the dynamic obstacles. Figure 3.17(b) shows the planned trajectory in the

environment with dynamic obstacles (with the color intensity representing the time coordinate).

Figure 3.17(c-e) show the execution of the trajectory at different instants of time of the same.

Figure 3.17(g-h) show the execution of the plan without H-signature constraint.

However note that in this example the representative points are on the static obstacles. In spite

of having a third coordinate, the H-signature of trajectories are being computed on a 2-dimensional

plane for the projection of the trajectories on to the plane.

61

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

S

G

Figure 3.18: Exploring homotopy classes using a Visibility Graph

Implementation Using Visibility Graph

To demonstrate the versatility of the proposed algorithm we implemented it using a Visibility

Graph as the state graph, G. Figure 3.18 shows the visibility graph generated in an environment

with polygonal obstacles and the shortest paths in 9 homotopy classes that we explore. Obstacles

were inflated in order to incorporate collision safety and circular obstacles were approximated by

polygons. Representative points were placed only on the large obstacles (determined by threshold

on diameter and marked by blue circles in the figure) and visibility graph was constructed. A*

search was used for searching the H-signatue augmented graph. The implementation was made in

MATLAB. The average run-time of the search until the 9th homotopy class was explored was 0.4

seconds and about 100 states were expanded.

Application to Robust and Efficient Path Planning for Robotic Arm End-effector

Typically, planning a trajectory in the joint space of a n-link robot arm, following which end-effector

can reach the goal is quite expensive. The search needs to be performed in the n-dimensional

configuration space of the arm.

However, one alternative approach is to plan a trajectory in the end-effector space (the 2-

dimensional plane for a planar arm) and try to incrementally move the arm in small steps (by

solving small local optimization problems or by using a simple feedback controller) to make the end

effector follow the trajectory while respecting constraints. However, this approach can often fail

(especially in presence of obstacles) since the trajectory may be such that the end-effector may not

actually be able to traverse it due to joint angle constraints or the fact the total length of the arm is

finite. We try to make this alternate approach more robust as follows: Instead of planning a single

end-effector trajectory we plan multiple of them in different homotopy classes. We then simulate

the arm and try to make the end-effector follow each trajectory incrementally (by solving small

local optimization problems at each time step). The hope is that if the robot arm can reach the

goal, at least one of those trajectories will be good for doing so. While we do not have any rigorous

62

(a) t = 0s (b) t = 6s (c) t = 11s (d) t = 14s (e) t = 16s

Figure 3.19: The arm end effector fails to follow the shorter trajectory due to limited length of the
arm.

(a) t = 0s (b) t = 15s (c) t = 49s (d) t = 91s (e) t = 106s

Figure 3.20: The longer trajectory can be followed by the end effector.

theoretical guarantees for this approach, we will exemplify the concept using two scenarios.

In Figures 3.19 and 3.20 the end effector of a 4-link robot arm is required to follow a trajectory

from the start coordinate at the left to the goal on the right. The base of the arm is fixed inside the

U-shaped obstacle. As described earlier, we do not plan path in the 4-dimensional configuration

space of the arm. Instead we plan trajectories in the 2-dimensional plane of the end effector’s

position. The arm cannot follow the shortest path (the one that goes above the obstacle) because

of the limited length of the arm. This is illustrated in figures 3.19(a)-(e). However the path in the

other homotopy class, though longer, can be followed by the arm (figures 3.20(a)-(e)).

In Figures 3.21 and 3.22 the 8-link robot arm has joint angle constraints (the angle limits are

marked by pink sectors). In particular, all joints, except the one at the base can assume angles in

[−π/2, 0]. The shortest path is the one that goes to the right of the obstacle (darker one). However,

the robot arm cannot reach the goal following any path in this homotopy class due to the joint angle

limitations, and thus it fails (Figure 3.21). However the longer trajectory in the other homotopy

class can be followed, and hence the arm succeeds in following it (Figure 3.22).

The advantage of this method becomes apparent only when we consider robot arms with large

number of links. Global path planning in such high dimensional configuration space by discretization

and graph construction is very expensive. On the other hand, knowing the end-effector trajectory,

incremental planning for the joint angles using local gradient-based search is almost indifferent to

the dimensionality of the complete configuration space of the arm. Moreover, such local searches

are free from most of the problems associated with continuous motion planning approaches (e.g.

getting stuck at local minima, slow convergence or divergence). While we don’t yet have a theoretical

guarantee from this approach, the computational advantage is definitely significant.

63

(a) t = 0s (b) t = 13s (c) t = 23s (d) t = 28s (e) t = 36s

Figure 3.21: The arm end effector fails to follow the shorter trajectory due to joint angle limits.

(a) t = 0s (b) t = 15s (c) t = 37s (d) t = 66s (e) t = 97s

Figure 3.22: The arm end effector succeeds in following the longer trajectory.

3.6.2 Three-dimensional Configuration Space

The first 3-dimensional domain in which we implement the planning algorithm is the space of 3

spatial dimensions, X,Y and Z. We also demonstrate the algorithm in the 3-dimensional space of

X, Y and time, i.e. an environment with planar dynamic obstacles (Section 3.6.2).

For a problem in 3 spatial dimensions, the domain of interest is bounded by upper and lower

limits of the 3 coordinates. The domain is then uniformly discretized into cubic cells and a node

of G is placed at the center of each cell. Connectivity is established between a node and its 26

neighbors (all cells that share at least one corner, edge or face with it). Each edge is bi-directional

and its cost is the Euclidean length.

Simple environments with Bounded Obstacles

Figure 3.23(a) demonstrates a simple environment, 20× 20× 18 discretized, with two torus-shaped

obstacles. The skeleton of each obstacle is made up of line segments passing through the central axis

of the cylindrical segments. Here we restrict search to non-looping trajectories (See Appendix A

for a precise definition). That is, we set B =
{
h = [h1, h2]T

∣∣ |h1| > 1 or |h2| > 1
}

. We search

for 4 homotopy classes of trajectories connecting a given start and goal coordinate. As shown in

Figure 3.23(a), the algorithm finds four such trajectories: (i) going through hoops 1 and 2; (ii)

going through hoop 1 but not through hoop 2; (iii) going through hoop 2 but not through hoop 1;

and (iv) not going through either hoops. According to Theorem 3.5.2 each path is the least cost

one in the graph and in its respective homotopy class.

Figure 3.23(b) shows the exploration of 4 homotopy classes in and around a room with windows

on each wall. The skeletons for this obstacle are defined as loops around each window according

to Construction 3.4.4. The trivial shortest path from the given start to goal configuration goes

outside the room (the dark violet trajectory). Trajectories in other homotopy classes pass through

64

(a) Two hoops. (b) A room with windows.

Figure 3.23: Exploring homotopy classes in X − Y − Z space.

the room.

Environment with Unbounded Pipes

Figure 3.24(a) shows a more complex environment consisting of 7 pipes stretching to infinity. The

workspace of choice is 44× 44× 44 discretized, with the start and goal coordinates at two opposite

corners of the discretized space. We used Construction 3.4.3 to close the inbounded obstacles at

infinity. In Figure 3.24(a) we find the least cost paths in 10 different homotopy classes.

Planning with H-signature Constraint

Figure 3.24(b) demonstrates a planning problem with H-signature constraint. The darker trajectory

is the global least cost path found from a search in G for the given start and goal coordinates.

The H -signature for that trajectory was computed, and hence we computed the signature of the

complementary class (i.e the class corresponding to the trajectory that passes on the other side

of every SHIO - see Appendix A for a precise definition), and put only that in A. The lighter

trajectory is the one planned with that A as the set of allowed H -signature. This trajectory goes on

the opposite side of each and every pipe in the environment as compared to the darker trajectory.

We note that in this example the notion of complementary homology class concurs with that of

complementary homotopy class.

Search Speed and Efficiency

We now present the running time for the case in Figure 3.24(a). The environment, as described

earlier, is 44 × 44 × 44 discretized, and hence G contains 85184 nodes. Due to each node being

connected to 26 of its neighbors, there are almost 13 times as many edges in G. The program was

run on a Intel Core 2 Duo processor with 2.1 GHz clock-speed and 3GB RAM. We first compute

the values of H(e) for all edges e ∈ E and store them in a cache, which takes about 2273s. Then

we perform the A* search in GH , using the values from the cache whenever required. By doing so

we eliminate the requirement of re-computing the h-signatures of the edges every time we perform

65

(a) Exploring 10 distinct homotopy classes. (b) Plan in the complementary homology class of
the least cost path.

Figure 3.24: An environment with 7 unbounded pipes.

0 2 4 6 8 10
0

10

20

30

40

50

60

Number of homotopy classes explored

nodes expanded (10
4
)

time taken (s)

Figure 3.25: Cumulative time taken and number of states expanded while searching GH for 10
homotopy classes in the problem of Figure 3.24(a).

a search, even with changed start and goal coordinates. The search for the 10 homotopy classes

in Figure 3.24(a) took about 30s and expansion of 521692 nodes in GH . Figure 3.25 shows the

cumulative time required and the number of nodes in GH expanded.

Planning in 2-dimensional Plane with Moving Obstacles

The next 3-dimensional domain that we experiment with is that of the two-dimensional plane, but

with dynamic entities. Thus the variables of interest are X,Y and time. The node set was formed

by uniform discretization of the domain of interest. The connectivity of the graph is such that

the time variable can increase only in the positive direction (each node connected to 9 neighboring

nodes in next time step, including the same x & y). The cost of an edge, e, with differences in the

coordinates of its end points ∆x,∆y and ∆t is computed as c(e) =
√

∆x2 + ∆y2 + ε∆t2, where ε

is a small value for avoiding zero cost edges in GH . The skeleton of the moving obstacles are the

curves traced by their centers (yellow dots on the oscillating rectangles in Online Resource 1) in

66

(a) t = 0.4s (b) t = 8.6s (c) t = 20.8s (d) t = 23.7s

(e) t = 26.7s (f) t = 29.6s (g) t = 32.5s (h) t = 37.0s

(i) t = 40.0s (j) t = 43.1s

Figure 3.26: Screen-shots from an example with two moving obstacles (O1 and O2) showing the
exploration of 4 homotopy classes in a dynamic environment. The blue trajectory (3) passes above
both O1 and O2. The red trajectory (2) passes above O2, but not O1. The light blue-gray trajectory
(1) passes above O1, but not O2. The dark gray trajectory (0) is the trivial shortest path.

the X − Y − Time space. The skeletons are closed outside and far from the discretized domain

(Construction 3.4.3). Note that in doing so, segments of the skeleton may point along negative

time. However that does not effect the planning since the X−Y −Time space itself can be treated

no differently from R3.

Figure 3.26 shows the exploration of 4 homotopy classes in X−Y −Time domain. The environ-

ment is 40× 40 discretized in X and Y directions, and have 100 discretization cells in time. There

are two dynamic rectangular obstacles, that undergo a known oscillatory motion inside a narrow

passage between other static obstacles. The 4 different trajectories in the different homotopy classes

are marked by different colors as well as different numbers at their current locations. The blue tra-

jectory (3) passes above both the obstacles. The red trajectory (2) passes above the right obstacles,

but not the left one. The light blue-gray trajectory (1) passes above the obstacle on the left, but

not one on the right. The dark gray trajectory (0) is the trivial shortest path. The trajectories

in the non-trivial homotopy classes go behind the obstacles, a region that would otherwise not be

visited by the least cost path without any H-signature consideration.

67

Chapter 4

Identification of Homology Classes

in Euclidean Spaces with

Punctures

4.1 Introduction

The methods developed in the previous chapter relied on finding a differential 1-form, the integration

of which along trajectories would give homology class invariants. Such 1-forms are elements of the

de Rham cohomology group of the configuration space punctured by obstacles, H1
dR(RD − O) [8].

For D-dimensional configuration space we considered (D − 2)-dimensional homotopy equivalents

(which were also their deformation retracts) to represent the obstacle – the representative points

for the 2-dimensional case, and the skeletons for the 3-dimensional case. What we then ended up

computing are linking numbers of closed loops with the homotopy equivalents of each obstacle.

Depending on whether or not the closed loop τ1t−τ2 formed by two trajectories τ1 and τ2 has zero

or non-zero linking numbers with every obstacle, we could conclude if or not they are homologous

(Definition 3.2.2).

In fact it is not a surprise that linking numbers are closely related to homology groups. Using the

definition of linking number from [27] we will in fact show that the integration along trajectories

we compute give homology class invariants for closed loops (something that we had claimed in

Chapter 3, but have not proved rigorously).

We will generalize the problem in order to take into account homology classes and linking num-

bers of arbitrary dimensional manifolds (not just 1-dimensional curves representing trajectories). In

particular, we will consider (N −1)-dimensional closed manifolds as generalization of 1-dimensional

curves that constituted the trajectories. Obstacles will be represented by (D − N)-dimensional

closed manifolds (which, in many cases will be deformation retracts of the original obstacles).

Thus, in light of the contents of Chapter 3, we would set N = 2 for trajectories, and for the 2 and

3 dimensional cases we would have D = 2 and D = 3 respectively.

The aim of this chapter are:

68

S

S

O
O

Figure 4.1: Obstacles, O, can be replaced by their equivalents, S, and that will not alter the
homology class of the (N − 1)-cycles in the complement space – an assumption that we made in
Chapter 3. In either of these figures, S is a deformation retract of O. The justification for this
construction is a consequence of Corollary 4.2.2.

1. To find certain differential (N − 1)-forms in the Euclidean space punctured by obstacles, and

show that integration of the forms along (N − 1)-dimensional closed manifolds give complete

invariants for homology classes of the manifolds in the punctured space (i.e. the value of the

integral over two closed manifolds are equal if and only if the manifolds are homologous),

2. To generalize the tools used in Chapter 3 to arbitrary dimensional Euclidean configuration

spaces punctured by obstacles.

Throughout this chapter we consider homology and cohomology with coefficients in the field R.

Also, for simplicity, we will throughout consider N > 1 to avoid the special treatment of the 0th

(co)homology groups.

4.2 Simplifying the Problem by Taking (D−N)-dimensional

Equivalents of Obstacles

Before we delve into some of the technical details involving linking numbers, we state a few propo-

sitions related to replacement of obstacles with their (D − N)-dimensional representatives. The

fact that we had used representative points to replace obstacles in 2-dimensions and skeletons in

3-dimensions to perform computations throughout Chapter 3 relied on the fact that replacing ob-

stacle by their homotopy equivalents do not effect the homology groups of the complement space

(i.e. free space), neither does it change the homology classes of trajectories in the free space (Fig-

ure 4.1). While this assumption may appear intuitive, we need to prove it rigorously. Moreover,

often one may come across obstacles which do not have a (D−N)-dimensional deformation retract

(e.g. for the D = 3, N = 2 case, a hollow torus does not have a D −N = 1 dimensional homotopy

equivalent). We will explore what (D − N)-dimensional equivalents we can use for such obstacles

(Figure 4.3).

In the proposition and related corollaries that follow, we represent the configuration space (with-

out obstacles) by RD (the D-dimensional configuration space), an obstacle by O, and S the equiv-

alent of the obstacle with which we replace O for computational simplicity.

69

S1

O

S2

ω

(a) Both S1 and S2 are subsets of the
solid torus, O. Moreover, each has
the homotopy type of the solid torus.
ω is a non-trivial cycle in (R3 −O).

S1

ω

(b) (R3 − S1) has homology groups
isomorphic to those of (R3 − O).
However, the cycle ω becomes triv-
ial in (R3 − S1). Thus S1 is not a
valid replacement of O.

S2

ω

(c) (R3 − S2) also has homology
groups isomorphic to those of (R3 −
O). Moreover, the cycle ω remain
non-trivial in (R3−S2). S2 is a valid
replacement of O.

Figure 4.2: A solid torus, and its valid/invalid replacements. This is an example with D = 3, N = 2
– the 3-dimensional case discussed in Chapter 3. The obstacle, O, need to be replaced by appropriate
(D −N) = 1-dimensional equivalents, that we called skeletons. The replacement needs to be such
that the inclusion map i : (RD −O) ↪→ (RD − S) induces the isomorphism.

Proposition 4.2.1. Let O be a compact, locally contractible and orientable sub-manifolds of RD.

Let S be a (D − N)-dimensional compact, locally contractible and orientable sub-manifolds of O

contained in the interior of O such that HD−N (S) u HD−N (O) and HD−N (O,S) u 0. Then the

inclusion map i : (RD − O) ↪→ (RD − S) induces an isomorphism i∗:N−1 : HN−1(RD − O) →
HN−1(RD − S).

Proof. Detailed proof can be found in Appendix B.1.

In light of robot path planning, O in the above proposition are the solid obstacles in the environ-

ment, and S are their equivalents/replacements (in terminology of Chapter 3 they are representative

points of obstacles on a 2-dimensional plane, and skeletons of obstacles in a 3-dimensional Euclidean

space). The aim of the above proposition is to establish a relationship between the homology groups

of the complement (or free) spaces, (RD−O) and (RD−S), from some known relationship between

the spaces O and S. In fact, it is not just the homology groups that we are trying to establish

relationship for, but homology classes of (N − 1)-dimensional manifolds (the closed trajectories in

robot planning problem) in the complement space.

For example, in Figure 4.2, the solid torus, which represents an obstacle in R3, was previously (in

Chapter 3) replaced by its ‘skeleton’, S2, for computations of homology class of closed loops like ω

(formed by pair of trajectories). Under such a replacement, the claim was that, the homology class

of ω in the complement space remain unchanged. This replacement, according to Proposition 4.2.1,

is justified by the facts that H1(S2) u H1(O) and H1(O,S2) u 0 (due to the fact that S2 is a

deformation retract of O). Corollary 4.2.2 simply asserts that a deformation retract (which S2

indeed is of O) in fact satisfies the required conditions of the proposition. On the other hand,

although S1 satisfies H1(S1) u H1(O) it does not satisfy H1(O,S1) u 0. Thus S1 is not a valid

replacement of O.

Corollary 4.2.2. If S and O are compact, locally contractible and orientable submanifolds of RD

such that S is a deformation retract of O, then the inclusion map i : (RD−O) ↪→ (RD−S) induces

70

S

O

(a) The hollow torus can be replaced by the im-
age of its generating 1-cycles, S. This replace-
ment does not alter the (N − 1)th homology
groups of the complement space, neither does it
alter the class of a (N − 1)-cycle in the com-
plement space, (RD − O). O and S satisfy the
conditions of Proposition 4.2.1.

SO

(b) In this figure we choose a S ⊂ O such that
HD−N (S) u HD−N (O). The replacement of O
by S, as in (a), does not alter the (N − 1)th ho-
mology groups of the complement space, (RD −
O). However, the replacement does not preserve
the class of a (N − 1)-cycle in the complement
space. This is because HD−N (O,S) u/ 0 in this
case. Thus this is not a valid replacement of O.

Figure 4.3: A hollow (or thickened) torus as an obstacle in a D = 3 dimensional space, with N = 2
for our problem (i.e. we are interested in homology classes of (N − 1) = 1-dimensional manifolds,
which are closed trajectories). It does not have a (D −N) = 1-dimensional deformation retract or
homotopy equivalent. However, we can replace it by its generating 1-cycles. This is the consequence
of Corollary 4.2.3.

isomorphisms i∗ : H∗(RD −O)→ H∗(RD − S)

Proof. Deformation retract implies homotopy equivalence, and that the inclusion induces isomor-

phisms i∗ : HD−N (S)
u−→ HD−N (O) for all N . Using this in the long exact sequence of homology

groups for pair (O,S) we further have HD−N (O,S) u 0 for all N (This can be concluded by ob-

serving that i∗ being an isomorphism requires that for exactness of the sequence, ∂∗ be a zero map,

and j∗ be a surjection and a zero map at the same time. Thus HD−N (O,S) requires to be zero for

all N .). The result can then be concluded using Proposition 4.2.1.

Corollary 4.2.3. Given a compact, locally contractible and orientable submanifold O ⊂ RD, let

{Sk}k=1,2,··· ,m be the images of generating cycles of HD−N (O) (i.e. if {Sk} are (D −N)-cycles in

O such that the homology classes of {Sk} generate the group HD−N (O) freely, then {Sk} are the

images of {Sk}), and let S̃ =
⋃
k=1,2,··· ,m Sk. Then the inclusion map i : (RD − O) ↪→ (RD − S̃)

induces an isomorphism i∗:N−1 : HN−1(RD −O)→ HN−1(RD − S̃).

Proof. The proof follows from the observation that the inclusion i : S̃ ↪→ O induces an isomorphism

in the (D −N)th homology groups of the spaces.

Clearly the (D−N)th homology groups of O and S̃ are isomorphic. The fact that the generating

cycles of S̃ are generating cycles of O under inclusion, implies any cycle σ ∈ CD−N (O) can be written

as σ = i ◦ω+ ∂D−N+1 ◦α for some ω ∈ CD−N (S̃) and α ∈ CD−N+1(O). This implies that any cycle

in the relative chain CD−N (O)/CD−N (S) are trivial. Thus HD−N (O,S) is trivial.

71

The result hence follows from Proposition 4.2.1. Note that being images of cycles, each of Sk are

(D−N)-dimensional closed (boundaryless), compact, locally contactable and orientable manifolds.

The consequence of the last two corollaries is that instead of computing homology in the original

punctured space (X −O), we can conveniently replace the obstacles with their equivalents, S, and

compute homology in (X−S), and yet, the results we obtain will be identical. That is exactly what

we did by taking the representative points (Definition 3.3.1) of obstacles on a 2-dimensional plane,

and skeletons (Definition 3.4.2) of obstacles in a 3-dimensional Euclidean space. Corollary 4.2.2

says that we can replace obstacles with such (D−N)-dimensional deformation retracts (Figure 4.1).

However, often obstacles may not have (D −N)-dimensional deformation retracts (for example, a

hollow torus does not have a 1 dimensional deformation retract, as illustrated in Figure 4.3). In such

cases we can use Corollary 4.2.3 to replace obstacles by certain (D − N)-dimensional equivalents

(generating cycles of (D −N)th homology group).

4.2.1 Reduced Problem Definition

Thus we have established that given any subset Õ of RD (which represent obstacles in robot planning

problem), instead of looking at the homology classes of (RD − Õ), we can simply consider the

homology classes of a space (RD−S̃) for some equivalents S̃ of Õ (as prescribed by Corollaries 4.2.2

and 4.2.3). Of course we can decompose S̃ into a collection of manifolds since the types of spaces we

are interested in are in fact manifolds, hence deformation retracts and images of generating cycles

are manifolds as well. Thus, in the rest of the chapter, we will only consider the presence of (D−N)-

dimensional compact, closed (boundary-less), locally contractible and orientable equivalents of the

obstacles. Hence is the following reduced problem definition:

We are given (D−N)-dimensional (N > 1) compact, closed (boundaryless), locally contactable

and orientable manifolds (which we call singularity manifolds), S1, S2, · · · , Sm, embedded in the

D-dimensional Euclidean space RD. Each of Si is path-connected (i.e. has single component). We

define the set S̃ = S1 ∪ S2 ∪ · · · ∪ Sm to be the set of all singularity manifolds.

We are interested in identifying homology classes of (N−1)-dimensional compact, closed (bound-

aryless), locally contactable and orientable manifolds in (RD − S̃) (which we call candidate man-

ifolds). In order to compute that we use (N − 1)-cycles on the candidate manifolds (i.e. top-

dimensional cycles). Those, by inclusion, are (N − 1)-cycles in (RD − S̃). Thus, given a candidate

manifold ω, we can conveniently use a simplicial cover (or, equivalently, singular, cellular or cu-

bical cover) of the manifold, ω, which is a (N − 1)-cycle in (RD − S̃). However, given two cycles

ω1, ω2 ∈ ZN−1(RD − S̃), instead of checking if or not ω1 − ω2 is boundary in HN−1(RD − S̃), we

would like to be able to use the action of some co-cycles in HN−1(RD − S̃) on the cycles (specif-

ically, integrations of differential forms over the cycles) to be able to say which homology classes

they belong to.

72

X

Y

A

B

R3, N = 2

Relative cycle ζ
 of class

Relative cycle of
 class

X-A

X

A

ζ

Figure 4.4: Illustration of intersection number in R3 with N = 2 in light of Definition 4.3.1.

4.3 Preliminaries on Linking Numbers

Equipped with the notion of the (D−N)-dimensional replacements of the obstacles/punctures, Si,

we proceed towards computing the homology classes of (N − 1)-cycles (in light of robot planning

problem those are the closed trajectories) of (RD − S̃).

In this section we start by defining intersection number, and the related concept of linking

number, from an algebraic topology view-point. The main purpose of this section is two fold:

i. To establish the fact that the linking numbers between the (N − 1)-cycles in (RD − Si), and

the manifolds Si indeed tells us about the homology class of the (N − 1)-cycles in (RD − Si)
(Proposition 4.3.4),

ii. Propose a formula for computing the linking number using an integration over the (N − 1)-

cycle and a top-dimensional cycle of Si (Proposition 4.3.5).

However, we will try to keep our initial treatment of linking/intersection numbers and related propo-

sitions fairly general from an algebraic topology consideration. We will however try to illustrate the

ideas using corresponding examples from the familiar robot planning problem of Chapter 3.

4.3.1 Definitions

We first give the technical definitions of intersection number and linking number, following which

we try to illustrate those using simple examples.

Technical Definitions

Recall the definition of intersection number [27],

Definition 4.3.1 (Intersection Number – Ch. VII, Def. 4.1 of [27]).

73

If X and Y are sub-manifolds of RD, and A ⊂ X ⊂ RD, B ⊂ Y ⊂ RD be such that A ∩ Y =

∅, X ∩ B = ∅ (Figure 4.4), and consider the map p : (X × Y,A × Y ∪X × B) → (RD,RD − {0})
given by p(x, y) = x− y (where we used the natural vector structure of RD). The composition

HN (X,A)×HD−N (Y,B)
×−−−−−→ HD(X × Y,A× Y ∪X ×B)

(−1)D−Np∗−−−−−−−→ HD(RD,RD − {0})

is called the intersection pairing (Note that the product ‘×’ for homology groups is the homology

cross product, which is more closely related to the tensor product of the homology groups rather

than the cartesian product – see p. 268 of [40]).

We write

I (ζ, µ) = (−1)D−Np∗(ζ × µ), for ζ ∈ HN (X,A), µ ∈ HD−N (Y,B)

and call this element of HD(RD,RD − {0}) u R the intersection number of ζ and µ.

Note that the intersection number is defined for homology classes of the pairs (X,A) and (Y,B).

However it can be easily extended to relative cycles ζ ∈ ZN (X,A), µ ∈ ZD−N (Y,B) as I (ζ, µ) =[
(−1)D−Np(ζ × µ)

]
= I ([ζ], [µ]), where [·] represents the homology class of a cycle. This follows

from functoriality of homology (See p. 162 of [40]).

Also, once again note that the product ‘×’ between chains is more closely related to group tensor

products. This can just be the group tensor product for cellular or cubical chains. But for singular

or simplicial chains the product involves further operations and is called the simplicial cross product

(See p. 277 of [40]).

Moreover, more generally, p : X×Y → RD can be an arbitrary continuous surjective map which

maps only the points {(x, y) ∈ X × Y
∣∣x = y} to {0} ∈ RD.

Definition 4.3.2 (Linking Number – Adapted from Ch. 10, Art. 77 of [78]).

We borrow definitions of X,A, Y and B from Definition 4.3.1. Recall that from the long exact

sequence of the pair (X,A) we have a map ∂∗ : HN (X,A)→ HN−1(A).

Now, if ς ∈ HN−1(A) is such that it can be written as ς = ∂∗ζ for some ζ ∈ HN (X,A), and if

µ ∈ HD−N (Y,B), then the linking number between ς and µ is defined as L (ς, µ) = I (ζ, µ).

Note that similar to the intersection number, by the functoriality of homology, linking number can

be defined between a cycle, ς, in A and a relative cycle, µ, in (Y,B).

Simplified Description of the Definitions

Let us consider the simple case when X = R3, A = R3 − S, Y = S and B = ∅, and with

D = 3, N = 2, which arises in robot path planning in R3 (Figure 4.5). Let µ be a top-dimensional

cycle on the (D − N)-dimensional manifold, S (to be consistent with the notations used in the

definition). Intersection number, as the name suggests, informally speaking, counts the number of

intersections between a N -chain ξ (in light of Definition 4.3.1, it is represented by the relative cycle

ζ), and a (D −N)-cycle µ. Thus, in Figure 4.5, informally, the intersection number between ξ and

µ is ±1 (the sign depends on orientation).

74

μ

ς

ξ
 R3

(b)
R3 x S
 (a) p(x, y) = x - y

0u

Figure 4.5: A simplified illustration (following from Figure 4.2(c)) of intersection number and linking
number in R3 with N = 2. This is a special case of Definition 4.3.1 when X = R3, A = R3−S, Y =
S and B = ∅.
Figure (a) on the left : The intersection number is computed between a N -chain, ξ (more precisely it
is a relative cycle in (X,A) that we consider – the boundary of ξ trivialized), and the (D−N)-cycle,
µ, that is a top-dimensional cycle on S. In this figure the said intersection number is ±1 due to the
single intersection marked by the blue ‘cross’ at u. Then, by definition, that is equal to the linking
number between ς = ∂ξ and µ.
Figure (b) on the right : The precise definition requires a mapping, p, from pair of points in the
original space (one point from the 2-chain, ξ, embedded in the ambient space, R3, and another from
S) to (a different copy of) R3. The intersection/linking number is then, informally, the number of
times intersection points in the pre-image of p (points like u) maps to the origin, 0 (with proper
sign), in the image, or equivalently, the number of times the image of ς × µ, under the action of
p, wraps around the origin. Thus, it is the homology class of the cycle p(ς × µ) in the punctured
Euclidean space (RD − 0).

Now, if ξ has a boundary, say ς = ∂ξ, the linking number between ς and µ is, by definition, the

intersection number between ξ and µ.

In defining the intersection number, however, one does not talk about the N -chain ξ. Instead,

one talks about the corresponding relative cycle in (R3,R3 − S) under the action of the quotient

map j : CN (R3) → CN (R3,R3 − S) – that is, the part of ξ that does not intersect with S, is

trivialized (which is ζ (= j(ξ)) in notation of Definition 4.3.1). This is because homology classes

are not defined for chains, rather can be defined for cycles or relative cycles only. By trivializing

the part of the chain that contains the boundary (i.e. the one lying in (R3−S)), we convert it into

a relative cycle, thus enabling us to talk about its homology class (ζ in Definition 4.3.1).

For constructing a precise algebraic definition of linking/intersection number, the relative cycles

ζ and µ are then mapped to R3 via the map p(x, y) = x − y. The intersection number is then,

informally, the number of times the intersection points (like u in Figure 4.5) map to (with proper

sign) the origin in the co-domain of p. Linking number is then essentially the number of times the

image of ς×µ, under the action of p, wraps around the origin in the co-domain of p. In other words,

it is the homology class of the cycle p(ς × µ) in the punctured Euclidean space (RD − 0).

75

μ
ς

ξ

 R2

(a) On R2 the linking number be-
tween a point µ (a 0-cycle) and a 1-
cycle ς is uniquely determined, and
is equal to the intersection number
between µ and a 2-chain ξ such that
ς = ∂ξ. It can be shown that the
choice of ξ does not matter.

ς

μ
ξ1

ξ2

(b) Similarly, in R3 the linking num-
ber between a 1-cycle, µ, and a closed
cycle ς is uniquely determined, and is
equal to the intersection number be-
tween µ and a 2-chain ξ such that
ς = ∂ξ. It can be shown that the
choice of ξ does not matter – that
is, we could choose ξ1 or ξ2 for com-
putation of the intersection number,
and the value that we would obtain
will be the same.

ξ2

ξ1

μ
ς

(c) However, if the ambient space, X,
is not contractible (in this figure it
is the 2-sphere, S2), then the linking
number between µ and ς is not un-
ambiguously defined. This is because
the choices of ξ such that ς = ∂ξ can
be made in ways such that its inter-
section number with µ is different for
the different choices. In the figure, on
S2, the boundary of both ξ1 and ξ2
are ς. However the intersection num-
ber between ξ1 and µ is zero, while
that between ξ2 and µ is ±1.

Figure 4.6: Examples and counter-examples of uniqueness of linking number – a consequence of
Proposition 4.3.3.

4.3.2 Propositions on Linking Number

In this sub-section we will state and prove two propositions, each followed by simplified explanation

of the result of the propositions.

The fact that we have assumed X and Y to be embedded in RD guarantees that the linking

number is uniquely defined. However, one can consider a more general case where they are embed-

ded in an arbitrary D-dimensional manifold, M . Also, the map p is replaced by a more general

continuous surjective map p : (X × Y,A× Y ∪X ×B)→ (M,M − 0) for some base-point 0 in M .

In such case the uniqueness of the linking number is non-trivial (see Figure 4.6).

Proposition 4.3.3 (Uniqueness of linking number). If HN (X) = HN−1(X) = 0 holds, then L (ς, µ)

is independent of the exact choice of ζ [78]. More precisely, under the said conditions, ∂−1
∗ exists,

and thus L (ς, µ) = I (∂−1
∗ ς, µ) = (−1)D−Np∗(∂

−1
∗ ς × µ).

Proof. From the long exact sequence for the pair (X,A), using the condition HN (X) = HN−1(X) =

0, it follows that ∂∗ : HN (X,A) → HN−1(A) is an isomorphism (See p. 114 of [40]). Hence the

result follows. [Note that the contractibility of X is sufficient for the said condition to hold.]

The the statement of the above proposition is about the uniqueness in the value of linking

number. Intersection number, according to definition, is between a N -chain (like ξ in the example

of figure 4.5 or 4.6) and a (D − N)-cycle (like µ in the example of Figure 4.5). That is then, by

definition, the linking number between the boundary of the N -chain, which is a (N − 1)-cycle (like

76

ς in the example of Figure 4.5) and the (D −N)-cycle (µ). However, it may be possible that there

exists another N -chain, ξ
′
, such that ς is the boundary of that N -chain as well (i.e. ς is a common

boundary between ξ and ξ
′

– as illustrated in Figure 4.6(b)). Then, if the intersection number

between ξ
′

and µ is not same as that between ξ and µ, the definition of the linking number between

ς and µ becomes ambiguous. This is exemplified in Figure 4.6(c). Proposition 4.3.3 precisely gives

the condition under which such ambiguity is not present.

Proposition 4.3.4 (Connection to homology of A). Consider a fixed non-zero µ ∈ HD−N (Y,B).

If, in addition to the condition of Proposition 4.3.3, we have HN (X,A) u HN−1(A) u R, and if

there exists at least one (N − 1)-cycle in A such that its linking number with µ is non-zero, then

the value of L (ς, µ) tells us which element of HN−1(A) is the chosen ς. In other words, the map

H ≡ L (·, µ) : HN−1(A)→ HD−1(RD,RD − {0}) u R is an injective homomorphism.

Proof. The mapH is given byH(ς) = (−1)D−Np∗(∂
−1
∗ ς×µ). This clearly is a group homomorphism

between HN−1(A) and HD−1(RD,RD − {0}). Since by hypothesis, both the domain and the co-

domain of H are isomorphic to R, H can either be a trivial homomorphism (i.e. maps everything

in its domain to 0 in its co-domain), or it can be an injection. The former possibility is ruled out by

the hypothesis of existence of at least one (N − 1)-cycle in A with non-zero linking number with µ.

Thus the result follows. The result implies that the linking number with µ is a complete invariant

for the homology class ς.

So far we have been talking about intersection number and linking number. However what we

are really interested in is the homology class of ς in A (in light of robot planning problems, that

is the homology class of the closed trajectories in (RD − S), as illustrated in figures 4.5 ans 4.6).

The result of the above proposition establishes a relationship between the linking number between

µ and ς (see figure 4.5 or 4.6), and the homology class of ς. It says that under certain conditions,

the linking number will precisely tell us about the homology class of ς (i.e. a complete invariant).

4.3.3 Computation of Intersection/Linking Number for Given Cycles

In this sub-section we will actually try to compute the linking number between the cycles ς and µ.

As described in the beginning of this chapter, we would like to be able to compute the homology

class of (N − 1)-cycles (top-dimensional cycles on (N − 1)-dimensional manifolds) as an explicit

number (or a set of numbers). Equipped with Proposition 4.3.4, that problem can be converted to

the problem of computation of the linking numbers.

There can be a large variety of differential forms on a manifold. A n-form can always be

integrated on a n-cycle. However, the value of the integration may not tell us anything about the

homology class of the cycle. For example, in (R2 − 0), i.e. the plane with the origin removed, dx

is a differential 1-form. However it is exact and evaluates to 0 on every closed curve. On the other

hand, as we saw in Chapter 3, dθ = x dy+y dx
x2+y2 (= Im(dz

z))), which is closed but not exact [8] in

(R2 − 0), in fact tell us about the homology class of closed loops.

The purpose of the proposition below is to design a differential from, integration of which,

along with the conditions of Proposition 4.3.4, captures the homology class of (N − 1)-cycles in

77

A (which, in light of robot planning problem, are the punctured spaces (RD − S), S being path-

connected). In order to achieve this for arbitrary A (in robot planning, for example, we can arbitrary

representatives, S, for the obstacles), we exploit the transformation, p, in the definition of linking

numbers. Thus, the closed, non-exact differential form that we have to choose is one from the co-

domain of p, namely (RD−0) (a space which is much simpler and well-known than, say, (RD−S)),

and then pull it back to the original space by p. Thus we have the following proposition.

Let η0 ∈ ΩD−1
dR (R − {0}) be a closed but non-exact differential form in (R − {0}) such that

[η0] ∈ HD−1
dR (R− {0}) u R is a generator of HD−1

dR (R− {0}).

Proposition 4.3.5. In addition to the condition of Proposition 4.3.3, if HD−N (B) =

HD−N−1(B) = 0, then the linking number between cycles ς ∈ ZN−1(A) and µ ∈ ZD−N (Y,B)

is uniquely identified by the value of (i.e. a complete invariant for the linking number is)

(−1)D−N
∫
ς×u

p∗(η0)

where u ∈ ZD−N (Y) is such that j′(u) = µ, where j′ is the quotient map Y → Y/B (See Thm. 2.13

of [40] – note that for a given µ, in general, there can be many possible choices for u).

Proof. Detailed proof can be found in Appendix B.2.

4.4 Computation in Our Specific Problem

In this section we specialize the results of the previous section to match the description of the reduced

problem definition in Section 4.2.1. We consider the case where there is a single path-connected

component of S̃, namely S.

For our problem, in connection to the definitions stated in Section 4.3 (see Figure 4.5), we set

X = RD, A = RD − S, Y = S and B = ∅

Moreover, since Y ≡ S is a (D −N)-dimensional compact, connected and orientable manifold,

we have HD−N (S) u R. We thus choose µ = S to be a non-zero top dimensional cover of S such

that [S] = 1 ∈ HD−N (S) is a generator of HD−N (S) (which is isomorphic to R since S is a closed,

path-connected and orientable (D −N)-dimensional manifold).

Also, note that since B = ∅, the maps j′ : Y → Y/B is the identity map. So in this case

[S] ∈ HD−N (S,B) ≡ HD−N (S).

For this choice it is easy to verify that the conditions of Propositions 4.3.3, 4.3.4 and 4.3.5 hold.

i. Condition for Proposition 4.3.3: HN (RD) = HN−1(RD) = 0 follows from contractibility of

RD.

ii. Conditions for Proposition 4.3.4:

a. By Proposition 3.46 of [40], HN (RD,RD−S) u HD−N (S). Again, using Poincar Duality

for S (which is a (D−N)-dimensional closed, orientable manifold), HD−N (S) u H0(S) u
78

ς

S

v

R3, N = 2

Figure 4.7: The specific problem under consideration, illustrated for D = 3, N = 2.

R (since S has a single connected component). Finally, from the long exact sequence

for the pair (RD,RD − S), using the contractibility of RD, we have, HN (RD,RD − S) u
HN−1(RD − S). Combining these three isomorphisms we have,

HN (RD,RD − S) u HN−1(RD − S) u R (4.4.1)

.

b. Consider a point v ∈ S. Since S covers S, this point is also in (the image of) S. Since

S is (D − N)-dimensional, we can choose a small N -ball, B, centered at v such that

it intersects S transversely only at v. Let B ∈ CN (RD) be a top-dimensional non-

zero chain that covers B. Clearly the intersection number between S and j(B) (where

j : RD → RD/(RD − S) is the quotient map) is non-zero. Thus the linking number

between ∂B
∣∣
(RD−S)

(which, by our construction, is a (N − 1)-cycle in (RD − S)) and S

is non-zero. Thus there exists at least one (N − 1)-cycle in (RD − S) that has non-zero

linking number with S (see Figure 4.7).

iii. Condition for Proposition 4.3.5: Follows from the fact that B = ∅.

Thus, we are concerned with finding a complete invariant for homology classes of (N−1)-cycles,

ω ∈ ZN−1(RD − S). Which, by Proposition 4.3.4, is the linking number between ω and S. And,

finally, using Proposition 4.3.5, the complete invariant for the homology classes of such chains is

given by the value of the integration

φS(ω) = (−1)D−N
∫
ω×S

p∗(η0)

= (−1)D−N
∫
ω

∫
S

p∗(η0) [by Fubinis theorem] (4.4.2)

79

4.4.1 Computation of the integral in φS

Let x ∈ (RD−S) ⊂ RD be the coordinate variable describing points in (RD−S), and let x′ ∈ S ⊂ RD

be the one describing points in S. Thus we have p(x,x′) = x− x′.

Again, we let s ∈ (RD − {0}) ⊂ RD be the natural coordinate variable describing points in the

space (RD−{0}). A well-known result [3, 30] is that a differential closed but non-exact (D−1)-form

in (RD − {0}) (i.e., a nontrivial element of ZD−1
dR (RD − {0})) is,

η0(s) =

D∑
k=1

Gk(s) (−1)k+1 ds1 ∧ ds2 ∧ · · · ∧ dsk−1 ∧ dsk+1 ∧ · · · ∧ dsD (4.4.3)

where

Gk(s) =
1

AD−1

sk

(s2
1 + s2

2 + · · ·+ s2
D)

D/2
(4.4.4)

where, s = [s1, s2, · · · , sD]T ∈ (RD−{0}), and AD−1 = Dπ
D
2

Γ(D2 +1)
is the surface area of the (D−1)-unit

sphere (which acts as a normalizing factor, and can be set to any non-zero value).

Thus the pullback of η0 under p is given by the following formula,

η(x,x′) = p∗(η0) = η0

∣∣
s=x−x′

=

D∑
k=1

Gk(x− x′) (−1)k+1 d(x1 − x′1) ∧ d(x2 − x′2) ∧ · · ·

∧ d(xk−1 − x′k−1) ∧ d(xk+1 − x′k+1) ∧ · · · ∧ d(xD − x′D) (4.4.5)

Now consider the quantity of our interest, φ(ω) =
∫
x∈ω

∫
x′∈S η(x,x′). On ω × S, at most

(N−1) unprimed differentials can be independent, and at most (D−N) primed differentials can be

independent (since x represents a point on the image of the (N−1) chain ω and x′ represents a point

on the image of the (D−N) chain S). Thus we can conveniently drop all the terms in the expansion

of η (which is a (D − 1)-differential form on (RD − S)× S) that do not satisfy these conditions on

maximum number of primed/unprimed differentials. Thus we obtain a simpler differential form η̃,

η̃(x,x′) =

D∑
k=1

(
Gk(x− x′) (−1)k+1+D−N ·

∑
τi∈{0,1}

τ1+···+τD=D−N

dx
(τ1)
1 ∧ dx

(τ2)
2 ∧ · · · ∧ dx

(τk−1)
k−1 ∧ dx

(τk+1)
k+1 ∧ · · · ∧ dx

(τD)
D

)

(4.4.6)

[where, x
(τ)
i represents x′i if τ = 1, otherwise represents xi if τ = 0.]

This differential form, though simpler, has the property

φS(ω) = (−1)D−N
∫
x∈ω

∫
x′∈S

η(x,x′) = (−1)D−N
∫
x∈ω

∫
x′∈S

η̃(x,x′) (4.4.7)

80

Finally, we re-write the formula for η̃ using a new notation as follows,

η̃(x,x′) = (−1)D−N
D∑
k=1

(
Gk(x− x′) (−1)k+1 ·

∑
ρ∈partD−N (ND−k)

sgn(ρ) dx′ρl(1) ∧ · · · ∧ dx′ρl(D−N) ∧ dxρr(1) ∧ · · · ∧ dxρr(N−1)

)
(4.4.8)

where,

◦ ND
−k = [1, 2, · · · , k − 1, k + 1, · · · , D] is an ordered set,

◦ partw(A) is the set of all 2 partitions of the ordered set A, such that the first partition contains

w elements, and each of the partitions contain elements in order. 1

Thus, the final formula for the complete invariant for homology class of ω ∈ ZN−1(RD − S) is,

φS(ω) = (−1)D−N
∫
x∈ω

∫
x′∈S

η̃(x,x′)

=

∫
x∈ω

D∑
k=1

∑
ρ∈partD−N (ND−k)(

(−1)k+1

∫
x′∈S

Gk(x− x′) sgn(ρ) dx′ρl(1) ∧ · · · ∧ dx′ρl(D−N)

)
∧ dxρr(1) ∧ · · · ∧ dxρr(N−1)

=

∫
x∈ω

D∑
k=1

∑
ρ∈partD−N (ND−k)

Ukρ (x;S) ∧ dxρr(1) ∧ · · · ∧ dxρr(N−1) (4.4.9)

where,

Ukρ (x;S) = (−1)k+1 sgn(ρ)

∫
x′∈S

Gk(x− x′) dx′ρl(1) ∧ · · · ∧ dx′ρl(D−N) (4.4.10)

and by convention, S is a top-dimensional cycle covering S such that [S] = 1 ∈ HD−N (S).

Also, note that the quantity inside the integral in the formula for φS is a differential (N−1)-form

in (RD − S). Thus we can integrate it over ω. We represent the differential (N − 1)-form by ψS

ψS =
∑

ρ∈partD−N (ND−k)

Ukρ (x;S) ∧ dxρr(1) ∧ · · · ∧ dxρr(N−1) (4.4.11)

1Let us consider an ordered set A = [a1, a2, · · · , aq] with a1 ≤ a2 ≤ · · · ≤ aq (where the inequality sign signifies
order of arrangement and not necessarily the order of magnitude). We represent the set of all ordered 2-partitions
of the set A into w and q − w elements as partw(A), such that for a ρ = [ρl, ρr] ∈ partw(A), ρl and ρr are ordered
sets of w and q − w elements respectively, with the properties that ρl ∩ ρr = ∅, ρl(1) ≤ ρl(2) ≤ · · · ≤ ρl(w) and
ρr(1) ≤ ρr(2) ≤ · · · ≤ ρr(q − w). Then the sign of the partition, sgn(ρ), is defined as the permutation sign of the
ordered set ρl t ρr. For example,

part3([1, 3, 6, 9, 5]) =
{

[[1, 3, 6], [9, 5]] , [[1, 3, 9], [6, 5]] , [[1, 3, 5], [6, 9]] , [[1, 6, 9], [3, 5]] ,

[[1, 6, 5], [3, 9]] , [[1, 9, 5], [3, 6]] , [[3, 6, 9], [1, 5]] , [[3, 6, 5], [1, 9]] , [[3, 9, 5], [1, 6]] , [[6, 9, 5], [1, 3]]
}

.
Then if ρ = [[1, 6, 5], [3, 9]] ∈ part3([1, 3, 6, 9, 5]), we write ρl = [1, 6, 5] and ρr = [3, 9]. Also, the jth element of
ρb, b ∈ {l, r} is written as ρb(j). Thus, in the example, ρl(2) = 6.

81

R2

Ω

ω

S1

S2

S3
S4

(a) D = 2, N = 2

Ω

S1 S2

S3

R3

ω

(b) D = 3, N = 2

Ω

S3

S4
S1

S2

R3 ω

(c) D = 3, N = 3

Figure 4.8: Schematic illustration of some lower dimensional cases of the problem. The Cauchy
Residue theorem can be applied to (a), Ampere’s law to (b), and Gauss Divergence theorem to (c).

4.4.2 Incorporating Multiple Connected Components of S̃

So far we have worked with a single connected component of the puncture, namely, S. However,

recall that the original space under consideration was (RD − S̃), with S̃ =
⋃m
i=1 Si, such that each

Si is path connected, compact, closed, locally contractible and orientable. Moreover, by hypothesis,

Si ∩ Sj = ∅, ∀i 6= j. We have the following proposition in order to compute the homology of the

smaller space, (RD − S̃), in terms of the larger spaces, (RD − Sk).

Proposition 4.4.1. HN−1(RD − S̃) u
⊕m

k=1HN−1(RD − Sk) u Rm. Where, the first isomor-

phism is induced by the direct sum of the inclusion maps ĩk : (ED − S̃) ↪→ (ED − Sk).

Proof. Detailed proof can be found in Appendix B.3.

Thus, for any ω ∈ ZN−1(ED − S̃), a complete invariant for the homology class of ω is given by,

φS̃(ω)
def.
=


φS1

(ω)

φS2
(ω)
...

φSm(ω)

 (4.4.12)

where, φSi is given by the formula in Equation (4.4.9). [Note that we have implicitly assumed

a inclusion map ĩk : (ED − S̃) ↪→ (ED − Sk) being applied on ω for computation of the kth

component. For simplicity we don’t write it explicitly, since the map is identity as far as computation

is concerned.]

Thus, [ω1] = [ω2] if and only if φS̃(ω1) = φS̃(ω2), for any ω1, ω2 ∈ ZN−1(ED − S̃).

4.5 Validations in Low Dimensions

In this section we illustrate the forms that equations (4.4.10) and (4.4.11) take under certain special

cases. We compare those with the well-known formulae from complex analysis, electromagnetism

and electrostatics that are known to give homology class invariants. Once again, we demonstrate

all the computations using a single connected component of S̃.

82

4.5.1 D = 2, N = 2 :

This particular case has parallels with the Cauchy integral theorem and the Residue theorem from

Complex analysis. This formula was used in Section 3.3 for designing a H-signature in the 2-

dimensional case. Here a singularity manifold, S, is a D − N = 0-dimensional manifold, i.e. a

point, the coordinate of which we represent by S = [s1, s2]T (the representative points according to

terminology of Chapter 3 - Figure 4.8(a)).

Thus, the partitions in (4.4.11) for the different values of k are as follows,

For k = 1, part0({2}) =
{
{{}, {2}}

}
,

For k = 2, part0({1}) =
{
{{}, {1}}

}
Thus,

U1
1 (x) =

1

2π
(−1)2−2+1+1(1)

x1 − S1

|x− S|2
=

1

2π

x1 − s1

|x− S|2

U2
1 (x) =

1

2π
(−1)2−2+2+1(1)

x2 − S2

|x− S|2
= − 1

2π

x2 − s2

|x− S|2

where the subscripts of U indicate the index of the partition used (in the lists above). Also, note

that integration of a 0-form on a 0-dimensional manifold is equivalent to evaluation of the 0-form

at the point.

Thus,

ψS = U1
1 (x) dx2 + U2

1 (x) dx1

=
1

2π

(x1 − s1) dx2 − (x2 − s2) dx1

|x− S|2

=
1

2π
Im

(
1

z − Sc
dz

)
where in the last expression we used the complex variables, z = x1 + ix2 and Sc = s1 + is2. In fact,

from complex analysis (Residue theorem and Cauchy integral theorem) we know that
∫
γ

1
z−Sc dz

(where γ is a closed curve in C) is 2πi if γ encloses Sc, but zero otherwise. This is just the fact that

∫
γ

ψS =

∫
Ins(γ)

dψS =

{
±1, if Ins(γ) contains S

0, otherwise

where Ins(γ) represents the inside region of the curve γ, i.e. the area enclosed by it.

4.5.2 D = 3, N = 2 :

This particular case has parallels with the Ampere’s Law and the Biot-Savart Law from Electro-

magnetism. This formula was used in Section 3.4 for designing a H-signature in the 3-dimensional

case. Here a singularity manifold, S, is a D −N = 1-dimensional manifold, which, in light of Elec-

tromagnetism is a current-carrying line/wire (the skeletons according to terminology of Chapter 3

- Figure 4.8(b)).

The partitions in (4.4.11) for the different values of k are as follows,

For k = 1, part1({2, 3}) =
{
{{2}, {3}} , {{3}, {2}}

}
,

83

For k = 2, part1({1, 3}) =
{
{{1}, {3}} , {{3}, {1}}

}
,

For k = 3, part1({1, 2}) =
{
{{1}, {2}} , {{2}, {1}}

}
,

Thus,

U1
1 (x) =

1

4π
(−1)3−2+1+1(1)

∫
S

x1 − x′1
|x− x′|3 dx′2 = − 1

4π

∫
S

x1 − x′1
|x− x′|3 dx′2

U1
2 (x) =

1

4π
(−1)3−2+1+1(−1)

∫
S

x1 − x′1
|x− x′|3 dx′3 =

1

4π

∫
S

x1 − x′1
|x− x′|3 dx′3

U2
1 (x) =

1

4π
(−1)3−2+2+1(1)

∫
S

x2 − x′2
|x− x′|3 dx′1 =

1

4π

∫
S

x2 − x′2
|x− x′|3 dx′1

U2
2 (x) =

1

4π
(−1)3−2+2+1(−1)

∫
S

x2 − x′2
|x− x′|3 dx′3 = − 1

4π

∫
S

x2 − x′2
|x− x′|3 dx′3

U3
1 (x) =

1

4π
(−1)3−2+3+1(1)

∫
S

x3 − x′3
|x− x′|3 dx′1 = − 1

4π

∫
S

x3 − x′3
|x− x′|3 dx′1

U3
2 (x) =

1

4π
(−1)3−2+3+1(−1)

∫
S

x3 − x′3
|x− x′|3 dx′2 =

1

4π

∫
S

x3 − x′3
|x− x′|3 dx′2

where, as before, the subscripts of U indicate the index of the partition used (in the lists above).

Thus,

ψS = U1
1 (x) dx3 + U1

2 (x) dx2 + U2
1 (x) dx3 + U2

2 (x) dx1 + U3
1 (x) dx2 + U3

2 (x) dx1

= (U2
2 (x) + U3

2 (x)) dx1 + (U1
2 (x) + U3

1 (x)) dx2 + (U1
1 (x) + U2

1 (x)) dx3

=

 U2
2 (x) + U3

2 (x)

U1
2 (x) + U3

1 (x)

U1
1 (x) + U2

1 (x)

 · ∧
 dx1

dx2

dx3



=
1

4π

∫
S


− x2−x′2
|x−x′|3 dx′3 +

x3−x′3
|x−x′|3 dx′2

x1−x′1
|x−x′|3 dx′3 −

x3−x′3
|x−x′|3 dx′1

− x1−x′1
|x−x′|3 dx′2 +

x2−x′2
|x−x′|3 dx′1

 · ∧
 dx1

dx2

dx3



=
1

4π

∫
S

dl′ × (x− x′)

|x− x′|3
· ∧

 dx1

dx2

dx3


where, bold face indicates column 3-vectors and the cross product “×”: R3 × R3 → R3 is the

elementary cross product operation of column 3-vectors. The operation “·∧” between column vectors

implies element-wise wedge product followed by summation. Also, dl′ = [dx′1 dx′2 dx′3]T . It is

not difficult to identify the integral in the last expression, B = 1
4π

∫
S

dl′×(x−x′)
|x−x′|3 with the Magnetic

Field vector created by unit current flowing through S, computed using the BiotSavart law. Thus,

if γ is a closed loop, the statement of the Ampre’s circuital law gives,
∫
γ

B · dl =
∫
γ
ψS = Iencl ,

the current enclodes by the loop.

84

4.5.3 D = 3, N = 3 :

This particular case has parallels with the Gauss’s law in Electrostatics, and in general the Gauss

Divergence theorem. Here a singularity manifold, S, is a D − N = 0-dimensional manifold, i.e. a

point, the coordinate of which is represented by S = [S1, S2, S3]T , which in the light of Electrostatics,

is a point charge. The candidate manifolds are 2-dimensional surfaces (Figure 4.8(c)).

The partitions in (4.4.11) for the different values of k are as follows,

For k = 1, part0({2, 3}) =
{
{{}, {2, 3}}

}
,

For k = 2, part0({1, 3}) =
{
{{}, {1, 3}}

}
,

For k = 3, part0({1, 2}) =
{
{{}, {1, 2}}

}
,

Here, D−N = 0 implies the integration of (4.4.10) once again becomes evaluation of 0-forms at S.

Thus,

U1
1 (x) =

1

4π
(−1)3−3+1+1(1)

x1 − S1

|x− S|3 =
1

4π

x1 − S1

|x− S|3

U2
1 (x) =

1

4π
(−1)3−3+2+1(1)

x2 − S2

|x− S|3 = − 1

4π

x2 − S2

|x− S|3

U3
1 (x) =

1

4π
(−1)3−3+3+1(1)

x3 − S3

|x− S|3 =
1

4π

x3 − S3

|x− S|3

Thus,

ψS = U1
1 (x) dx2 ∧ dx3 + U2

1 (x) dx1 ∧ dx3 + U3
1 (x) dx1 ∧ dx2

=
1

4π

(
x1 − S1

|x− S|3
dx2 ∧ dx3 +

x2 − S2

|x− S|3
dx3 ∧ dx1 +

x3 − S3

|x− S|3
dx1 ∧ dx2 +

)
=

(
1

4π

x− S

|x− S|3

)
· ∧ [dx2 ∧ dx3 , dx3 ∧ dx1 , dx1 ∧ dx2]T (4.5.1)

The quantity E = 1
4π

x−S
|x−S|3 can be readily identified with the electric field created by an unit point

charge at S. If A is a closed surface, then
∫
AE · dA =

∫
A ψS = Qencl , the charge enclosed by A.

4.6 Examples and Applications

We implemented the general formula for computing ψS(ω) in C++ programming language for

arbitrary D and N . Singularity manifolds, S, and candidate manifold, ω, are discretized to create

simplicial complexes S and ω respectively, thus enabling us to compute the integral in equations

(4.4.9) and (4.4.10) as a sum of integrals over pair of simplices. In the following section, for simplicity,

we use the same notation of the manifolds to refer to their equivalent simplicial complex. We

extensively used the Armadillo linear programming library [74] for all vector and matrix operations,

and the GNU Scientific Library [32] for all the numerical integrations.

4.6.1 An Example for D = 5, N = 3

In Section 4.5 we have shown that the general formulation we proposed in Section 4.4 indeed reduces

to known formulae that gives us the homology class invariants for certain low dimensional cases.

85

In this section we present numerical validation for a higher dimensional case. While we want the

example to be non-trivial, we would also like it to be such that the results obtained numerically

can be interpreted and verified without much difficulty. Hence we consider the following example.

Consider D = 5 and N = 3. The candidate manifold hence needs to be N − 1 = 2-dimensional.

We consider a 2-sphere centered at the origin in R5 as the candidate manifold. In particular, we

consider a family of candidate manifolds that is described by

ω(RC) = {x | x2
1 + x2

2 + x2
3 = R2

C , x4 = 0, x5 = 0} (4.6.1)

Correspondingly, a possible ball Ω(RC), such that ω(RC) = ∂Ω(RC), is hence given by,

Ω(RC) = {x | x2
1 + x2

2 + x2
3 ≤ R2

C , x4 = 0, x5 = 0} (4.6.2)

A candidate manifold, ω(RC), can be parametrized, which in turn can be conveniently used for

triangulation (see Figure 4.9(b)), using two parameters, θ ∈ [−π2 ,
π
2] and φ ∈ [0, 2π], as follows,

x1 = RC cos(θ) cos(φ)

x2 = RC cos(θ) sin(φ)

x3 = RC sin(θ)

x4 = 0

x5 = 0

(4.6.3)

We consider a single connected component as the singularity manifold, S, that is described by

a 2-torus (Figure 4.9(a)) as follows,

x1 = 0

x2 = 0

x3 = (RT + r cos(φ′)) cos(θ′)− (RT + r)

x4 = (RT + r cos(φ′)) sin(θ′)

x5 = r sin(φ)

(4.6.4)

with RT > r and the parameters θ′ ∈ [0, 2π] and φ′ ∈ [0, 2π]. For all examples that follow, we

choose r = 0.8, RT = 1.6.

Now consider the particular candidate manifold ω(1.0) (i.e. RC = 1.0). By numerical com-

putation of integrals in (4.4.9) and (4.4.10), the value of φS(ω(1.0)) that we obtain for the above

example is −1. In order to interpret this result we first observe that ω(1.0) does not intersect S (i.e.

there is no common solution for (4.6.3) and (4.6.4) with RC = 1.0, r = 0.8, RT = 1.6). However on

S (Equations (4.6.4)), when x1 = x2 = x4 = x5 = 0, x3 can assume the values 0, −2r, −2RT and

−2(RT + r). Thus, if 2r > RC , S intersects Ω(RC) (the ball whose boundary is ω(RC)) only at one

point, i.e. the origin. A simple computation of the tangents revel that the intersection is transverse.

Since that is a single transverse intersection with Ω(RC), clearly the linking number between ω(RC)

and S (i.e. intersection number between Ω(RC) and S according to Definition 4.3.2) is ±1 for all

RC < 2r, just as indicated by the numerical analysis (i.e. the value of φS(ω(1.0))). The sign is not

of importance since that is determined by our choice of orienting the manifold during triangulation.

86

(a) Triangulation of the singularity manifold
projected on the space of x3, x4, x5.

(b) Triangulation of a candidate manifold pro-
jected on the space of x1, x2, x3.

Figure 4.9: A coarse triangulation using parameters θ′, φ′, θ and φ for creating a simplicial complex
for the example in Section 4.6.1.

In fact, with different values of RC , r and RT , as long as RT > r > RC
2 is satisfied, numerically

we obtain the same value of −1 for φS(ω(RC)). So do we obtain by perturbation of the pose and

deformation of the sphere or torus.

However with RC = 2.0 for the candidate manifold, and the singularity manifold remaining the

same (i.e. r = 0.8, RT = 1.6), the value of φS(ω(2.0)) we obtain numerically is 0. In this case, the

points at which S intersect Ω(2.0) are the origin and the point (x1 = x2 = x4 = x5 = 0, x3 = −0.8).

Of course, in the family of candidate manifolds ω(RC), RC ∈ [1.0, 2.0], we can easily observe that

ω(1.6) indeed intersects S, thus indicating ω(1.0) and ω(2.0) possibly of different homology classes.

Next, consider the following family of candidate manifolds,

ω′(TC) = {x | x2
1 + x2

2 + x2
3 = 2.0, x4 = 0, x5 = TC} (4.6.5)

And a corresponding Ω′(TC) such that ω′(TC) = ∂Ω′(TC)

Ω′(TC) = {x | x2
1 + x2

2 + x2
3 ≤ 2.0, x4 = 0, x5 = TC} (4.6.6)

With the same S as before, if TC > r, clearly there is no intersection between Ω′(TC) and S. Thus

it is not surprising that indeed by numerical computation, we found that φS(ω′(1.0)) = 0.

Now, since we computed φS(ω(2.0)) = 0 (although Ω(2.0) intersects S at 2 points) and

φS(ω′(1.0)) = 0 (and Ω′(1.0) does not intersect S), it suggests that ω(2.0) and ω′(1.0) are in

the same homology class. We will now actually try to verify that from the definition of homologous

cycles (see Definition 2.1.11). It is easy to verify that none from the family of candidate manifolds

ω′(TC), ∀TC ∈ [0.0, 1.0] intersect S, and each is a 2-sphere. Thus ω′ defines an embedding of S2× I
in R5−S such that ω′(0.0)t−ω′(1.0) is its boundary. Taking a simplicial covering of the manifolds

it follows that ω′(0.0) and ω′(1.0) are homologous. However, ω(2.0) = ω′(0.0). Thus it follows that

ω(2.0) and ω′(1.0) are homologous.

87

(a) t = 1s (b) t = 4s

(c) t = 7s (d) t = 10s

(e) t = 13s (f) t = 16s

Figure 4.10: Screenshots from exploration of 3 homotopy classes in a X−Y −Z−Time configuration
space. The loop-shaped obstacle is rotating about an axis. The blue axes are the X,Y and Z axes.
Their apparent rotation is due to movement of the camera for viewing from different angles.

88

4.6.2 Exploring Paths in Different Homotopy Classes in a 4-dimensional

Space

Just as we developed formulae for H-signature in the 2 and 3 dimensional cases in Chapter 3,

we can now extend the formula to trajectories in higher dimensional spaces using the formula in

Equation (4.4.9).

A natural extension of the example presented in Figure 3.17 would be to explore homotopy

classes of trajectories in a 3-dimensional space with moving obstacles. However that makes the

configuration space a 4-dimensional one consisting of the coordinates X, Y , Z and Time. Thus

we present a result in a X − Y − Z − Time configuration space where we find multiple shortest

paths in different homotopy classes in the 4-dimensional space. Figure 4.10 shows the exploration

of 3 homotopy classes in a 4-dimensional configuration space consisting of a dynamic obstacle in

3-dimensions. The loop-shaped obstacle is rotating about an axis. The blue axes are the X,Y

and Z axes. As we observe in the sequence, trajectories numbered 0 and 1 take off from the start

coordinate (green dot) and move towards the “center” of the loop. They wait there while 2 takes

a different homotopy class to reach the center later. From there 0 and 2 head together towards the

goal (red dot), while 1 wait to take a different trajectory to the goal. Thus the 3 trajectories are in

different homotopy classes.

4.7 From Homology to Homotopy

In this section we present an informal idea without much theoretical rigor. While homotopy is

significantly more difficult to deal with computationally, and it is difficult to find complete invariants

for homotopy, there have been several attempts in robotics literature to construct invariants for

homotopy classes of closed curves (representing trajectories) [37, 84]. We attempt to provide a

relatively strong theoretical justification and generalization for such constructions. A more rigorous

theoretical background is within the scope of future work.

In Proposition 4.4.1 and the following Equation (4.4.12), what we essentially had done by

taking the direct sum (or direct product of the groups) was to take the homology groups

HN−1(RD − Sk), k = 1, 2, · · · ,m, and use them as generators (or basis) to create a free abelian

group. However, we could have instead created a non-abelian group by taking the free product of

the groups HN−1(RD − Sk). Let us call that group ΠN−1 (which we will henceforth call ‘Semitopy

group’ for the given punctured Euclidean space). At the level of maps (i.e. the cycles), the group

operator is the simply the free product of the cycles. Clearly, an abelianization of ΠN−1 gives us

HN−1(RD − S̃).

From Hurewicz theorem [40] we know that an abelianization of π1(X) gives H1(X) for any space

X. Thus, inspired by this similarity, we will mostly be looking into the case when N = 2. While

the group Π1 need not necessarily be isomorphic to the fundamental group of (RD − S̃), one may

expect that it is somewhat ‘closer’ to it – abelianization of either gives us H1(RD − S̃).

General Construction: Let σn = 1 ∈ Hn(Sn), n > 0 be the generator of Hn(Sn). Now consider

a family of maps fj : S1 → (RD − S̃), j = 1, 2, · · · (image of each of which contain a base-point

x0 ∈ (RD − S̃)), and define corresponding n-cycles in (RD − S̃) as ωj := fj ◦ σn (see [61], Ch. 15

89

x0

S1 S3

S2

x0

S1 S3

S2

f f1

f2

f3

≈

x0

S1 S3

S2

-m1
m3

m3

≈ ≈

ψ
S1

ψ
S3

ψ
S2

ψ
S1

ψ
S3

ψ
S2

ψ
S1

ψ
S3

ψ
S2

Figure 4.11: An arbitrary map f : S1 → (RD−S̃) is homotopic to summation of maps, f1 +f2 +f3,
such that ĩk◦fj is non-trivial for exactly one k (= κj). For the f in the figure, κ1 = 1, κ2 = 3, κ3 = 2.
The vertical light-gray arrows show the supports of bump 1-forms in (RD − Sk) – they constitute
non-intersecting support forms.

for a similar construction).

The maps, fj , are such that [̃ik ◦ωj] =

{
0 ∈ Hn(RD − Sk), if k 6= κj

1 ∈ Hn(RD − Sk), if k = κj
, where κj , j = 1, 2, · · · ,

are fixed integers between 1 and m. That means ωj is a trivial cycle (after applying the appropriate

inclusion map) in every (RD−Sk) for all k, except for k = κj (see Figure 4.11). Also, by construction,

the image of every ωj contains a base-point x0 ∈ (RD − S̃).

Then we define the class (in ΠN−1) of any map homotopic to f1 + f2 + · · · (where the ‘+’ is the

addition of maps borrowed from homotopy: w + g = (w ∨ g) ◦ c, in notations of [40], Sec. 4.1) as

the free product

[̃iκ1 ◦ ω1] ∗ [̃iκ2 ◦ ω2] ∗ [̃iκ3 ◦ ω3] ∗ · · · ∈ ∗mk=1Hn(RD − Sk) u ΠN−1

Henceforth, we will call this the semitopy class of f (' f1 + f2 + · · ·).

Definition 4.7.1 (Semitopic Decomposition, Fig.4.11). Given an arbitrary map, f : Sn → (RD−S̃),

the map is homotopic to a composition of the form f1 + f2 + · · · , with fj satisfying the condition

mentioned above for some {κ1, κ2, · · · }. This we call the semitopic decomposition of f .

90

We conjecture the existence of semitopic decomposition for an arbitrary f , and the uniqueness of

the homotopy class of the elements in this decomposition for a particular f . That is, if f ' f1 +f2 +

· · · ' f ′1+f ′2+· · · are two semitopic decompositions, then fj ' f ′j . If this holds, the uniqueness of the

semitopy class of a semitopic decompositio is not difficult to see: If hk : πn(RD−Sk)→ Hn(RD−Sk)

are the Hurewicz homomorphisms [61], then, hκj ([̃iκj ◦fj]) = [̃iκj ◦ωj]. It is thus not difficult to see

that if fj are homotopic to maps f ′j , then f1 + f2 + · · · and f ′1 + f ′2 + · · · belong to the same class

in ΠN−1. That is, ∗j [̃iκj ◦ fj ◦ σn] = ∗j [̃iκj ◦ f ′j ◦ σn] (where by ∗j qj we mean the free product

q1 ∗ q2 ∗ · · ·).
Thus by definition, if f ' f ′, they are in the same semitopy class. However, the converse

need not necessarily be true: Two maps f and f ′ may be in the same semitopy class, but in

different homotopy classes. Also, it is not difficult to see that the semitopy group, ΠN−1, is indeed

a group: If f ' f1 + f2 + · · · and g ' g1 + g2 + · · · are semitopic decompositions of f and g, then

f + g ' f1 + f2 + · · ·+ g1 + g2 + · · · is a semitopic decomposition of f + g.

Specialization for n = 1: We now specialize the above construction for n = 1 (in terms of

our previous notations, that is N = 2). In this case any arbitrary closed curve is of the form

f : S1 → (RD − S̃). Moreover, the generators of H1(RD − S̃), under the inclusion maps ĩk∗, are

the generators of H1(RD − Sk) due to Proposition 4.4.1, and the image of each of these generating

cycles are homeomorphic to S1.

It is, in general, difficult to explicitly construct a semitopic decomposition of an arbitrary f .

However, one can indirectly compute the homology class of each element of the decomposition,

ωj := fj ◦ σ1 ∈ Z1(RD − Sκj), without explicitly constructing the fj ’s. The following discussion

chalks out the basic concepts behind how this can be achieved.

In Equations (4.4.3) and (4.4.4) we had chosen a specific nontrivial element η0 ∈ ZD−1
dR (RD−{0}).

This was a form that was symmetric about the origin. However, one can choose a different non-

trivial element, even an unique one for computation of each φSk in Equation (4.4.12) (say η0,k),

as long as [η0,k] 6= 0 ∈ H(D−1)
dR (RD − {0}) u R. The type of η0,k that is of interest in the present

context is as follows:

Definition 4.7.2 (Non-intersecting Support Forms with Path-connected Complement in

(RD−Sk), k = 1, 2, · · · ,m). Consider the maps pk : (RD−Sk)×Sk → (RD−{0}), k = 1, 2, · · · ,m,

described by pk(x, y) = x − y as previously described in Definition 4.3.1 or Section 4.4 (here we

simply make the map specific for Sk instead of a general S). Let η0,k ∈ Z(D−1)
dR (RD−{0}) be closed

but non-exact differential (D−1)-forms in (RD−{0}). We represent by Λk ∈ (RD−Sk), the support

of the 1-form, ψSk =
∫
Sk
p∗k(η0,k) (i.e. the points in (RD − Sk) where the pullback of η0,k followed

by integral over a top-dimensional cycle on Sk does not vanish – see Equations (4.4.11) and (4.4.2)).

If Λk ∩ Λl = ∅, ∀k 6= l, we call ψSk , k = 1, 2, · · · ,m, non-intersecting support forms in (RD − Sk)

(i.e. forms, whose supports do not intersect). In addition, we require that (RD − ∪mk=1Λk) is path

connected. We thus call ψSk non-intersecting support forms with path-connected complement.

The intuition behind the above definition is that if we integrate the ψSk ’s along a 1-cycle,

ω ∈ Zn(RD − S̃), then at any point during the integration only one of the ψSk ’s (for a particular

value of k) will be non-zero. The last condition of (RD − ∪mk=1Λk) being path connected implies

that if the base point, x0, is in (RD −∪mk=1Λk), then any point in the space of zero support can be

91

connected by a path to x0 such that the path does not intersect any Λk.

An example of such a form can be obtained by choosing the η0,k’s as the bump (D − 1)-

form [8]. It is, in particular, easy to visualize the form for D = 2. In Figure 4.11 the

forms are represented by the light gray arrows heading upwards. In particular, if (xk, yk) rep-

resent the coordinates of the points Sk in the figure, the explicit formula for the forms are

ψSk(x, y) = δ(x− x′)u(y − y′) dx |
(x′,y′)=(xk,yk)

= δ(x − xk)u(y − yk) dx, where δ is the Dirac

delta function, and u is the unit step function (note that when Sk is a point, the integration

over η0,k becomes a simple evaluation at the point). Clearly, the support of the form is the set

y > yk, x = xk. Thus, as long as xk 6= xl, ∀k 6= l, the supports of these forms do not intersect.

Also, it is easy to verify, by computing the integral of this ψSk over any 1-cycle, that this form is

closed but non-exact in (RD − Sk). Moreover, the path-connected condition, at least for D = 2,

is guaranteed by observing that the supports form parallel rays emanating from distinct points. A

more general scenario for D = 2 is illustrated in Figure 4.12.

Algorithm for computing ‘semitopy class’: Once we are given a set of non-intersecting support

forms with path-connected complement, and we are given a curve f , represented by the 1-cycle,

f ◦ σ1 =: ω ∈ Zn(RD − S̃), we can propose the following algorithm for computing the class of f in

Π1: Starting from the base-point x0 (which we assume to lie on the image of ω), we move along the

curve in a chosen direction. Due to the way we have constructed the differential forms, ψSk , the

curve will end up entering their support regions, Λk, and exit them in some particular sequence,

one at a time. Every time it does so (say it is doing so for the jth time, when it is entering and

exiting Λκj , and let λj be the part of ω that is lying inside Λκj this time – see Figure 4.12), we

compute the integral vj =
∫
λj
ψSκj . Then the semitopy class of f is

[qκ1]v1 ∗ [qκ2
]v2 ∗ [qκ3

]v3 ∗ · · · ∈ ∗mk=1Hn(RD − Sk)

where, qk is a fixed non-trivial element (we can choose a generator) of H1(RD − Sk). Note that

[qk]vj ∗ [qk]vl = [qk]vj+vl .

The reason that this algorithm gives the semitopy class of f is illustrated in Figure 4.12. The

point on the curve just before it enters a Λk, and the point on the curve just after it exists Λk can

be joined to x0 using the dotted curves that do not enter any Λl. This is possible due to the path

connectivity assumption of (RD−∪mk=1Λk). This gives a semitopic decomposition of f ' f1+f2+· · · .
Since the places where f differs from this semitopic decomposition f1 + f2 + · · · lie in regions where

every ψSk is zero, the computation using the proposed algorithm will give us the same element of

∗mk=1Hn(RD − Sk) using either f or f1 + f2 + · · · . However, by definition, the later value is the

semitopy class of f . Thus we have proved that the algorithm indeed computed the semitopy class

of f .

Relation to Homotopy: The condition that the semitopy group, Π1, will be isomorphic to the

fundamental group of the punctured space, π1(RD − S̃), relies largely on the fact whether or not

the Hurewicz homomorphisms, hk : π1(RD−Sk)→ H1(RD−Sk), are also isomorphisms for every k

(which, in general, is not true). In addition, one needs to be able to make assertion on the existence

of the non-intersecting support forms with path-connected complement, ψSk . While for D = 2 it is

92

x0

S1
S3

S2

f2

f3

Λ1

f

f1

Λ3 Λ2

λ1

λ2

λ3

Figure 4.12: Graphical proof for the fact that the proposed algorithm computes the semitopy class
of f .

definitely easy to construct the later as described, for D ≥ 3 this definitely becomes non-trivial.

For example, in R3 one can have two (D − N) = 1-dimensional manifolds, Sk and Sl, forming a

link. In that case it is impossible to find the differential 1-forms that are non-intersecting support

forms with path-connected complement. Thus, the computation prescribed in this section becomes

infeasible. However, for D = 2, N = 2, we can observe that the semitopy group is isomorphic to

the fundamental group (for which we do not provide a rigorous proof).

4.7.1 Results

Following the constructions described above, by choosing the bump 1-form in R2, we can implement

a robot path planning problem, similar to what we did in Chapter 3. With the choice of the bump

form, vj = ±1 depending on from which direction the trajectory crosses the support ray of ψSκj .

Instead of keeping track of the H-signature as we did in the augmented graph construction in

Section 3.5, we keep track of the free product [qκ1]v1 ∗ [qκ2]v2 ∗ [qκ3]v3 ∗ · · · – whenever an edge of

the graph crosses the support of a ψSk , we append the corresponding element, [qk]±1, to the free

product of the parent vertex and assign it to the child vertex, followed by a possible reduction. This

is, in essence, very similar to the ‘word ’ representation of homotopy classes of trajectories described

in [37, 84].

In Figure 4.13 we explore 10 different homology classes of trajectories connecting a fixed pair

of points (Definition 3.2.2) in a way that is very similar to the previous discussions in Chapter 3

(except that we used the bump 1-form for η0). However, in Figure 4.14 we explore 10 different

homotopy classes using the method described. Notice how they are the same until the 8th class.

The Class 9 in Figure 4.14(i) shows a trajectory that is in the same homology class as that of the

Class 8, however it is in a different homotopy class. That is why it does not appear in Figure 4.13.

93

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e) Class 5

(f) Class 6 (g) Class 7 (h) Class 8 (i) Class 9 (j) Class 10

Figure 4.13: The first 10 homology classes (Definition 3.2.2) of trajectories. They are in different
homotopy classes as well.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e) Class 5

(f) Class 6 (g) Class 7 (h) Class 8 (i) Class 9 (j) Class 10

Figure 4.14: The first 10 homotopy classes of trajectories. The trajectory in the 9th homotopy class
was missing from Figure 4.13.

Once again, we emphasize the fact that this method works reliably for exploring homotopy

classes only in D = 2-dimensional punctured Euclidean space, since in this dimension the semitopy

groups are isomorphic to the homotopy groups, and we can reliably construct the required non-

intersecting support forms with path-connected complement. For higher values of D, none of these

can be guaranteed.

94

Chapter 5

Coverage and Exploration Using

Search-based Methods

5.1 Introduction

Metric in a robot configuration space can be induced by many different problem criteria. In Chap-

ter 3 although metric was of less concern to us, by the virtue of using an optimal search algorithm

(A* algorithm), we did make use of a metric in the configuration space. Most of the times we used

the Euclidean flat metric restricted to the graph to determine length of a path. However, the notion

of a metric is also fundamental to much of coverage [58, 18, 17, 12] and exploration [83, 80, 79] prob-

lems in robotics. An approach towards solving coverage problems with n robots involve partitioning

the configuration space into n tessellations (a simply connected partition). In particular, it requires

a Voronoi tessellation – a metric-based tessellation. While such a tessellation is easy to achieve

in a convex environment with Euclidean metric, it becomes increasingly difficult in environments

with obstacles and non-Euclidean metric. But most configuration in robotics are non-convex due to

presence of obstacles, and en exploration problems, as we will discuss later, non-Euclidean metric

is central. In this chapter we try to develop certain tools to address those issues.

The problem of attaining good coverage of an environment is fundamental to many practical

multi-robot problems. A common coverage control approach, that is efficient and can be imple-

mented in a distributed fashion, is through the definition of feedback control laws defined with

respect to the centroids of Voronoi cells resulting from the Voronoi tessellation of an environment.

In [16], the authors propose gradient descent-based individual robot control laws that guarantee

optimal coverage of a convex environment given a density function which represents the desired

coverage distribution. The authors of [76] build upon this idea and develop decentralized control

laws that position a mobile sensor network optimally with respect to a known probability distri-

bution. In [77], this approach is extended to consider near-optimal controllers that do not require

prior knowledge of a desired coverage distribution. To address the limitation of requiring a convex

environment, the authors of [67] propose the use of geodesic Voronoi tessellations determined by the

geodesic distance rather than the Euclidean distance. However such a method involves significant

95

amount of geometric computations and work only for environments with polygonal obstacle. Be-

sides, we would also like to be able to solve the coverage problem for non-Euclidean metric intrinsic

to the configuration space. We will use a graph search based approach to develop tools for solving

the coverage problem in non-Convex environments with non-Euclidean metric.

Equipped with that, by the end of this chapter we will be considering the following scenario: A

team of robots enter an unknown and non-convex environment. The robots must control to explore

the environment for map construction and converge to a formation in the map that disperses the

robots to locations that permit them to continue to engage in activities such as persistent surveil-

lance. This description lends itself to a broad class of robotics applications. We will hence focus

on an essential component toward this scenario: The development of decentralized individual robot

control laws based on uncertain estimates of the environment that drive the team of robots to

explore and cover the environment. We will use a distributed implementation of the algorithm for

computing generalized Voronoi tessellation of non-convex environments (using a discrete represen-

tation) in real-time for use in feedback control laws. Hence we will use an entropy-based metrics

that allow for cooperative coverage control in unknown non-convex environments and at the same

time achieve exploration through information gain.

5.2 Background: Coverage Functional, Voronoi Tessellation

and Continuous-time Lloyd’s Algorithm

In this section we discuss the basic concepts for deriving the continuous-time Lloyd’s algorithm.

Let Ω ⊂ RD be a path connected sub-manifold (with boundaries, and in general non-convex) of

RD that represents the environment. We assume that Int(Ω) is equipped with a metric (tensor)

η which induces a distance function d in the space. Typically we will use the standard Euclidean

coordinate chart inherited by Ω from RD due to its embedding.

There are n mobile robots in the environment, and in particular the position of the ith robot is

represented by pi ∈ Ω and the tessellation associated with it by Wi, ∀i = 1, 2, . . . , n. By definition,

the tessellations are such that Int(Wi) ∩ Int(Wj) = ∅,∀i 6= j, and ∪ni=1Wi = Ω. For a given

set of robot positions P = {p1, p2, . . . , pn} and tessellations W = {W1, W2, . . . , Wn} such that

pi ∈Wi,∀i = 1, 2, . . . , n, the coverage functional is defined as:

H(P,W) =

n∑
i=1

H(pi,Wi) =

n∑
i=1

∫
Wi

fi(d(q,pi))φ(q) dq (5.2.1)

where fi : R → R are smooth and strictly increasing functions, φ : Ω → R is a weight or density

function, and dq represents an infinitesimal area or volume element.

The name “coverage functional” is indicative of the fact that H measures how bad the coverage

is. In fact, for a given set of initial robot positions, P , the eventual aim of the algorithm is to devise

a control law that minimizes the function H̃(P) := min
W
H(P,W) (i.e. the best value of H(P,W)

for a given P). It is easy to show [58, 67] that H̃(P) = H(P, V), where V = {V1, V2, · · · , Vn} is the

96

-2

-1

0

1

2

3

-2 -1 0 1 2 3

Figure 5.1: Voronoi tessellation of a convex Ω (rectangular region) with n = 10 robots (blue circles).
The red line segments show the boundary of the tessellations. Note how a boundary segment is the
perpendicular bisector of the cyan line joining the robots sharing the boundary segment.

Voronoi tessellation given by

Vi = {q ∈ Ω | fi(d(q,pi)) ≤ fj(d(q,pj)),∀j 6= i} (5.2.2)

Whenever pi ∈ Int(Ω), the control law for minimizing H̃(P) =
∑n
i=1

∫
Vi
fi(d(q,pi))φ(q) dq can

be reduced into the problem of following its gradient. Although Vi are functions of P , it can be

shown using methods of differentiation under integration [67] that

∂H̃(P)

∂pi
=

∫
Vi

∂

∂pi
fi(d(q,pi)) φ(q) dq (5.2.3)

Typically one chooses fi(x) = x2 for most practical implementations. However, a variation of the

problem for taking into account finite sensor footprint of the robots, constructs a power Voronoi

tessellation [67], in which one chooses fi(x) = x2−R2
i , where Ri is the radius of the sensor footprint

of the ith robot.

Until now we haven’t made any major assumption on the distance function d. However, if

the space Ω is convex, and metric η is flat (Euclidean), then d is the Euclidean distance given by

d(x,y) = ‖x − y‖2. Under this assumption, and using the form of fi we discussed, the formula of

(5.2.3) can be simplified to obtain

∂H̃(P)

∂pi
= 2(pi − p∗i) (5.2.4)

where, p∗i =

∫
Vi

qφ(q)dq∫
Vi
φ(q)dq

, the weighted centroid of Vi. Moreover, the Euclidean distance function

makes computation of the Voronoi tessellation very easy – V , due to Equation (5.2.2), can be

constructed from the perpendicular bisectors of the line segments pipj , ∀i 6= j, thus making each

Vi a convex polygon (Figure 5.1). This also enable closed-form computation of the centroid, p∗i
when the weight function φ is uniform.

97

x

y

O

Figure 5.2: Presence of holes/punctures (due to obstacles) in the Euclidean space changes the
distance function in the punctured space. For example, in this figure, d(x,y) is the length (induced
by the Euclidean metric) of the thicker curve that is the shortest connecting x and y and lying
entirely in (R2 −O).

Equation (5.2.4) yields the simple control law in continuous-time Lloyd’s algorithm: ui =

−k(pi − p∗i). Lloyd’s algorithm [58] and its continuous-time asynchronous implementations [16]

are distributed algorithms for minimizing H(P,W) with guarantees on completeness and asymp-

totic convergence to a local optimum, when Ω is convex and in an Euclidean distance setting.

5.3 Generalization to non-Euclidean Distance Function

In robot configuration spaces that are topologically Euclidean punctured by obstacles, non-

Euclidean distance functions may arise in two primary ways: i. Due to the presence of

holes/obstacles (Figure 5.2), and ii. A non-Euclidean metric intrinsic to the obstacle-free regions.

This makes the computation of the Voronoi tessellation in Equation (5.2.2) significantly difficult,

as well as we lose the simple formula for the gradient of H̃ as in Equation (5.2.4).

In Equation (5.2.3), with fi(x) = x2 + c, we observe that

∂

∂pi
fi(d(q,pi)) = 2 d(q,pi)

∂

∂pi
d(q,pi)

For computing ∂
∂pi

d(q,pi) we have the following proposition and corollary, which is a generalization

of Proposition 4 of [67].

In the discussions that follow, we will assume summation over repeated indices, i and j, following

Einstein summation convention.

Proposition 5.3.1. Let C = (U, φ) be a coordinate chart on a open subset U of a D-dimensional

manifold, Ω. Suppose U is Riemannian everywhere, equipped with a metric g. Let d : RD×RD → R
be the distance function in U in terms of the coordinate chart C, induced by the metric (i.e.

d(q,w), for q,w ∈ Img(φ) ⊆ RD, is the length of the shortest path connecting φ−1(q) and φ−1(w)

in U ⊆ Ω.). Suppose d is smooth everywhere inside Img(φ), and that there exists an unique geodesic

98

q

w
zqw

{ u | g(u) = g(w) }

?

γ*qw

φ(U)

(a) Illustration for Proposition 5.3.1. The tan-
gent to the geodesic γ∗qw at w is parallel to the
normal to the surface {u|g(u) = g(w)} at w.

q0

q1

w0
ψ(V)

Bw0

(b) Illustration for Corollary 5.3.2. Much
of the pathologies outside Bw0 do not effect
the result of Proposition 5.3.1 holding for q0

and w0.

Figure 5.3: Relationship between tangent to a geodesic and the derivative of the distance function.

of length d(q,w) connecting any two points q,w ∈ Img(φ).

Then the following is true for every q,w ∈ Img(φ) ⊆ RD (Figure 5.3(a))

∂

∂u
d(q,u)

∣∣∣∣
u=w

=
√
gij(w) ziqwz

j
qw zqw

Where,

i. ∂
∂uf =

[
∂f
∂u1

, ∂f∂u2
, · · · , ∂f

∂uD

]
, is the vector of derivatives of a function, f : RD → R, with

respect to the coordinate variables of the given chart, C (note that this derivative depends on

the coordinate chart and is different from the gradient operator ‘∇’ on the metric space [47]),

ii. zqw is a normalized (unit) vector of coefficients (in the coordinate chart C) of the tangent

at w to the shortest geodesic connecting q to w (i.e., if the unit tangent to the geodesic is

ziqw

∂
∂ui , the coefficient vector is simply zqw =

[
z1
qw, z

2
qw, · · · , zDqw

]
. The normalization condi-

tion requires ‖zqw‖2 = 1.).

Sketch of Proof. For notational convenience, let us define g(u) := d(q,u), ∀u ∈ Img(φ) (Thus,

g(w) is the length of the shortest geodesic connecting q to w). Note that the notation is different

from the metric g.

We start by making a graphical interpretation of the statement of the proposition. The statement

of the proposition implies that the normals to the constant g surfaces in RD are parallel to the

tangents to the geodesics (rather the image of the geodesics in U under the action of φ) connecting

q and the point at which we take the normal. This is illustrated in Figure 5.3(a).

Now consider g as a function from RD to R+ with an unique minima at q. Let γqw represents

any arbitrary curve in Img(φ) ⊆ RD connecting q to w. By the fundamental theorem of calculus

and using the fact that g(q) = 0, we have,

I(γqw) := g(w) =

∫
γqw

∂

∂u
g(u) · du (5.3.1)

99

where, du is the coefficient vector (in chart C) of an infinitesimal element along the tangent to

the curve. (Effectively, we have simply used the Euclidean metric on RD to write the expression

relating gradient of an arbitrary function g : RD → R to its line integral).

Now, the length of the curve γqw is given by

L(γqw) :=

∫
γqw

√
gij(u) dui duj (5.3.2)

By definition, the value of L(γqw) is minimum when γqw is the shortest geodesic (which is unique by

hypothesis – call it γ∗qw) connecting q and w, and the minimum value is clearly g(w) (by definition

of g). Thus,

L(γqw) ≥ I(γqw) [= g(w), a const. independent of γqw] ,

equality holds when γqw = γ∗qw
(5.3.3)

Now, consider a family of infinitesimal elements of RD represented by the coefficient vector

du = [du1, du2, · · · , duD] located at an arbitrary point u ∈ Img(φ) such that u + du lies inside

Img(φ). From the triangle inequality of d (since it is induced by a Riemannian metric) we have,

d(q,u + du) ≤ d(q,u) + d(u,u + du)

=⇒ d(q,u + du)− d(q,u) ≤ d(u,u + du)

=⇒ ∂

∂u
g(u)

∣∣∣∣
u

· du ≤
√

gij(u) dui duj

(5.3.4)

One can re-write the above inequality as

∂

∂u
g(u)

∣∣∣∣
u

· d̂u ≤
√
gij(u) d̂u

i
d̂u

j
(5.3.5)

where, d̂u is the unit vector along du.

Equality of the triangle inequality of course holds when u lies on the geodesic connecting q and

u + du. Again, due to the property of inner product, the maximum value of ∂
∂ug(u)· d̂u would

occur when ∂
∂ug(u) parallel to d̂u. Thus, equality in (5.3.4) holds when ∂

∂ug(u) is parallel to d̂u

Consider the case when equality holds. We let ∂
∂ug(u) = k(u) d̂u. Thus, the equality condition

of (5.3.5) gives k(u) =

√
gij(u) d̂u

i
d̂u

j
. Thus, the condition for equality is

∂

∂u
g(u) =

√
gij(u) d̂u

i
d̂u

j
d̂u (5.3.6)

Now consider a curve γ′qw (connecting q and w) such that at every point u on it, the tangent is

parallel to ∂
∂ug(u). The aforesaid maximum condition thus holds true at every point on this curve,

100

and hence at every point on it

∂

∂u
g(u)· du =

√
gij(u) dui duj (5.3.7)

where du are of course infinitesimal elements at u on γ′qw along the tangent to the curve at that

point. Integrating (5.3.7) along γ′qw,

I(γ′qw) = L(γ′qw) (5.3.8)

However, due to (5.3.3), this equality holds only when the curve is γ∗qw, and then its value is g(w).

By the assumption of uniqueness of shortest geodesic, γ′qw should thus be the shortest geodesic.

Thus, we have proved that the curve connecting q to w for which the tangent at every point u

on it is parallel to ∂
∂ug(u), is in fact the geodesic connecting q to w. Moreover we have also shown

that when that happens, the equality of (5.3.5) or (5.3.5) holds, which in turn gives the condition

of 5.3.6. Thus, by changing notations and specializing for u = w, we obtain the required result.

Corollary 5.3.2. Let C = (V, ψ) be a coordinate chart on a open subset V of a D-dimensional

manifold, Ω. Let d : RD × RD → R be the distance function on V in terms of the coordinate chart

C (i.e. d(q,w), for q,w ∈ Img(ψ) ⊆ RD, is the distance between ψ−1(q) and ψ−1(w) in V ⊆ Ω).

We are given q0,w0 ∈ Img(ψ) ⊆ RD. Suppose there exists a open neighborhood Bw0
⊆ RD of

w0 (Figure 5.3(b)) such that,

a. g(·) := d(q0, ·) is smooth everywhere in Bw0
,

b. The distance function restricted to Bw0 × Bw0 is induced by a Riemannian metric, such that

for any two u,v ∈ Bw0 , there is an unique shortest geodesic γuv of length d(u,v).

c. A shortest path (of length d(q0,w0)) is defined between q0 and w0, such that the part of the

shortest path connecting q0 and w0 that lies inside Bw0 is unique,

Then the following holds,

∂

∂u
d(q0,u)

∣∣∣∣
u=w0

=
√
gij(w0) ziq0w0

zjq0w0
zq0w0

Note that the derivative ∂
∂ud(q0,u)

∣∣
u=w0

is defined due to assumption ‘a.’, and the tangent zq0w0

exists due to assumptions ‘b.’ and ‘c.’.

Proof. We first start by noting that the statement of this Corollary is a significant generalization

of Proposition 5.3.1. We only make assumption of a Riemannian metric in the neighborhood of w0

(Figure 5.3(b)). This will enable us to use the result for Riemannian manifolds with boundaries

(e.g. locally Riemannian with holes/punctures/obstacles – the kind of spaces we are most interested

in), as well as opens up possibilities for more general metric spaces that may not be Riemannian

outside Bw0
(e.g. Manhattan metric in ‖u‖1 ≤ 1, Riemannian metric elsewhere).

101

Consider a shortest path γ∗q0w0
connecting q0 and w0. Let q1(6= w0) be a point on this path

(between q0 and w0) that lies inside Bw0
(which we can always find since Bw0

is open).

From the very definition of shortest path we have γ∗q0w0
= γ∗q0q1

∪ γ∗q1w0
, for some shortest

path, γ∗q0q1
, connecting q0 and q1, and the shortest geodesic, γ∗q1w0

, connecting q1 and w0 (which

is unique by assumption ‘b.’). Thus it follows that,

zq0w0 = zq1w0 (5.3.9)

Again, by triangle inequality, for any u ∈ Bw0

d(q0,u) ≤ d(q0,q1) + d(q1,u)

⇒ g(u) ≤ h(u) (5.3.10)

where h(u) := d(q0,q1) + d(q1,u) and g(u) := d(q0,u).

However, equality does hold when q0, q1 and u lie on the same shortest path. This, in particular,

is true when u = w0 (due to our choice of q1). Now, by our assumptions, both g and h are smooth

at w0 (assumptions ‘a.’ and ‘b.’ respectively). Thus we have g(u) ≤ h(u), and at u = w0 they

satisfy equality and are smooth. This implies the derivatives of the functions at w0 should be same,

∂

∂u
g(u)

∣∣∣∣
u=w0

=
∂

∂u
h(u)

∣∣∣∣
u=w0

⇒ ∂

∂u
d(q0,u)

∣∣∣∣
u=w0

=
∂

∂u
d(q1,u)

∣∣∣∣
u=w0

(5.3.11)

Now, Bw0
satisfies the conditions for U in Proposition 5.3.1, and q1 and w0 are points inside it.

Thus by Proposition 5.3.1,

∂

∂u
d(q1,u)

∣∣∣∣
u=w0

=
√
gij(w0) ziq1w0

zjq1w0
zq1w0 (5.3.12)

Substituting from (5.3.9) and (5.3.11) into (5.3.12) we obtain the proposed result.

Notes:

1. We note that when the metric is locally Euclidean in the given chart (i.e. gij = δij everywhere

as was the case in [67]), the result of Corollary 5.3.2 simply reduces to

∂

∂u
d(q0,u)

∣∣∣∣
u=w0

= zq0w0

2. If the metric is locally isotropic in the given chart (i.e. if the matrix representation of the

metric is a multiple of the identity matrix at every point), and can be written as gij(q) =

102

ζ(q)δij for some ζ : RD → R, then the result of Corollary 5.3.2 reduces to

∂

∂u
d(q0,u)

∣∣∣∣
u=w0

= ζ(w0) zq0w0

3. We are mostly interested in manifolds with boundaries that are locally Riemannian (e.g. man-

ifold with obstacles as in Figure 5.2). For such manifolds, the condition ‘b.’ of Corollary 5.3.2

holds for every w0 in the interior of the manifold, and the conditions ‘a.’ and ‘c.’ hold for

almost all w0 except for possibly a set of measure zero (a claim through observation, for which

we do not provide any proof in this thesis).

Corollary 5.3.2, along with the assumption that fi(x) is of the form x2 +c, enables us to re-write

Equation (5.2.3) as follows

∂H̃(P)

∂pi
= 2

∫
Vi

d(q,pi)
√
gij(pi) ziq,piz

j
q,pi

zq,pi φ(q) dq (5.3.13)

With the assumption of isotropy of the metric in the given chart, this further reduces to

∂H̃(P)

∂pi
= 2 ζ(pi)

∫
Vi

d(q,pi) zq,pi φ(q) dq (5.3.14)

This, as we will see later, gives a computable formula for the gradient of H̃ when d is a general

distance function. And once we have the gradient of H̃, the control law for minimizing H̃ would

simply be for each robot to move in a direction opposite to the gradient

ui = −k∂H̃(P)

∂pi
(5.3.15)

This give a generalized Lloyd’s algorithm with guarantee of asymptotic stability (as easily seen by

considering H̃ a Liapunov function candidate). In the final converged solution, each robot will be

at the generalized centroid of their respective Voronoi tessellation (since that’s when the gradient

of H̃ vanishes).

Typically, since we will be computing the control commands in a discrete setup, we are mostly

interested in the direction of ui rather than its magnitude. Moreover, the metric in the given chart

will be isotropic in most practical robot planning problems. Thus we clump the leading term 2 ζ(pi)

of (5.3.14) inside k to obtain the following control law

ui = −k
∫
Vi

d(q,pi) zq,pi φ(q) dq (5.3.16)

5.4 Graph-search Based Lloyd’s Algorithm

In order to develop a version of the Lloyd’s algorithm for a general distance function, we first need

to be able to compute the general Voronoi tessellation of Equation (5.2.2) for arbitrary distance

function, d. We adopt a discrete graph-search based approach for achieving that. We consider a

103

(a) 3 robots in a simple environ-
ment (200× 200 discretized).

(b) 5 robots in an office environ-
ment (170× 200 discretized).

Figure 5.4: The ‘geodesic Voronoi tessellation’ of non-convex workspaces created using Algo-
rithm 5.4.1 on a uniformly discretized 8-connected graph. The robot locations are marked by
enlarged magenta pixels. We used a metric that is locally Euclidean. However due to non-convexity
the distance function is not Euclidean.

uniform square tiling of Ω and creating a graph G out of it (See Section 2.3). The costs/weights of

the edges of the graph are the metric lengths of the edges due to their embedding in Ω. It is to be

noted that in doing so we end up restricting the metric of the original space to the discrete graph.

5.4.1 Graph-search Based Voronoi Tessellation

The key idea is to make a basic modification to the Dijkstra’s algorithm (Algorithm 2.3.1). For

creating Voronoi tessellations we initiate the open set with multiple start nodes from which we

start propagation of the wavefronts. Thus the wavefronts emanate from multiple sources. The

places where the wavefronts collide will hence represent the boundaries of the Voronoi tessellations.

In addition, we can conveniently alter the distance function, the level-set of which represents the

boundaries of the Voronoi tesellation. This enables us to even create geodesic power Voronoi tessel-

lation. Algorithm 5.4.1 outlines the procedure. Figure 5.5 illustrates the progress of the algorithm.

More examples of tessellations created using the algorithm are illustrated in Figure 5.4.

104

(a) iter = 100. The
agent locations are
visible.

(b) iter = 10100. (c) iter = 25100. (d) iter = 30100. (e) iter = 37300.

Figure 5.5: Illustration of progress of the Basic Tessellation algorithm in a environment with an
L-shaped obstacle. The filled area indicates the set of expanded vertices (complement of Q). The
boundaries of the tessellations are visible in blue. The graph is constructed by 200 × 200 uniform
square discretization of the environment.

Algorithm 5.4.1

τ = Basic Tessellation (G, {pi}, {Ri})
Inputs: a. Graph G

b. Agent locations pi ∈ V(G), i = 1, 2, · · · , N
c. Agent weight/radius Ri ∈ R+, i = 1, 2, · · · , N

Outputs: a. Tessellation map τ : V(G)→ {1, 2, · · · , N}
1 Initiate g: Set g(v) :=∞, for all v ∈ V(G) // Shortest distances
2 Initiate ρ: Set ρ(v) :=∞, ∀v ∈ V(G) // Power distances: f(g(v))
3 Initiate τ : Set τ(v) := −1, ∀v ∈ V(G) // Tessellation
4 for each ({i ∈ {1, 2, · · · , N}})
5 Set g(pi) = 0
6 Set ρ(pi) = −R2

i

7 Set τ(pi) = i
9 Set Q := V(G) // Set of un-expanded nodes

10 while (Q 6= ∅)
11 q := argminq′∈Q ρ(q′) // Maintained by a heap data-structure.
12 if (g(q) ==∞)
13 break
14 Set Q = Q− q // Remove q from Q
15 Set j := τ(q)
16 for each ({w ∈ NG(q)}) // For each neighbor of q
17 Set g′ := g(q) + CG([q, w])
18 Set ρ′ := PowerDist(g′, Rj)
19 if (ρ′ < ρ(w))
20 Set g(w) = g′

21 Set ρ(w) = ρ′

22 Set τ(w) = j
23 return τ

where, PowerDist(x, r) = x2 − r2

The procedure returns the map τ , that gives for each vertex in the graph, the index of the

tessellation it belongs to. Note that g(q) now contains the geodesic distances (up to approximation

due to restriction to the graph) of q from the location of that robot whose tessellation contains q.

105

5.4.2 Algorithm for Tessellation and Control Computation

In order to compute the control command for the robots (i.e. the action of the robot in the next

time step), we use the formula in Equation (5.3.16). In a general metric setup, the vector zq,pi

is the unit vector along the tangent at pi to the geodesic joining q to pi. In a discretized setup,

the unit vectors zq,pi is approximated as the unit vectors along edges of the form [p′i, pi] for some

p′i ∈ NG(pi) such that the shortest path in the graph connecting pi and q passes through p′i. For

a given q, we know that τ(q) is the index of the robot whose tessellation it belongs to, and can

compute the shortest path in the graph joining the nodes pτ(q) and q. The neighbor of pτ(q) through

which the shortest path passes is the desired p′τ(q), and it is maintained in the variable η(q) in an

efficient way as described in Algorithm 5.4.2. We can also compute the integration of (5.3.16) on

106

the fly as we compute the tessellations.

Algorithm 5.4.2

{τ, {p′i}} = Tessellation and Control Computation (G, {pi}, {Ri}, φ)
Inputs: a. Graph G

b. Agent locations pi ∈ V(G), i = 1, 2, · · · , N
c. Agent weight Ri ∈ R+, i = 1, 2, · · · , N
d. Discretized weight/density function φ : V(G)→ R

Outputs: a. The tessellation map τ : V(G)→ {1, 2, · · · , N}
b. The next position of each robot, p′i ∈ NG(pi), i = 1, 2, · · · , N

1 Initiate g: Set g(v) :=∞, for all v ∈ V(G) // Shortest distances
2 Initiate ρ: Set ρ(v) :=∞, ∀v ∈ V(G) // Power distances
3 Initiate τ : Set τ(v) := −1, ∀v ∈ V(G) // Tessellation
4 Initiate η: Set η(v) := ∅, ∀v ∈ V(G) // Pointer to robot neighbor. η : V(G)→ V(G)
5 for each ({i ∈ {1, 2, · · · , N}})
6 Set g(pi) = 0
7 Set ρ(pi) = −R2

i

8 Set τ(pi) = i

9 Set Ii := 0 // The control integral (negative of gradient of H̃). Ii,0 ∈ TC
10 for each ({q ∈ NG(pi)}) // For each neighbor of pi
11 Set η(q) = q
12 Set Q := V(G) // Set of un-expanded nodes
13 while (Q 6= ∅)
14 q := argminq′∈Q ρ(q′) // Maintained by a heap data-structure.
15 if (g(q) ==∞)
16 break
17 Set Q = Q− q // Remove q from Q
18 Set j := τ(q)
19 Set s := η(q)
20 if (s != ∅) // Equivalently, q /∈ {pi}
21 Set Ij += g(q)× P(s)−P(pj)

‖P(s)−P(pj)‖2
× φ(q) // Integral in Eq. (5.3.16)

22 for each ({w ∈ NG(q)}) // For each neighbor of q
23 Set g′ := g(q) + CG([q, w])
24 Set ρ′ := PowerDist(g′, Rj)
25 if (ρ′ < ρ(w))
26 Set g(w) = g′

27 Set ρ(w) = ρ′

28 Set τ(w) = j
29 if (s != ∅) // Equivalently, q /∈ {pi}
30 Set η(w) = s
31 for each ({i ∈ {1, 2, · · · , N}})
32 Set p′i := argmaxu∈NG(pi)

P(u)−P(pi)
‖P(u)−P(pi)‖2

· Ii // Choose action best aligned along Ii.

33 return {τ, {p′i}}

where, TC is the action space of each robot (generally the tangent space - a normed vector space,

assumed to be the same for all robots). Typically, TC = RD. Also, the function P : V(G)→ C is

such that P(q) gives the coordinate of the node at q. Thus, P(pi) = pi and P(q) = q in relation to

Equation (5.3.16). In an uniform discretization setting we take φ(q) = κ φ(P(q)) for an arbitrary

positive constant κ.

5.4.3 Overall Algorithm: Adapted Lloyd’s Algorithm

The overall algorithm consists of iterating over “Tessellation and Control Computation” and

updating the positions of the robots (so that they move along the approximate negative gradient

107

of H̃) at each iteration.

Algorithm 5.4.3{
τf , {pi}f

}
= Adapted Lloyds (G, {pi}, {Ri}, φ)

Inputs: a. Graph G
b. Initial agent locations pi ∈ V(G), i = 1, 2, · · · , N
c. Agent weight Ri ∈ R+, i = 1, 2, · · · , N
d. Discretized density function φ : V(G)→ R

Outputs: a. Final tessellation map τ : V(G)→ {1, 2, · · · , N}
b. Robot final position, p′i ∈ V(G), i = 1, 2, · · · , N

1 Initiate H0 := {P(p1),P(p2), · · · ,P(pN)} // Initiate history of robot positions
2 Set t := 0

3 while (t < m OR er(H(t−m):t) > ε) // not converged

4 Set {τ, {p′i}} := Tessellation and Control Computation (G, {pi}, {Ri}, φ)
5 for each ({i ∈ {1, 2, · · · , N}})
6 Move ith robot from P(pi) to P(p′i)
7 Set pi = p′i // Update robot positions
8 Set t += 1
9 Set Ht := {P(p1),P(p2), · · · ,P(pN)} // Append current position to history

10 return {τ, {pi}} // Latest tessellation & positions

where,

er(Ha:b) =
1

1 + b− a max
i∈{1,2,··· ,N}

 b∑
h=a

∣∣∣∣∣Hh
i − 1

1+b−a

b∑
l=a

Hl
i

∣∣∣∣∣
2


is a measure of the variation in the position of the sensors over the most recent 1+b−a time steps.

Convergence is hence detected by checking if the variation in the positions over the most recent m

time-steps is less than a desired threshold, ε.

5.4.4 Results

We implemented the above algorithm in C++ programming language. The 2-dimensional configu-

ration space of the robots was uniformly discretized into square cells and the graph G was created

out of it by placing a node in each free cell. Nodes were not placed inside obstacles.

L-shaped Environment

The first set of results demonstrate the coverage of the L-shaped environment described in Figure 5.6

by 4 homogeneous robots. The environment is discretized into 240×240 cells. The density function

is given by φ(q) = k(‖q− qc‖2/h), where,

k(κ) =


1− 3

2κ
2 + 3

4κ
3 if 0 ≤ κ ≤ 1 ,

1
4 (2− κ)3 if 1 ≤ κ ≤ 2 ,

0 otherwise ,

with qc = [0.7, 0.7]T , h = 0.15 and the value of φ is normalized between 0.1 and 2.0. Figures 5.6

shows snapshots of the robot configuration at different iterations. The intensity of green represents

the weight function. The curves in red are the boundaries of the tessellations, and the white

circles represent the radii of the robots’ sensor footprints. The robots start near the bottom of the

environment. Note how in the final configuration the distribution of the robots is biased toward

108

0.2 0.5 0.8
0.2

0.5

0.8

(a) t = 0.

0.2 0.5 0.8
0.2

0.5

0.8

(b) t = 50.

0.2 0.5 0.8
0.2

0.5

0.8

(c) t = 100.

0.2 0.5 0.8
0.2

0.5

0.8

(d) t = 150.

0.2 0.5 0.8
0.2

0.5

0.8

(e) t = 200 (Converged).

Figure 5.6: Adapted Lloyd’s algorithm in a L-shaped environment. The environment is 0.6 × 0.6
units in size, discretized into 240×240 cells, and have an obstacle occupying the lower right quadrant.
Intensity of green represent magnitude of the weight function. The red lines are the boundaries
of the tessellations. The robots start off from the lower left corner of the environment, follow the
Adapted Lloyds algorithm, and finally attain convergence with good coverage of the environment.

the center of the density function, qc. The Adapted Lloyds algorithm along with the plotting

procedures run at a rate of 17 Hz on a single processor (2.1 GHz, 3Gb RAM) machine.

In a Complex Indoor Environment

Next we test the algorithm on a more complex office-like indoor environment of dimension 2.84 ×
3.33 units (284 × 333 discretized) and the origin at the center of the environment. There are 4

heterogeneous robots. The robots’ sensor foot-print radii are chosen as 0.1, 0.2, 0.3 and 0.4 units as

illustrated in Figure 5.8. Figure 5.7 demonstrates the results. The weight/density is chosen to be

the Gaussian function φ(q) = 0.135 e2.0|q−qc|2 , with qc = [0.5, 1.3]T .

Distributed Implementation

In a distributed implementation, each robot is assumed to have a copy of the graph G, discretized

density φ, and have knowledge about the weight and location of neighbor robots. This informa-

tion may be available assuming communication among neighbor robots. By neighbors we mean

robots that share boundaries of the computed tessellation. Hence each robot is able to run locally

109

(a) t = 10. (b) t = 60. (c) t = 110. (d) t = 160. (e) t = 210.

(f) t = 260. (g) t = 310. (h) t = 360. (i) t = 410 (Con-
verged).

Figure 5.7: Adapted Lloyd’s algorithm in a real indoor environment. The environment is 2.84×3.33
units in size, discretized into 284× 333 cells, so that each cell is 0.01× 0.01 units in size. The radii
of the robot footprints are 0.1, 0.2, 0.3 and 0.4 units. The robots start off in the big room in the
bottom of the environment, and follow the Adapted Lloyds algorithm to attain coverage. Note
that the final distribution of the robots is biased towards regions of high density function.

0.1 0.2 0.3 0.4

Figure 5.8: Radii of the sensor footprints of the robots in simulation of Fig. 5.7.

the “Tessellation and Control Computation” algorithm on its own local processor using only

local information. In the distributed version of the “Adapted Lloyds” algorithm, each robot is

interested in computing its own control command and issuing it. The control commands for neigh-

bor robots are not computed on the local processor or are discarded. After every time step the

robots broadcast their new positions (from a ground truth or any other localization method) and

receive updated positions of neighbors. This communication closes the control loop and accounts

for errors in the execution of computed controls.

5.5 Application to Simultaneous Coverage and Exploration

Problem

So far the metric in Ω we have considered was Euclidean (flat). The non-Euclidean distance function

arose due to non-convexity of Ω. In this section we will present an example from robot exploration

problem where non-Euclidean metric arise quite naturally.

110

We consider the problem of deploying n mobile robots in an unknown or partially known envi-

ronment, which upon collaborative exploration of the environment, will converge to an optimal or

near-optimal coverage.

5.5.1 Entropy as Density Function

In order to address this problem each mobile robot maintains and communicates a probability map

for the discretized environment such that p(q) is the probability that the vertex q is inaccessible

(i.e. occupied or represents an obstacle), for all q ∈ V(G). A threshold on the value of probability

determines whether a particular node in V(G) is occupied/inaccessible for computation of the

Geodesic Voronoi tessellations as well as control. Moreover the Shannon entropy for each cell can

be computed as follows,

e(q) = p(q) ln(p(q)) + (1− p(q)) ln(1− p(q)). (5.5.1)

[Note that for simplicity we used the same notation for a vertex and its coordinate in the original

space.] This gives us an Entropy map, i.e. a value of entropy associated with each vertex q - a

map that represents uncertainty or the need to gather information within the environment. The

Shannon entropy is such that it assumes high values for vertices for which the uncertainty is high

(i.e. probability is close to 0.5), whereas it is low for known or visited vertices. Thus, we identify

the weight or density function φ(·) with the entropy e(·).

φ(q) = e(q) (5.5.2)

This, by the construction of the control laws described before, will drive the mobile robots towards

regions of high entropy within the robot’s own tessellation, hence resulting in exploration of the

environment.

5.5.2 Entropy-Based Metric

For exploration and for environments with uncertainty it is desired that tessellation boundaries be

such that they “bisect” the uncertainty (or entropy) among the adjacent robots for cooperative

exploration. This notion is illustrated in Fig. 5.9, where a high entropy region is placed asym-

metrically between two robots in a convex environment without obstacles. The dashed line shows

the boundary of a Voronoi tessellation created using the standard Euclidean metric. However, one

mobile robot has a larger unexplored region than the other. An alternate division is depicted with a

solid line that splits the unexplored region equally. This division is a result of weighting the metric

with the entropy.

In particular, the matrix representation of the metric tensor in the standard coordinate chart of

the plane is given by,

η(q) = e(q)

[
1 0

0 1

]
(5.5.3)

In terms of finding the Voronoi tessellations and control commands using Algorithm 5.4.2, the

111

Region of
high Entropy

Splits area equally

Splits entropy equally

Sensor 1 Sensor 2

Figure 5.9: Entropy-weighted Voronoi tessellation.

only required change is to weigh the edges of the graph G by entropy in those regions instead of

the Euclidean length of the edges. In particular, we define the cost of an edge [vs,vt] ∈ V(G) using

the following approximation

CG(ε) =

(
e(vs) + e(vt)

2
+ ε

)
‖vs − vt‖2 (5.5.4)

where ε is a small positive integer chosen to compensate for noise in near-zero values of en-

tropy and to make sure that the cost of an edge doesn’t vanish. We can hence use the

“Tessellation and Control Computation” algorithm on this graph to compute the tessellations

and control commands.

5.5.3 Time Dependence of Entropy, Coverage, and Convergence

We now detail how the probability map is updated based on the sensor readings. For the discussion

that follows, pt(q) represents the estimated probability of occupancy of q at the tth iteration based

on all measurements.

Inter-robot Communication

As discussed earlier, for the distributed architecture, each robot maintains its own copy of prob-

ability and entropy maps. Each updates its own maps based on readings from its own on-board

sensor as well as information acquired from its neighboring robots about parts of their copies of

their probability maps. A sensor fusion model (described in next section) is used to aggregate the

data. For communicating its own probability map to other robots, each robot broadcasts the new

information acquired by its own sensor over a time window or phase. Essentially the broadcasting

of probability maps by each robot is done in phases. During a phase, a robot broadcasts a constant

message (part of its own probability map) with a fixed timestamp over and over (repeatedly). This

is to make sure that other robots receive this message. The robot also broadcasts its unique identity

along with the message. Also, instead of broadcasting the whole probability map in each phase,

each robot broadcasts only whatever new it has sensed during the previous broadcast phase. Thus

the broadcasted information actually comprises of a small window in the whole probability map as

112

1.0

si,n

si,f

0.0

Confidence
 (probability)

r

R

Figure 5.10: The sensor model.

well as in time, inside which the probability readings have changed. This makes each broadcast

messages rather small. Essentially each robot maintains two buffers: The current sensing buffer,

and the broadcast buffer. New readings from a robot’s own laser sensor are added to the current

sensing buffer, while things in the broadcast buffer are broadcasted. At the end of a broadcast

phase the content of the broadcast buffer is pushed into the main probability map maintained by

the robot, the content of the current sensing buffer is copied into the broadcast buffer, and the

current sensing buffer is cleared for new sensor data. The information received from other robots

about their map are directly added to the main probability map. This differential approach of

communication significantly reduces the communication overhead required for sharing map data.

Sensor Model

We use a sensor model for each robot, si(r), which gives the probability that the ith robot’s sensor

measures the state of a grid cell located at a distance r from it correctly. In particular, in our

simulations we use,

si(r) =

{
si,n + r2

R2
i
(si,f − si,n) if r ≤ Ri
0 otherwise,

where Ri is the sensor range, and 0 ≤ si,f ≤ si,n ≤ 1 gives the far and near values of the confidence

of the sensor.

Thus, if at time-step t the sensor of the ith robot receives a measurement zti(q) (which is 1 for

occupied, and 0 for unoccupied) for the cell q, the probability that the cell is occupied based only

on this measurement is given by uti(q) = zti(q) si(‖q−pti‖)+(1−zti(q))(1−si(‖q−pti‖)). We use a

sensor fusion model to compute the net probability of occupancy for the cells based on the individual

measured probabilities. In particular, one can compute pt(q) = g−1

(∑
i,t′ g(u

t′
i (q))∑

i,t′ 1

)
, where g is a

strictly increasing function in [0, 1], and the summations are taken over all the measurements by all

sensors over all time instants [83]. For our experiments we choose g(x) = xm, m > 0. We note that

by choosing m→∞, the value of pt(q) essentially becomes the supremum of all the measurements

for q. Alternatively, choosing g(·) = log(·) gives the geometric mean of the measurements, which

has also been used in [83].

In order to compensate for the sensor noise the entropy map is smoothed by passing it through

a min-filter. The smoothed entropy map is consequently used for computing the density function.

113

Time-varying Density Function

A consequence of updating the probability map is that the entropies, and hence the metric, d,

and the weight function, φ, becomes a function of time. This, in general, is inconsistent with the

formulation of the generalized Lloyd’s algorithm prescribed by Equation (5.3.13) since the function

H̃ is not a Liapunov candidate any more since it varies with time. Thus we lose the guarantee of

convergence. However, if we choose the weight function in Equations (5.5.2 - 5.5.4) with a slight

modification, and with some assumption on the sensor model, we can obtain guarantees on stability.

Lemma 5.5.1 (Exploration and Convergence Guarantee). Suppose there exists an ε radius around

each mobile robot such that it is able to sense the occupancy and reduce the entropy of the cells

within that radius below the value of τ ′ in a permanent manner. Then there exists a τ ≥ τ ′, and

a small value ι, such that instead of the weight/density function mentioned in Equations (5.5.2), if

we choose

φ(q, t) =

{
ι, if e(q, t) < τ

e(q, t), otherwise
,

and instead of entropy, e, in the Equation (5.5.4) for metric, if we use e′(q, t) = max(e(q, t), τ),

then we can guarantee complete exploration of the environment (entropy of every cell being reduced

below the value of τ) and convergence of the algorithm.

Proof. The small value ι is chosen as a representative of zero for numerical stability. Ideally, it

should be several orders of magnitude smaller than τ ′.

The main idea of the proof lies in the observation that the control law of Equation (5.3.15)

drives the agents towards the instantenious weighted generalized centroids [67] of their respective

Voronoi tessellations. However, by the above construction of the weight function, φ, the weighted

generalized centroid of Vi at time t will always lie inside the set {q ∈ Vi | e(q, t) ≥ τ}. Thus the

robot will be driven towards a region where the entropy is greater than or equal to τ . In doing so

it will eventually reduce the entropy of the region below τ ′. This will continue until the entropy of

every cell in Ω gets reduced below τ ′.

Once that is attained, we have φ(q, t) = ι and e′(q, t) = τ , which are constant for all t. The

metric and weight/density function become independent of time, thus ensuring convergence.

The Overall Algorithm

So far we have described the various components of the algorithm. To put those in perspective,

the steps below are what goes on at a higher level on each robot in sequence while exploring and

covering an unknown or partially known environment in a distributed fashion.

i. Each robot maintains its own probability, entropy and obstacle maps.

ii. Each robot use sensor data as well as communicate with its neighbors to update the maps.

They also communicate their locations.

iii. Each robot computes its own entropy-weighted Voronoi tesellation and the corresponding

control commands, and take a step accordingly.

114

(a) t = 0 (b) t = 50 (c) t = 150 (d) t = 200

(e) t = 350 (f) t = 550 (complete
map built)

(g) t = 700 (entropy be-
low threshold)

(h) t = 800 (conver-
gence)

Figure 5.11: Exploration and coverage of an unknown environment

5.5.4 Results

Single Thread Implementation

Our first implementation is a standalone C++ implementation that was mostly single-threaded.

Figure 5.12 shows the screenshots of three robots exploring a cluttered environment. The boundaries

of the tessellations are shown by the bold blue lines. The dotted lines show the robot trajectories.

The intensity of the pixes in the environment represent the entropy. The mobile sensors start off

with absolutely no prior knowledge about the environment, hence highest vale of entropy ln(0.5)

assigned to each cell. They then collaboratively explore the environment and attain full exploration,

coverage and convergence.

Larger Environment

Figure 5.12 shows the screenshots from a simulation of four robots exploring a large (1000 × 783

uniformly discretized) cluttered environment. The boundaries of the tessellations are shown by

the bold blue lines. The robot positions are encircled by cyan circles. The dark lines show the

robot trajectories. The intensity of the pixels in the environment represent the entropy, and the

unreachable regions are colored in black. The mobile robots begin at the room in the lower left with

no prior knowledge about the environment, hence the highest value of entropy, ln(0.5), is assigned

to each cell. Besides collaboratively exploring the environment the robots distribute themselves in

such a way that they maintain proper coverage of the explored environment both during exploration

and after completely building the map. The mobile robots attain full exploration, coverage, and

convergence within t = 2750 iterations. Each iteration, which involves computing the voronoi

115

(a) t = 0 (b) t = 500

(c) t = 1000 (d) t = 1600

(e) t = 2600 (complete map built) (f) t = 2750 (convergence)

Figure 5.12: Exploration and coverage of a large unknown environment. Green indicates uncertainty.

tessellations as well as the control commands for all the robots, takes about 1.7s running on a single

processor as described in earlier results.

116

(a) iter = 101 (b) iter = 1501

(c) iter = 3951 (d) iter = 5701

(e) iter = 7101 (complete map built) (f) iter = 8501 (convergence)

Figure 5.13: ROS implementation of coverage and exploration.

ROS Implementation

We have made a preliminary implementation of our algorithm in ROS (Robot operating system).

The features that are different from the previous implementation are:

i. In ROS the simulations are really decentralized. Each robot runs its own individual thread

117

and needs to communicate with each other.

ii. The sensors (footprint and noise) as well as robot kinematics are realistically simulated. We

use a feedback linearization technique for controlling the non-holonomic robots.

iii. We aggressively use multi-thread implementations wherever possible, thus enabling large

amount of parallel computation for each robot. This makes the program modular as well.

iv. Since the robots need to communicate, we had to implement efficient communication tech-

niques. In particular, in every time steps the robots broadcast only new information that it

got from the sensors since previous broadcast.

v. The ROS implementation is perfectly suited for implementation in real robots for real exper-

iments.

The sequence of images in Figure 5.13 show the same benchmarking environment as the previous one

being explored by 4 robots, but this is in the ROS implementation. Running on a single processor,

the main thread for each robot runs at 1 Hz. This rate of computation is significantly faster than

what is required in real robot experiments.

118

Chapter 6

Dimensional Decomposition for

Efficient Planning

6.1 Motivation

So far we have mostly used graph search based planning techniques as our primary tools. We have

incorporated certain metric and topological information in the search algorithms and have been able

to use the versatility of graph search based method to generalize some of the continuous approaches.

However the biggest challenge that one encounters in discretization, graph creation and using search

algorithms is that the number of vertices, average degree and hence the complexity of the search

algorithm increases exponentially with the dimensionality of the configuration space. The challenge

becomes evident in multi-robot planning problems where the configuration spaces of the individual

robots cannot be decoupled due to presence of complex inter-robot constraints.

In this chapter we try to exploit certain structures in the high dimensional configuration space

and the constraints that prevent complete decoupling of the problem into lower dimensional planning

problems, and hence use graph search techniques in concert with gradient ascent type of techniques

in order to solve a class of constrained optimization problems. This particular class of optimization

problem turns out to be well-suited for solving multi-robot path planning problem in cluttered

non-convex environments with pair-wise constraints on their trajectories.

Distributed implementation of optimization problems is an important field of research in dis-

tributed systems [73, 5]. In many optimization problems the joint state space of all the search

variables is too big or too complex for the optimization problem to be solved centrally. At other

times the complete information about all the state variables is not available to any central pro-

cessor. Thus distributed implementation of such problems become indispensable. One example of

particular interest to us is multi-robot planning problems. For instance, robots navigating towards

their respective goals while staying within the communication range is one of the common planning

problems in multi-robot robotics. Here the search variables are the robot trajectories, each of which

theoretically lies in an infinite dimensional Hilbert space. Planning in the joint state-space of all

the robots in such a case while satisfying complex constraints may be very expensive, if not practi-

119

cally impossible. Multi-robot path planning suffers from the inherent complexity resulting from the

necessity of operating in Cartesian products of configuration and state spaces [23]. The continuous

path planning problem is even more difficult to solve in a centralized setting [59] unless the problem

is solved sequentially for each robot [88]. Open loop trajectory planning problems can be reduced to

optimization problems. While completeness results are often possible [1] for simple problems with

no constraints, it is difficult to respect more complex multi-robot constraints. Another instance

of distributed optimization problem is task allocation for multiple robots [33]. In these methods,

one can impose rendezvous constraints at intermediate time points as tasks and reformulate the

path planning problem as a task allocation problem. This then lends itself to auction-based solu-

tions [25] for the team. However, these methods can produce highly sub-optimal solutions in the

environments with obstacles without guarantees on convergence.

Closely related to this class of problems is separable optimization problems [5] (optimization

problems that can be split up into simpler sub-problems involving only certain partitions of the

variable set) with linear constraints have been studied extensively in the past and solved in a

distributed fashion using techniques based on dual decomposition [73, 5]. Augmented Lagrangian

type methods have been used for solving similar problems more efficiently [4, 66]. However such

methods are limited to problems with linear constraints and rely on convexity of cost functions.

In this chapter we investigate a distributed implementation of a separable optimization problem

with non-linear constraints arising from coupling between pairs of robots. We do not make any

assumption on the convexity of the cost or the constraint functions. Our theoretical analysis shows

that the algorithm converges to an optimal solution under certain conditions. As a demonstration

of the implementation of our algorithm we will mostly concentrate on solving the problem of path

planning for teams of robots coupled with constraints on the distances between pairs of robots.

Continuous motion planning is possible for such problems [2], but only practical in environments

with moderate complexity. We explore discrete path planning algorithms for solving the individual

simpler optimization problems in a large environment with obstacles and solve the global problem

using our distributed optimization algorithm. We show that our approach is able to find efficiently

optimal paths with complex cost functions, in arbitrarily complex environments, and with non-

linear pair-wise constraints. We therefore demonstrate the utility and versatility of the proposed

algorithm by solving large scale optimization problems in a distributed fashion, which otherwise

would have been intractable.

Brief Description of the Solution Approach

The intuitive concept behind the main algorithm developed in this chapter is that we start off

by solving the global unconstrained problem, which is completely decoupled and hence can be

solved as a bunch of lower dimensional problems. Then we gradually increase the penalty weights

for violation of the constraints which are modeled as soft constraints, in a way not unlike dual and

Lagrangian decomposition methods. We show that in every iteration of the algorithm, if we increase

the penalty weights along certain specific directions (Separable Optimal Flow Direction and Ascent

Direction) we are guaranteed to attain optimality and convergence in the limit (Figure 6.1). In

order to deal with obstacles/punctures in the configuration space of individual robots, we need to

do an exhaustive search in the different homotopy classes of trajectories. The tools developed in

120

0 2 4 6 8 10 12 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) Unconstrained plans,

k = 0

0 2 4 6 8 10 12 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) k = 50

0 2 4 6 8 10 12 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) k = 150

0 2 4 6 8 10 12 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

(d) Converged solution,

k = 216

Figure 6.1: Demonstration of convergence towards global optimal solution with progress of itera-
tions. In this example there are 3 robots planning trajectories from left to right of the environment.
The unconstrained trajectories, (a), are 12 units long, parallel, and separated by 5 units. Trajec-
tories are defined by displacements along Y direction of 11 unit-spaced points on each. The final
trajectories, (b), satisfy rendezvous constraints as described in Section 6.6.1.

Chapters 3 and 4 can be used for that purpose.

6.2 Problem Definition

6.2.1 The Optimization Problem

We consider the following general problem:

Find

{π∗1 , . . . , π∗N} = argminπ1...πN

∑
j=1...N

cj(πj) (6.2.1)

subject to the pairwise constraints

Ωij(π
∗
i , π
∗
j) = 0, i, j = 1 · · ·N (6.2.2)

We call each πi a partition of the set of search variables. In the context of multi-robot planning

problem πi will represent the path of robot i, while cj(πj) will be the cost of path πj . Ωij will

represent the violation of the constraint between the trajectories of robot i and j.

6.2.2 Problem Assumptions

The following assumptions are made about the variables and functions appearing in the problem

definition. Note that the smoothness of ci and Ωij and the conditions involving derivatives of these

functions (all the assumptions except Assumption 1) are used only for proving the final theorem

involving computation (Theorem 6.4.5). We do not need any of those assumptions for the basic

problem definition, algorithm or for proving Theorems 6.4.2 or 6.4.4.

Assumptions:

1. The optimization variables πi lie in abstract vector spaces that are continuous, differentiable

and simply connected. In the general case they may be considered as vectors in a finite

121

dimensional Euclidean space, but they can lie (as we’ll discuss later) in more complex spaces

like infinite dimensional Hilbert spaces. We represent the space in which πi lies as H

2. The cost functions ci : H → R+ are assumed to be continuous and smooth. In context of

path planning for mobile robots, an example of such a cost function is the Euclidean length

of the trajectories in an environment without obstacles. However, in our implementation we

will later relax the condition. Note that we don’t make any immediate assumption on the

convexity of the cost functions.

3. The functions Ωij : H × H → R, defined for the unordered pair {i, j}, are continuous. Also,

we require that the second derivatives of Ωij with respect to each of its parameters as well as

the first mixed derivative are defined. That is, Ω
(0,2)
ij ,Ω

(2,0)
ij and Ω

(1,1)
ij are defined, where the

superscripts denote the order of partial derivatives w.r.t. the respective parameters. A simple

example of such a constraint function in context of multi-robot path planning is constraint

on the distance between trajectories of two robots.

4. The functions Ωij are assumed to have the following properties

i. Ωij is symmetric in its two parameters (i.e. Ωij(πi, πj) = Ωij(πj , πi)), and

ii. Ω
(1,0)
ij (πi, πj) = −Ω

(0,1)
ij (πi, πj).

It is easy to note that these properties will be true if Ωij has the functional form Ωij(πi, πj) =

Gij(πi − πj), where Gij : H → R is a continuous, smooth even function. Note that we don’t

make any immediate assumption on the convexity of Ωij .

5. We assume that besides cr and Ωij , the quantities c
(2)
r , Ω

(1,0)
ij , Ω

(2,0)
ij and Ω

(1,1)
ij are readily

computable for a given set of input variables. This may be achieved either by knowing the

expressions of the derivatives in closed form, or by computing them numerically.

If in a particular problem the cost and constraint functions are not smooth, they can always be

approximated by smooth functions at the non-smooth regions using one of the many Mollification

techniques [64]. We also note that inequality constraints can be converted to equality constraints

(as required by (6.2.2)) by taking max or min with zero, followed by Mollification treatments.

It is to be noted that in spite of the conditions imposed on Ωij , they can represent a wide variety

of constraints, especially in robotics applications. The proposed functional form of the constraints

can model constraints on communication, visibility, rendezvous, convoying, collision avoidance, and

other more complex coordination between pairs of robots involving their trajectories as well as their

derivatives (say, to incorporate dynamic and kinematic constraints).

6.3 The Algorithm

A pseudo-code of our algorithm is presented in Algorithm 6.3.1. The global optimization problem is

decomposed into a series of lower-dimensional unconstrained optimization problems, each of which

is solved in a single partition, πr, of the search variables. In each iteration the penalty weights on

the violation of constraints, W k, are incremented along the direction given by V k. The intuitive

122

concept behind the algorithm is that we start off by solving the global unconstrained problem,

which is completely decoupled (line 1). Then we gradually increase the penalty weights (line 6)

for the constraints which are modeled as soft constraints. The directions in which we can change

the weights to guarantee optimality and convergence are described later in the Theoretical Analysis

section. With the new set of weights we solve a sub-problem, which is an unconstrained optimization

problem on only a single partition, namely πr (line 7). Thus we note that in each iteration only the

variables in a single partition are changed, while the others remain unchanged.

An application of the algorithm in goal-directed navigation of multiple robots with rendezvous

constraints at various points on the trajectory is illustrated in Figure 6.1. We note that the algorithm

starts off with unconstrained trajectories at k = 0 and in each iteration only a single robot plans its

trajectory. As the iterations progress, the robots gradually change their trajectories due to increase

in penalty weights and try to satisfy the rendezvous constraints. Eventually they reach the global

solution. It is to be noted that the gradual increment in the weights play a key role in ensuring that

the solution is optimal. One-shot increase in the weights to large values to satisfy the constraints

would have resulted in suboptimal trajectories since the robots are planning sequentially. This

particular example is described in more details in Section 6.6.1.

Algorithm 6.3.1

g = Distributed Optimization ({ci}, {Ωij},S)
Inputs: a. Cost functions ci, i = 1, 2, · · · , N

b. Constraint functions Ωij , {i, j} ∈ PN
c. The set S = {r0, r1, r2, · · · }, rk ∈ {1, 2, · · · , N}

Outputs: a. Converged solutions πi, i = 1, 2, · · · , N
1 Compute π0

i = argminπici(πi), ∀i ∈ N
N // The unconstrained plans.

2 Initiate W 0
ij = 0 for all unordered {i, j} ∈ PN // Weights on constraints.

3 Set r = r0 ∈ S and k = 0

4 while (
(
Ωij(π

k
i , π

k
j) 6= 0 ∀{i, j} ∈ PN

)
)

5 Set V k = ComputeStepDirection(W k, {π}k, r) // Choose a direction from intersection
of Separable Optimal Flow Direction
and Ascent Direction.

6 Set W k+1 = W k + εkV k // Update weights.

7 Compute πk+1
r = argminπr

[
cr(πr) +

∑
{ir}∈PNr

W k+1
ir Ωir(π

k
i , πr)

]
// Update rth part’n.

8 Set πk+1
j = πkj for all other j 6= r // Keep other partitions unchanged.

9 Set k = k + 1
9 Set r = rk ∈ S

13 return {πi}i=1,2,··· ,N

The sets NN is the set of all natural numbers from 1 to N , and PN is the set of all unordered

pairs of numbers in NN . The set S gives a sequence of partitions for which the individual sub-

problems are solved in each iteration. S = {r0, r1, r2, · · · }, where ri ∈ {1, 2, · · · , N} ∀i ∈ N can be

constructed such that the partitions appear almost at equal frequency in the sequence. As we will

see later, the sequence does not influence the convergence or optimality of the solution, but may

influence the speed of convergence (number of iterations required to converge).

Also, the step-sizes, εk, are small and determine the precision of the solution. Theorem 6.4.5 is

guaranteed to hold when the step-sizes are infinitesimal. But for practical purpose we choose finite

and small step-sizes. The sequence E = {ε0, ε1, ε2, · · · } may be predefined, set to a fixed constant

step-size, or may be adaptive.

123

The procedure “ComputeStepDirection” in the Algorithm computes the direction in which to

increase the penalty weights, W . We call this direction a Step Direction. In the following section

(and especially Theorem 6.4.5) we will discuss the ways of computing such a direction.

6.4 Theoretical Analysis

In this section we investigate the conditions under which the proposed algorithm will converge to

an optimal solution. Theorem 6.4.4 along with Theorem 6.4.2 proves that under certain conditions

the algorithm is guaranteed to converge to an optimal solution. Theorem 6.4.5 gives a prescription,

using which will ensure that the said conditions hold.

6.4.1 Notations and Preliminaries

Unordered pair

We define the set of unordered pairs of natural numbers from 1 to N , and its subsets as follows:

PN = {{1, 2}, {1, 3}, · · · , {1, N}, {2, 3}, {2, 4}, · · · , {N − 1, N} }

and, PNr = {{1, r}, · · · , {r − 1, r}, {r + 1, r}, · · · , {N, r}}
In the following discussions, the subscripts “ij” of quantities (like W) or functions (like Ω)

are elements from PN . Thus the order of the subscripts does not matter. When we write W (or

W1, or W2), we mean the vector of length 1
2N(N − 1) of all the Wij ’s. Also, often we will write

{i, j} ≡ {q, r} ∈ PNr to indicate that {i, j} is such that exactly one of i or j is equal to r, while the

other one, which is not equal to r, is denoted by k.

Other Notations

i. For notational convenience we define the sets NN = {1, 2, · · · , N} and NN
−r = {1, 2, · · · , r −

1, r + 1, · · ·N}

ii. We denote the set {π1, π2, · · · , πN} as {π}. On similar lines, if there are arbitrary functions

Υi : A → B, i = {1, 2, · · ·N}, we denote the collection of all these functions as {Υ} : A →
B× B× · · · × B. Conversely, the jth element of {Υ} is denoted as [{Υ}]j or Υj

iii. The subset of {π} without the rth element is denoted by {π}−r. Thus, {π}−r =

{π1, π2, · · · , πr−1, πr+1, · · · , πN}

iv. If we have a smooth function f : A1 × A2 × · · ·An → R, its derivatives are represented

by f (a1,a2,··· ,an). Thus, for a single-variable function, f (1) ≡ ∇f , f (2) ≡ ∇2f , and for a

two-valued function, f (1,1) ≡ ∇x∇yf , etc.

v. We define the Lagrangian of the global problem U , and the Dual function Ψ,

U({π},W) :=
∑
k∈NN

ck(πk) +
∑

{kl}∈PN
WklΩkl(πk, πl)

124

{Π}(W) := argmin{π}
[
U({π},W)

]
Ψ(W) := min{π}

[
U({π},W)

]
= U({Π}(W),W) (6.4.1)

In other words, {Π}(W) is the global optimum for the penalized objective function with W

as penalty weights, and Ψ(W) is the optimal value.

vi. Similarly, we define for each partition πr,

Ur(πr,W1,W2) := cr(πr) +
∑

{kr}∈PNr

W1,krΩkr(Πk(W2), πr)

Πr(W1,W2) := argminπr [Ur(πr,W1,W2)]

Ψr(W1,W2) := minπr [Ur(πr,W1,W2)]

= Ur(Πr(W1,W2),W1,W2) (6.4.2)

That is, for a given value, {Π}−r(W2), of the partitions (except the rth one), Πr(W1,W2) gives

the optimum for an individual sub-problem with W1 as penalty weights.

vi. Finally, we define the following,

Mr(W) = c
(2)
r (Πr(W))

+
∑
{lr}∈PNr

WlrΩ
(0,2)
lr (Πl(W),Πr(W))

Nlr(W) = Ω
(1,1)
lr (Πl(W),Πr(W))

(6.4.3)

Also, we note that the rth component of {Π}(W) is given by,

Πr(W)

= argminπr

(
cr(πr) +

∑
{kr}∈PNr

WkrΩkr(Πk(W), πr)

+
∑
k∈NN−r

ck(Πk(W))

+
∑
{kl}∈PN/PNr

WklΩkl(Πk(W),Πl(W))
)

= argminπr

(
cr(πr) +

∑
{kr}∈PNr

WkrΩkr(Πk(W), πr)
)

= Πr(W,W)

(6.4.4)

Thus,

Π
(1)
r (W) = Π(1,0)

r (W,W) + Π(0,1)
r (W,W) (6.4.5)

6.4.2 Theorems

Definition 6.4.1. [Separable Optimal Flow] Given the functions cr, Ωir ∀{ir} ∈ PNr we call V a

Separable Optimal Flow Direction and ε a corresponding Separable Optimal Flow Step at W for the

rth partition if and only if the following holds,

Ψr(W + εV,W)−Ψr(W,W) ≤ Ψr(W + εV,W + εV)−Ψr(W,W + εV)

and, Vij = 0, ∀{i, j} such that r /∈ {i, j}
(6.4.6)

Together, V and ε are said to define a Separable Optimal Flow at W for Ψr.

125

Theorem 6.4.2. [Optimality at each Iteration] If the Step Direction, V k, returned by procedure

ComputeStepDirection at the kth iteration in Line 5 of the Algorithm 6.3.1, along with the chosen

Step Size, εk, define a Separable Optimal Flow at W k for Ψrκ , ∀ k, then ∀ k:

{πk1 , . . . , πkN} = argmin{π}

 ∑
i∈NN

c(πi) +
∑

{ij}∈PN
W k
ij · Ωij(πi, πj)


Proof. Detailed proof can be found in Appendix C.1.

The result of the Theorem 6.4.2, in brief, can be stated as

πki = Πi(W
k), ∀i, k (6.4.7)

The implication of the result is that there are specific directions (which we call Separable Optimal

Flow Directions) in which we can increment the penalty weight vector W , such that the global

optimum for the new set of penalty weights differs from the previous global optimum (i.e. optimum

for the previous set of weights) in only one partition of the optimization variables, namely πr. Thus,

by moving along such a direction in kth iteration, we only need to change πrk , and still remain at

an optimum of the penalized net cost.

Definition 6.4.3. [Ascent Flow] We call V an Ascent Direction and ε a corresponding Ascent Step

at W if and only if the following holds,

ε
∑

{ij}∈PN
VijΩij(Πi(W + εV),Πj(W + εV)) > 0 (6.4.8)

Together, V and ε are said to define a Ascent Flow at W .

Theorem 6.4.4. [Convergence of the Algorithm] If the Step Direction, V k, returned by the proce-

dure ComputeStepDirection at the kth iteration in Line 5 of the Algorithm 6.3.1, along with the

chosen Step Size, εk, is an Ascent Flow as well as a Separable Optimal Flow (for the rthk partition)

at W k, for every k, then the Algorithm converges to an optimal solution, if one exists.

Proof. Detailed proof can be found in Appendix C.2.

The result of Theorem 6.4.3 implies that if we always increment the penalty weights along

directions that are both Ascent Directions and Separable Optimal Flow Directions, we will eventually

converge to the global optimum, if it exists. Knowing the πki ’s from previous iterations, it is easy

to choose such a direction V k for the current iteration as one that has positive inner product with

the vector of all constraint violations at kth iteration (i.e., the vector made of Ωij(π
k
i , π

k
j)’s).

As it is apparent from the proofs of the last two Theorems (Appendix C.1 and C.2), so far we

have made no assumption on the convexity or even the smoothness of the functions ci and Ωij . All

our required assumptions are encoded in the conditions of Separable Optimal Flow and Ascent Flow.

However, in the theorem that follows, we will be focusing more on some computational aspects.

126

This would require that we be able to differentiate these functions, and make certain assumptions

about small steps.

Theorem 6.4.5. [Computation of Separable Optimal Flow Direction] If the functions cr and

Ωir ∀{ir} ∈ PNr abide by the Problem Assumptions, we can find an Ascent Flow and a Separa-

ble Optimal Flow for the rk
th partition at W k, if it exists, along with a small enough Step Size, εk,

at Lines 5 and 6 of the Algorithm 6.3.1. This can be achieved using only the following quantities

that are readily known or computable:

W k, πki ≡ Πi(W
k), ∀i ∈ NN (known from previous iteration),

c
(2)
i (πki), ∀i ∈ NN ,

Ω
(0,2)
ij (πki , π

k
j), Ω

(1,1)
ij (πki , π

k
j) and Ω

(1,0)
ij (πki , π

k
j), ∀{ij} ∈ PN ,

In general we get to choose from a large set of possible Separable Optimal Flows and a large set of

possible Ascent Flows, thus giving us the opportunity to find a common “flow” (V k and εk) from

the two sets.

Proof. Detailed proof can be found in Appendix C.3.

The theorem implies that we can compute a Separable Optimal Flow Directions which is also an

Ascent Direction, if such a direction exists exists, in terms of quantities that can be easily computed

using the variables from the previous iteration, within the limits of the error introduced by the finite

step-size. It is important to note that in general there is much freedom in choosing from a large set

of possible Separable Optimal Flow Direction (set of linear combinations of the eigenvectors such

that (C.3.9) is satisfied). Moreover an Ascent Direction can be chosen just by choosing the sign of

ε correctly. Although we do not discuss the existence of such directions as the iterations progress,

we can expect that such directions will exist almost always.

6.5 Discrete Solution for the Sub-problems

Except for the result presented in Section 6.6.1, all the other implementations that we will present

use an approximate discrete approach for solving the sub-problems in Line 7 of Algorithm 6.3.1.

This was, in the first place, the motivation behind developing this method, due to which we hoped

to be able to use graph search-based planning in lower dimensional subspace of the variable space

(i.e. each πr), yet ensuring that we move towards the global optimum.

In all the problems solved using discrete approach, the type of constraints that we will consider

is time-parameterized constraints on the distances between pairs of robots. This particular type

of constraint has a broad scope in multi-robot coordination problems, which includes, but is not

limited to, the problem of rendezvousing in order to exchange information and the problem of

maintaining communication while executing tasks. The constraints are defined between pairs of

robots and are modeled as the minimum distance of separation between the robots as a function of

time.

127

The way we define such constraints and solve the sub-problems is that we take Cartesian product

of the configuration space of each robot with time (C × [0, T]), thus making time a state variable

for the robot. This type of discrete implementation is illustrated in Section 6.6.2.

In addition we introduce the notion of tasks as an additional level of complexity in the graph.

The tasks are in the form of points in the original configuration space (that is, before augmenting

with time) that the robots need to visit. We assume that each robot has been assigned an unordered

set of tasks, each of which it needs to visit at some point in time. Results in Section 6.6.3 illustrates

this in details.

6.5.1 Basic Graph Construction

Planning for goal-directed navigation for an individual robot Ri, 1 ≤ i ≤ N is, as usual, modeled

as computing a least-cost path through a graph Gi formed by discretization of the configuration

space (as described in Section 2.3). In addition, we augment each state in the graph Gi with an

additional variable - time index t, such that a state in the augmented graph becomes {s, t}.
The augmented graph, Hi, is essentially a graph product between the graph Gi and the time

graph, {0→ 1→ · · · → T}. It is precisely defined as follows: The vertex set of the augmented graph

is V(Hi) = V(Gi)× {0, 1, · · · , T}, and edges are defined such that a particular node {s, t} ∈ V(Hi)

connects to the node {s′, t+ 1} ∈ V(Hi) if and only if s′=s or [s, s′] ∈ E(Gi). Planning in such an

Hi ensures that the planning is done both in space and time, and the time parametrized trajectory

returned by the planner is consistent with the fact that the robots can move only forward in time.

Such planning enables us to incorporate time-paramertized distance constraints.

We assume that all trajectories of interest to us are at most T timesteps. Thus, the solution to

a typical planning problem for a single robot is a T -step path in Hi from {Starti, 0} to {Goali, T},
and can be represented by the ordered set πi = {s0 = Starti, s1, . . . , sT = Goali}. Thus, πi(t) refers

to the coordinate st (in other words, the robot Ri is at this location at time t when following path

πi). The cost of a path is given as c(πi) =
∑
j=1...T c(sj−1, sj).

6.5.2 Product with Task Graph

The robot Ri has Mi tasks assigned to it denoted by τ0
i , τ

1
i , · · · , τ

Mi−1
i , where each task is a node

in the graph Gi. Thus, τ ji ∈ V(Gi). The planning needs to be done in such a way that the planned

trajectory of robot Ri passes through each of τ0
i , τ

1
i , · · · , τ

Mi−1
i , i.e. τ ji ∈ πi∀j = 0, 1, 2, · · · ,Mi−1.

The order of execution of the tasks is obtained as part of the solution to the planning problem.

To model the tasks and in order to incorporate them in the search graph we first define a new

state coordinate (besides s and t) and call it “task indicator”, β, which is essentially a variable that

we will represent as a binary number consisting of Mi bits (for robot Ri), each bit being the flag

or indicator of whether the corresponding task has been completed. For notational convenience we

define a function B such that β = BM ({j1, j2, · · · , jk}) is a M -bit long binary number with 1’s at

the positions j1, j2, · · · , jk, and 0’s at the rest. Thus B7({2, 4, 5}) = 0110100 and B3({0}) = 001.

Note that BM ({j1, j2, · · · , jk}) in fact represents the state in which only the tasks τ j1 , τ j2 , · · · , τ jk

have been executed. We define the inverse function of B to be the one that returns the indices of

the non-zero bits in a given β, i.e., B−1(β) = {j1, j2, · · · , jk}

128

1111

0000

0001 0010 0100 1000

0011 0101 0110 1001 1100 1010

0111 1101 1011 1110

(a) The task graph Υi showing the possible tran-
sitions of the task indicator value, β for robot Ri
with four tasks.

τ2

β = 0000

β = 0100

(b) A transition from one node in Ki to another where
β gets changed. The bit-2 of β gets flipped to 1 when
τ2 is visited.

Figure 6.2: The task graph Υi, and its product with Hi.

We define a task graph Υi for robot Ri such that the vertices of Υi are Mi-bit binary numbers.

Connection between two vertices of Υi exist iff the vertices differ by exactly one bit, and the edge

points from the vertex with lower value to the one with higher value. An example of such a graph

for Mi = 4 is shown in Figure 6.2(a). For a robot Ri with Mi tasks to execute, the starting value

of “task indicator” will be BMi
({}) = 00 · · · 0, which represents the state where no task has been

executed, and its goal value will be BMi
({0, 1, 2, · · · ,Mi− 1}) = 11 · · · 1, which represents the state

where all the tasks have been executed. Since the tasks are executed one at a time, the two vertices

β1 and β2 can be connected if and only if β1 and β2 differ by a single bit.

However we also note that the jthl bit in the state coordinate β is to be turned on for robot

Ri only when the robot executes the jthl task assigned to it, i.e. when the spatial coordinate of

the robot is s = τ jli . Using this fact we construct the product graph Ki for robot Ri such that

{s, t, β} ∈ V(Ki) are the vertices of the graph representing the full states of the robot. The graph

Ki is defined such that,

i.
V(Ki) = V(Hi)× V(Υi)

= V(Gi)× {0, 1, · · · , T} × V(Υi)

ii. An edge from vertex κ1 = {s1, t1, β1} ∈ V(Ki) to vertex κ2 = {s2, t2, β2} ∈ V(Ki) exists iff

exactly one of the following holds

a. [{s1, t1}, {s2, t2}] ∈ E(Hi),

and s2 /∈ {τ li | lth bit of β1 is 0},
and β1 = β2.

b. [{s1, t1}, {s2, t2}] ∈ E(Hi),

and s2 ∈ {τ li | lth bit of β1 is 0} with s2 = τλi ,

and [β1, β2] ∈ V(Υi) such that the λth bit of β2 is 1.

The connection condition ‘ii.a.’ corresponds to the robot navigating without visiting a task, while

129

condition ‘ii.b.’ corresponds to the transition in the graph when the robot visits a task (illustrated

in Figure 6.2(b)).

The cost of an edge [{s1, t1, β1}, {s2, t2, β2}] ∈ E(Ki) is same as the cost of the edge

[{s1, t1}, {s2, t2}] ∈ E(Hi). For avoiding zero-cost edges, we assign a small ε cost to edges where

{s1, t1} = {s2, t2}. Any possible state of the robot Ri defined by its spatial coordinates, time and

tasks executed can be represented by a state in the graph Ki. The connection between the states

of Ki define how the transition from one state to another can take place.

6.6 Results

6.6.1 An Exact Implementation

We demonstrate the Algorithm 6.3.1 using a MATLAB implementation of an idealized planning

problem. The specific problem under consideration may be considered as a multi-robot goal-directed

path planning in an environment without obstacles, where the trajectories of the robots are defined

by displacements of unit-spaced points on the trajectories along vertical direction. Thus the tra-

jectory, of a robot is given by πr = [startr, yr2, yr3, · · · , yrL, goalr]T , where yri, i = 2, · · · , L are

the search variables and represent displacement of a point at xi of the rth robot’s trajectory. The

constraints between robots a and b are rendezvous constraints defined by

Ωab(πa, πb) =
(
(yac1 − ybc1)2 + (yac2 − ybc2)2 + · · ·

)1/2
= 0

where c1, c2, · · · are the points where a and b need to rendezvous. There are two components to

the costs functions cr - the length of the trajectory, and the integral of the square of accelerations

over the trajectory. Assuming the robots have constant X-velocity, the net cost is thus given by a

weighted sum of the two components,

cr(πr) = α
(
(yr2 − startr)2 + (yr3 − yr2)2 + · · ·

)1/2
+ β

(
((yr4 − yr3)− (yr3 − yr2))2 + ((yr5 − yr4)− (yr4 − yr3))2 + · · ·

)
The individual unconstrained optimization problems in Line 7 of the Algorithm were solved using

MATLAB’s fminunc.

Figure 6.1 demonstrates how the algorithm approaches the optimal feasible solution with

progress of iterations. In that example we chose α= 1, β= 0 and a constant step size of εk = 0.01.

The constraints were that the top robot had to rendezvous with the middle one at the middle point

(i.e. at x7), while the bottom and middle ones had to rendezvous at two points (y4 and y10). Since

it is a symmetric case with only trajectory length as cost, it’s easy to compute the optimal solution

separately by optimizing over just 2 variables. The optimal cost that way is found to be 43.946,

while our algorithm terminates at a cost of 43.962 for the said step size. Figures 6.3(a) and (b)

illustrate the results of the same problem, but for other values of α and β, demonstrating the ability

of the algorithm in dealing with complex cost functions. Figure 6.3(c) demonstrates an asymmetric

case with 4 robots.

We attempted to solve these problems in a centralized fashion using MATLAB’s Pseudo-Newton

130

0 2 4 6 8 10 12 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) Symmetric case: α = 0, β = 1

0 2 4 6 8 10 12 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) Symmetric case: α = 1, β = 0.2

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

(c) An asymmetric case: α = 1, β =
0

Figure 6.3: Converged Solutions

search method implemented in fmincon. Even when the gradient and Hessian functions were ex-

plicitly provided, it failed to find a solution satisfying the required tolerance with computation time

limit of 20 minutes and 5000 as the limit on number of iterations. In contrast, our algorithm solved

these problems in about a minute and a few hundred iterations.

6.6.2 A Discrete Implementation

In the following examples we perform a more realistic multi-robot path planning with pair-wise

distance constraints in a complex environment with large number of obstacles. Thus, even the

individual sub-problems that we need to solve at Line 7 of Algorithm 6.3.1 become significantly

complex. We employ the discrete method as was described in Section 6.5.

The three-dimensional state-space of each robot, X − Y − Time, was discretized into uniform

cells to construct the hraph Hr, and an A* graph search technique was employed to obtain an

optimal path in the graph as an approximation of the trajectory of rth robot, πr. The connectivity

of the graph, as described in Section 6.5, is such that a cell in the x, y, t space connected to its 8

neighboring cells and itself in x, y but with the time step incremented by one. This implies that

any path in the graph will be discrete approximation of an element of H. While an 8-connected

grid is quick and efficient to perform search in, it confines the motion of the robot to 8 directions

(45◦ orientations). A consequence of this is that some seemingly sub-optimal solutions are actually

optimal (minimum cost paths) in the 8-connected graph.

The cost function, c, is the Euclidean length of the trajectory. The constraints between the pairs

of robots are defined by maximum distance, φij(t), that the robots i and j can be apart at a given

instant of time. Thus, the constraints are defined by,

Ωij(πi, πj) =

∫ T

0

$(πi(t), πj(t), φij(t)) = 0

where, $(s, s′, p) = max(0, d(s, s′)− p) and d is a distance function.

131

1

2

3

(a) Unconstrained plans

1

2

3

(b) Converged feasible solution

Figure 6.4: Planning in environment with three interconnected rooms

Dealing with Obstacles

Much of the theoretical analysis described so far relies on the fact that the values of all the variables

change in small steps in each iterations. Smoothness condition is essential for Theorem 6.4.5.

Unfortunately the presence of obstacles in the environment violates these condition. However the

Optimality condition of Theorem 6.4.2 still holds in a single Homotopy class of all the trajectories.

This means that as long as a trajectory changes in small steps and does not make big jump from

one side of an obstacle to the other, Theorem 6.4.2 and the related results from Theorem 6.4.5 hold.

Thus, whenever we get stuck in a particular homotopy class for all the trajectories, or whenever

one of the trajectories makes a jump to a new homotopy class, we block this homotopy class as

invalid and restart the planning. It is worth noting here that we use only large connected obstacles

to characterize homotopy classes and avoid unnecessary creation of homotopy classes by small

obstacles that do not effect optimality significantly. We primarily employed two different methods

of blocking homotopy classes:

i. Use of Blacklists - We maintain a list of blocked regions (or balls) in the joint state-space of

the robots violating one or more constraints. Every time we need to restart the planning as

above, we update the “Blacklist” with the latest violation information in the homotopy class

without a feasible solution. Thus, when we restart the planning we eventually will avoid the

homotopy class, provided our choice of blocking ball was proper.

ii. Systematic identification and blocking of Homotopy class - Homotopy classes can be system-

atically identified using methods described in Chapter 3. We integrated such a method with

our A* searches which enabled us to restrict searches in specific homotopy classes or block

some homotopy classes.

In the following subsections we will present the performances of our algorithm in different envi-

ronments.

Three Interconnected Rooms

The environment shown in Figure 6.4 consists of 3 interconnected rooms and 3 robots. The en-

vironment is made of discretized cells 89 × 94 in space and 200 time-steps. This results in the

132

1

2

3

(a) Unconstrained plans

1

2

3

(b) Converged feasible solution

Figure 6.5: Extended rendezvous in environment with three interconnected rooms

joint state-space of all the robots to have 1014 states. Our planner avoids planning in this huge

state-space, but rather breaks up the problem into a series of plans in individual state-spaces with

< 2 × 106 states. The robots start from the left side of the environment and need to reach their

goals on the right end. Figure 6.4(a) shows the unconstrained optimal plan. A constraint is de-

fined between R1 and R3 such that they need to be within a distance of 2 discretization units at

t = 40. And the constraint between R1 and R2 is such that they need to be within a distance of 2

discretization units at t = 120. The solution shown in Figure 6.4(b) was found in about one minute

and 72 iterations on a computer running on 1.2GHz processor.

Extended Rendezvous

The environment shown in Figure 6.5 is similar to the previous example in size and discretization.

In this example R1 and R2 need to traverse the environment from left to right, while R3 needs to

traverse it from top to bottom. Figure 6.5(a) shows the unconstrained optimal plan. Constraints

between R2 and R3 is that they need to be within 2 discretization units distance from t = 32 to

t = 68, and the constraints between R1 and R3 is that they need to be within 2 discretization units

distance from t = 84 to t = 120 The solution in Figure 6.5(b) was found after 75 iterations with

ε = 0.1 as the fixed step-size.

Extended Rendezvous in a Real Environment

Figure 6.6 shows a part of the 4th floor of Levine hall in University of Pennsylvania. The original

map is 35 meters by 35 meters, discretized into 100× 100 cells. There are 170 discretization steps

in time. There are 3 robots and the unconstrained objectives, resulting in the solution in Figure

6.6(a), are that both Robot 1 (dashed trajectory) and Robot 2 (dash-dot trajectory) need to start

at t = 0 inside the big room at the bottom and need to reach their respective goals by t = 170.

Robot 3 (dotted trajectory) needs to start at t = 45 inside the small lower cubicle on the left side

of the map and needs to reach the small storage space at the top right by t = 120. Figures 6.6(b)

shows the converged feasible solution that satisfy the following constraints: A. Robot 2 needs to

stay within 3 discretization units of robot 3 from t = 60 to t = 80; and B. Robot 1 then needs

to stay within 3 discretization units of robot 3 from t = 90 to t = 110. Looking at the converged

133

−15−12.5−10−7.5−5−2.502.557.51012.51517.52022.52527.53032.53537.54042.54547.55052.55557.56062.56567.57072.57577.58082.58587.59092.595

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

47.5
50

52.5
55

57.5
60

62.5
65

67.5
70

72.5
75

77.5
80

82.5
85

87.5
90

92.5

1 2

3

(a) Unconstrained plans
−15−12.5−10−7.5−5−2.502.557.51012.51517.52022.52527.53032.53537.54042.54547.55052.55557.56062.56567.57072.57577.58082.58587.59092.595

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

47.5
50

52.5
55

57.5
60

62.5
65

67.5
70

72.5
75

77.5
80

82.5
85

87.5
90

92.5

1 2

3

(b) Converged feasible solution

Figure 6.6: Extended rendezvous in a real environment

Min Max Average
28 s 169 s 59.7 s

Table 6.1: Performance of the algorithm tested for extended rendezvous in a real environment (the
example in Figure 6.6). The table shows the min, max and average time required for finding solution
over 54 runs.

solution we observe that in order to satisfy constraint A, robot 2 loops it’s trajectory around the

central and lower cubicles, while to satisfy constraint B, robot 1 loops its trajectory around the

central and upper cubicles.

Rendezvous in Three-Dimensional Environment

We implemented the algorithm for robots in 3 dimensional configuration space (i.e. X − Y − Z),

which, along with time, makes a 4-dimensional state space for each robot in which we had to

construct the graphs, Hi, and perform the search for the sub-problems.

Figure 6.7 shows screen-shots of a visualization made out of the solution obtained from the

algorithm. In this example there are four robots exploring an environment with two buildings

(Figure 6.7(a)). There are two explorer aerial vehicles (marked by blue circles in the figure), each

of which explore one of the buildings in the environment. Each of the explorer UAVs gather a

large amount of data about the interior of the buildings. The third aerial vehicle is a messenger

(marked by the red circle). Its task is to visit each of the explorer UAVs, gather the data they have

generated, and pass on the data to a mobile ground patrol (marked by yellow circle) before going

to a base.

Performing such a complex collaborative task in an optimal fashion is non-trivial. The planner

needs to generate plans for all four vehicles, three of which operate in 3D spaces. The joint state-

space of the robots is 12 (= 3× 3 + 2 + 1) dimensional. Centralized planning for optimal trajectory

satisfying all the constraints in such a huge state-space is infeasible. On the other hand, the

constraints on communication and data transfer between the vehicles promptly translate into the

constraints between the distances of their trajectories. As a result, we can use the algorithm

134

(a) Problem overview (b) t = 5 (c) t = 12

(d) t = 23 (e) t = 37 (f) t = 41

Figure 6.7: Rendezvous to exchange information in a 3-dimensional environment.

proposed in this chapter to find the optimal solution satisfying these constraints in an efficient

(distributed) way. At each iteration, the algorithm plans a trajectory for a single robot in no more

than a 4-dimensional (discretized) configuration space. It achieves the convergence for this problem

in about 30 iterations (within error limits defined by chosen step-size). In Figures 6.7(c)-(d), the

messenger UAV comes in close proximity to the explorer UAVs in order to collect the data the later

have gathered, and in Figure 6.7(e), the collected data is transmitted to the ground patrol.

Performance

We tested the performance of our algorithm by running the example in Section 6.6.2 (Extended

rendezvous in a real environment) multiple times, but with randomized initial & goal states and

randomized time spans for the constraints. The implementation of the problem was made in C++

and was run on a computer with Intel 1.2 GHz processor. Table 6.1 gives a summary of the run-time

from 54 runs.

The joint state-space of the three robots contains ∼ 170 × (100 × 100)3 ' 1.7 × 1014 states.

Planning in such a huge graph is highly expensive, if not impossible. However our distributed

planning technique was able to find the optimal solution up to the desired precision consistently

and sufficiently fast, thus demonstrating the ability of the algorithm to solve large problems.

6.6.3 Additional Complexity with Tasks

As described in Section 6.5.2, we can have an additional level of complexity by introducing tasks.

Thus, in the following examples, in each sub-problem (line 7 of Algorithm 6.3.1), we had to search

in the graph Kr.

135

0 2.5 5 7.5 10 12.515 17.52022.52527.530 32.535 37.54042.545 47.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

37.5

40

42.5

1 2

(a) Unconstrained trajectories

0 2.5 5 7.5 10 12.515 17.52022.52527.530 32.535 37.54042.545 47.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

37.5

40

42.5

1 2

(b) Solution satisfying constraints

Figure 6.8: Planning for two robots each with two tasks and a constraint to meet during their
travel. It is interesting to note how in the final converged solution the robot on the right switches
the order of execution of its tasks in order to satisfy the imposed constraint.

Example of Reordering of Tasks to Satisfy Constraints

In the simple example of Figure 6.8, we have two robots having to plan their paths from a start to

a goal location. The environment contains one central large obstacle. Each of the robots has been

assigned two tasks (marked by the empty boxes in color). The first figure shows the case where

there is no constraint between the robots. Now we impose a constraint that the robots need to be

within a distance of 0.08m at t = 17.5s during their journey. It is interesting to note how in the final

converged solution the second robot (the one in blue) switches the order of execution of its tasks in

order to satisfy the imposed constraint. The environment consisted of 50 discretizations along each

spatial direction and 40 discretizations in time. The joint state-space of the robots would hence

have 40×(50×50×22)2 = 4 billion states. Even in this simple environment the constrained optimal

planning in joint state-space would become very difficult. However our algorithm converges to a

solution in about 10 iterations and in less than a minute time. The converged solution is optimal

with respect to an 8-connected grid.

Exploration

Consider the example in Figure 6.9 where each robot needs to explore the inside of certain rooms

in the 4th floor of Levine hall (University of Pennsylvania) assigned to them in the environment,

and possibly create a map of the environment. They need to meet intermediately at t = 120s to

exchange information about each other’s explorations so as to build a global map in a decentralized

fashion. This problem perfectly fits our paradigm. We see how the robots explore the assigned rooms

and also meet to exchange information. Each robot has been assigned 4 tasks. The environment

consisted of 100 discretizations along each spatial direction and 250 discretizations in time. This

makes a total of 250× (100× 100× 24)2 = 6.4× 1012 = 6.4 trillion states in the joint state-space!

136

−15−12.5−10−7.5−5−2.502.557.51012.51517.52022.52527.53032.53537.54042.54547.55052.55557.56062.56567.57072.57577.58082.58587.59092.595

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

47.5
50

52.5
55

57.5
60

62.5
65

67.5
70

72.5
75

77.5
80

82.5
85

87.5
90

92.5

1 2

Figure 6.9: Two robots exploring certain rooms and rendezvousing to exchange information.

−15−12.5−10−7.5−5−2.502.557.51012.51517.52022.52527.53032.53537.54042.54547.55052.55557.56062.56567.57072.57577.58082.58587.59092.595

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

47.5
50

52.5
55

57.5
60

62.5
65

67.5
70

72.5
75

77.5
80

82.5
85

87.5
90

92.5

1 2 3

Figure 6.10: Three robots exploring certain rooms and rendezvousing to exchange information.

Our algorithm finds the solution in 1311 seconds in 17 iterations. The solution is optimal with

respect to an 8-connected grid.

Exploration with Three Robots

We once again do the exploration of the Levine 4th floor, but now with 3 robots. Figure 6.10 shows

the result. The constraints are between pairs of robots. Thus we used two constraints: The first

one between robots 1 and 2 is to meet at t = 120s, and second one between robots 2 and 3 is to

meet at t = 120s. The joint state-space had 250 × (100 × 100 × 24)3 = 1.024 × 1018 states. Our

algorithm finds a solution to the problem in 3003 seconds and 40 iterations.

137

−10 0 10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

1 2

Figure 6.11: Two robots with one task each. This is the solution from one of the randomized runs.

Min Max Average
11 s 66 s 33.9 s

Table 6.2: Performance of the algorithm tested in the scenario of Figure 6.11. The table shows the
min, max and average time required for finding solution over 10 runs.

Computation time Statistics

We chose a relatively simple scenario with two robots navigating from start to goal configuration,

one task assigned to each robot, and one rendezvous constraint (Figure 6.11). The environment

was same as before (Levine hall 4th floor), with 100× 100 spatial discretization and 150 temporal

discretization. We ran our algorithm several time by randomizing the initial positions, goal position

and the constraint. Table 6.2 gives a summary of the run-time from 10 runs with randomized values.

138

Chapter 7

Coordinate Transformation for

Efficient Optimal Planning in

Environments with Non-Euclidean

Metric

7.1 Introduction and Motivation

In this chapter we present a few preliminary ideas and propose some directions of research without

providing much significant result. The overall question that we will be trying to address here is

rather involved and we are still in the process of investigation.

In all the methods that we have discussed so far, graph search based planning has turned out

to be highly robust, efficient and indispensable in practical robotics problems. Among the few

drawbacks that such a method has, we have attempted to counter the problem of dimensionality

by suggesting a dimensional decomposition technique in Chapter 6, where we compensated for the

exponential increase in complexity of search algorithms by synthesis with a continuous gradient-

based approach. In this chapter we address the other major drawback of graph search based

approaches: The suboptimality induced in the final solution obtained from searching the graph,

simply because of the fact that the metric on the original continuous space has been restricted to

the discrete graph.

Graph-search based methods are, in general, well-suited for planning in spaces with a non-

uniform Riemannian metric. In a particular coordinate chart, a non-Euclidean metric is simply

translated to the costs of edges in the graph, i.e. weighted according to the location (and direction)

of the edges. Thus, if a small segment, ∆l, represents an edge in the graph, and if g is the metric at

a point on the ‘center’ of the edge, one would take
√
gij∆l

i∆lj as an approximate cost/weight of

the edge (where we assumed the Einstein summation convention – that we will use throughout this

chapter). However, in order to capture the non-Euclidean metric of the environment suitably, the

139

Figure 7.1: Suboptimality due to discretization. The green line is the optimal path in the graph
from the given start to goal vertex in the graph. However the shortest path in the graph is not the
shortest in the configuration space. The dotted line shows the shortest path in the original metric
space.

discretization needs to be sufficiently fine. For example, one may use an uniform or unstructured fine

discretization (e.g. Figure 3.12(a)), but not a visibility graph (e.g. Figure 3.18). But this condition

eventually fires back since the least cost path in the graph created by fine discretization of an

environment is most often not the least cost path in the continuous metric space. For example, an

A* search with an uniform 8-connected discretization scheme (an uniform discretization into square

cells, with the nodes of the graph placed at the centroid of each cell, and then each node connected

to their 8 neighbors) gives an optimal path in the graph, which in the original space is a trajectory

with segments constrained to head in directions that are multiples of 45◦ (Figure 7.1). Thus, the

trajectories we obtain, although least cost paths in the graphs, are not the shortest in the original

metric space.

In an Euclidean metric setting (i.e. a metric space, along with a coordinate chart, in which

gij = δij everywhere) one can use certain post-processing and smoothening methods to straighten

the paths using notions of visibility (e.g. the dotted path in Figure 7.1 can be obtained by a simple

visibility-based post-processing of the path restricted to the graph). Likewise, in Euclidean metric

one can employ a visibility graph, hence obtaining paths that are truly least cost, as demonstrated

in Figure 3.18. But visibility graphs or post-processing and smoothening cannot be employed easily

in non-Euclidean metric spaces with punctures.

7.1.1 Problem Definition

Let us delve into the property of a metric space that allows us to use the notion of ‘visibility’ in

an efficient way. In an Euclidean metric setting with holes (obstacles) it is the ease with which a

‘line of sight’ (or ‘straight lines’) between two points in the space can be constructed. This lets us

construct a visibility graph by joining the ‘corners’ of the obstacles with such lines, or ‘post-process’

140

a path in the graph by checking pairs of points on the path that can be joined by such lines without

intersecting obstacles. The need of checking intersection with polygonal obstacles also brings in the

need of finding intersection between two ‘straight lines’ with ease.

In a general metric space the notion of ‘line of sight’ has to be replaced by geodesics. Typically

in an arbitrary metric space the computation of the geodesic passing through two given points is

highly non-trivial. One can employ a method like shooting method for solving the geodesic equation

posed as a boundary value problem. However, in general, such methods are expensive and often

practically infeasible.

The primary aim of this chapter is to investigate the types of metric spaces and the use of certain

methods that would let us construct geodesics between two points in the space with ease.

7.1.2 A Motivating Example in Two Dimensions

Consider the following given matrix representation of metric in terms of the coordinate variables x

and y,

g =

[
x2 + y2 0

0 x2 + y2

]
(7.1.1)

This is analogous to a cost function in a robot path planning problem (Figure 7.2(a)). Typically

there would be obstacles in the space, and one would like to plan a trajectory, γ, between two given

points (xi, yi) and (xe, ye), avoiding obstacles, so as to minimize
∫
γ

ds, where ds =
√
gij dxi dxj

(=
√
x2 + y2

√
dx2+ dy2, for this example –

√
x2 + y2 being analogous to the cost function).

Now consider the following coordinate transformations

x(x, y) = xy

y(x, y) = (y2 − x2)/2 (7.1.2)

One can now easily check, using the transformation rule gkl =
∂xp
∂xk

∂xq
∂xl

gpq, that in the barred

coordinates the matrix representation of the metric tensor indeed becomes the identity matrix,

g =

[
1 0

0 1

]
(7.1.3)

The existence of such a transformation for an arbitrary given matrix representation of a metric,

g =

 m11(x,y) m12(x,y)

m21(x,y) m22(x,y)

, is one of the questions that we would like to address. But before that we

would like to complete the motivational example we started in this section in order to illustrate

how this can be helpful in robot planning problems.

Figure 7.2(a) shows a uniform mesh color coded with the value of the square of the cost function,

x2 +y2. The labels on the axes represent the values of x and y. This embedding of the given metric

space on the plane of the paper is hence not isometric (the plane of the paper has an Euclidean

metric). The mesh is then transformed into the barred coordinate system to obtain the figure

in 7.2(b). The color of the mesh is left same as the original one for ease of comparison. An

8-connected uniform grid is laid down in the original coordinates (Figure 7.2(a)) and a graph is

141

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

Mesh in original space

Color indicate value of m2

5

10

15

20

(a) A uniform mesh in original (un-barred) coordinates.
Axes show values of (x, y). This is a non-isometric em-
bedding of the part of the given metric space in R2 (the
plane of the paper). Color indicates the value of x2+y2 –
the either diagonal elements of the metric gij (the square
of ‘cost’ – red is higher cost, blue is lower).

0 2 4 6 8 10 12 14

−6

−4

−2

0

2

4

6

Mesh in transformed space
Color indicate correspondence

(b) The same mesh in the transformed (barred)
coordinates. Axes show values of (x, y). This is
an isotropic embedding of the given metric space.
Color of the original mesh is preserved to visual-
ize the correspondence of points with the original
mesh.

Figure 7.2: The black dots indicate obstacles. The planning problem: Figure (a): White path is
the least cost path in the 8-connected grid graph planned in the un-barred coordinates. Figure (b):
The same white path is shown in the barred coordinates. Figure (b): The red path in the barred
coordinates is obtained by greedy post-processing of the white path. Figure (a): The red path in
un-barred coordinates is obtained by inverse transformation.

hence formed. The white trajectory in Figure 7.2(a) demonstrate the least cost path for a given

start and end coordinates in the 8-connected grid graph. As one can observe, the direction of the

tangents on this path are restricted to multiples of 45◦, which invariably leads to suboptimality. In

an Euclidean metric setting one way of reducing the sub-optimality is to post-process the path by

replacing portions of the path by line segments such that the segments do not intersect obstacles.

However in a non-uniform metric like this, line segments are no more the geodesics. Hence this post-

processing scheme is not possible in the unbarred coordinates. However once we have transformed

the white path to the barred coordinates (Figure 7.2(b)), the metric is Euclidean here (an isometric

embedding of the given metric space). Hence we can now use the said post-processing technique

in this coordinate. Thus, as indicated by the red path in Figure 7.2(b), we obtain a piece-wise

straight segments in the barred coordinates, which is the least cost path. Performing an inverse

transformation on this red path gives the corresponding least cost path in the un-barred coordinates

(red path in Figure 7.2(a)).

Generalization

We consider the problem in a 2-dimensional metric space. Let us denote a subset of this space

(which is of interest to us) by S, and assume it is equipped with the metric tensor g. The matrix

representation of metric g in a given chart, C (with coordinate variables x and y), is isotropic and

142

is given by,

g(x, y) =

[
m2(x, y) 0

0 m2(x, y)

]
= m2(x, y)

[
1 0

0 1

]
(7.1.4)

where the function m is given/known. Thus the length/cost of a differential element is given by

ds = m(x, y)
√

dx2 + dy2. Thus, m can be interpreted as a cost map which acts as a scaling on

the Euclidean length cost of an Euclidean metric.

The problem under consideration may now be posed as the problem of finding a chart C that is

related to C in the following way,

x = x(x, y) , y = y(x, y) (7.1.5)

such that the matrix representation of the metric tensor g in C is the identity matrix. That is,

gkl =
∂xp
∂xk

∂xq
∂xl

gpq = δkl (7.1.6)

where, in the second term in the above equation, summation is implied over repeated subscripts

(Einstein summation convention) and the subscripts 1 and 2 are to indicate x and y respectively

for notational convenience. δkl is the Kronecker delta.

It is a known fact [72] and not difficult to show that if we can find a holomorphic (complex

analytic) function, f , such that ‖f(x + iy)‖ = m(x, y) everywhere in S, then the transformation

defined by

x(x, y) = Im

(∫
f(z)dz

)∣∣∣∣
z=x+iy

+ κ0

y(x, y) = ∓ Re

(∫
f(z)dz

)∣∣∣∣
z=x+iy

+ κ0 (7.1.7)

for some arbitrary integration constant κ0, satisfies the condition in (7.1.6).

However, given an arbitrary function m, it is in fact not possible to find a holomorphic function

f as above. The condition that such a function would exist is closely related to the intrinsic

curvature of the underlying metric space. In fact a direct computation of Ricci scalar curvature

(Equation (2.2.7)) using g =

[
x2+y2 0

0 x2+y2

]
(as used in our last example) gives us a value of 0

identically for all (x, y), thus revealing that the metric space, in the first place, was a flat one.

Similar computation of curvature with m as described above would reveal that such spaces all have

zero curvature. In fact the described 2-dimensional metric spaces and transformations between

them constitute a special class of metrics called conformally flat metrics and maps called conformal

maps. It is thus not surprising that we can in fact an isometric embedding of the metric space in

R2.

143

7.2 Embeddings in Euclidean Spaces

Any chart, C = (U, φ), defines an embedding of the subset, U , of a N -dimensional Riemannian

manifold in an Euclidean space, φ : U → RN . However, such a chart may not induce an isometric

embedding. That means,

i. the matrix representation of the metric tensor on U , in this coordinate chart, may not be the

identity matrix,

ii. geodesics in U may not map to geodesics in RN (which we will informally call the ‘straight

lines’), as we saw in the example of Figure 7.2(a).

A ‘straight line’ segment in the D-dimensional flat Euclidean space (with Euclidean metric δij)

between two points, p,q ∈ RD, has a simple representation using the vector-space structure that

is natural to RD: It is the set of points {v | v = λp + (1 − λ)q, λ ∈ [0, 1]}. This is the property

that we have so far sought to exploit. Hence we have tried to find transformations that would map

a given metric to the Euclidean metric – more importantly it will map geodesics to ‘straight’ lines

in the Euclidean space.

If we can find a chart C = (U,ψ) such that the matrix representation of the metric tensor on U

in this coordinate chart is the identity matrix (the Euclidean metric), we will be able to exploit the

vector-space structure as above. We call the embedding due to such a chart an isometric embedding

in Euclidean space. However, there is a weaker condition that may be satisfied – we may be able

to find a chart such that the geodesics in U map to geodesics in the Euclidean space (i.e. to the

straight lines), although not isometrically. This would still allow us to exploit the vector-space

structure of the Euclidean space for finding the geodesic between two points in the original space.

We call the embedding due to such a chart a orthogeodesic embedding in Euclidean space.

7.2.1 Isometric Embedding in Euclidean Space

The discussion of Section 7.1.2 is reminiscent of the fact that any metric space (or subset of a

metric space) that is flat (i.e. with zero intrinsic curvature) has a locally isometric embedding in

an Euclidean metric space of same dimension. That means, if gij is the matrix representation of

metric tensor on a manifolds using a coordinate chart C = (U, φ), and if in this coordinates we

compute the Ricci scalar curvature (Equation (2.2.7)) to obtain 0 everywhere in Img(φ), then we

can always find a different coordinate chart C = (U,ψ) such that the new coordinate variables are

x = ψ(φ−1(x)) and the matrix representation of metric tensor in this coordinates is gij = δij .

Isometric embedding of an arbitrary N -dimensional Riemannian manifold is always achievable

in an Euclidean space. However the minimum dimensionality of the embedding (ambient) Eu-

clidean space where the isometric embedding is possible is, in general, much higher than N (e.g.

Local isometric embedding due to Jant-Cartan Theorem is possible in RN(N+1)/2 [43], while that

for global embedding requires RN(3N+11)/2 for compact manifolds and RN(N+1)(3N+11)/2 for non-

compact manifolds due to the Nash Isometric Embedding Theorem [65]). For such high dimensional

embeddings, the geodesics on the embedded manifolds are rarely intersection of hyperplanes in the

embedding space with the manifolds (e.g. for an unit 2-sphere embedded in R3 it is, but not for a

144

2-torus embedded in R3). This is unlike isometric embedding that is achievable in Euclidean space

of same dimension. Thus the computation of geodesics between two points remains non-trivial even

if we manage to achieve such isometric embeddings in higher dimensional Euclidean spaces.

7.2.2 Non-isometric Embedding with Geodesics Mapping to ‘Straight

Lines’

Definition 7.2.1 (Orthogeodesic Embedding in Euclidean Space). A coordinate chart, C = (U, φ),

on a subset U of aN -dimensional Riemannian manifolds is said to induce an orthogeodesic embedding

if φ maps every geodesic on U to a geodesic of RN (with its usual Euclidean metric). Then

φ : U → RN is called an orthogeodesic embedding.

Note that a coordinate chart that induces an isometric embedding in RN also induces an ortho-

geodesic embedding. But the converse is not always true.

A well-known non-trivial example of such an embedding is the one due to the Beltrami-Klein

model of the hyperbolic space [68]. In that model, points in the N -dimensional hyperbolic space

are represented by points inside an unit N -ball in RN . One property of this model is that geodesics

on the hyperbolic space map to ‘straight lines’ inside the ball. Along similar lines, the Gnomonic

projection of a N -sphere maps geodesics on a half-sphere (the subset U) to straight lines in RD

[19]. In the following section we will present some discussions and results using these two models.

7.3 Orthogeodesic Embedding of Spaces of Constant Intrin-

sic Curvatures

There can be three types of metric spaces with constant intrinsic curvature everywhere: ones with

positive curvature, ones with zero curvature, and ones with negative curvature. Any constant non-

zero curvature space can just be scaled to obtain a space with curvature ±1. However, two spaces

can have the same constant curvature, and yet can be topologically different.

Previously in this chapter we have discussed an isometric embedding of a subset of a space with

zero curvature into the Euclidean space. In this section we will construct orthogeodesic embedding

(see previous section, Definition 7.2.1) of subsets of 2-dimensional spaces with constant curvatures

in R2, and will hence see how it can be efficiently used for optimal path planning in such metric

spaces.

7.3.1 Motivating Example: Gnomonic Projection of Half-sphere

Consider the unit 2-sphere embedded in RD, centered at the origin. The metric induced by the

ambient Euclidean space gives it a constant positive curvature. One can use a coordinate chart

consisting of the polar angles as the coordinate variables: (x, y) ≡ (θ, γ) (thus x is the latitude – the

angle measured from the Z axis, and y is the longitude – the angle measured from the X axis on

the XY plane. Note that the lower case and upper case letters imply completely different things:

X,Y, Z are the coordinate axes in R3, while x, y are the spherical coordinates), that describe every

point on the sphere except the poles. We are however interested in the half-sphere where Z > 0.

145

(θ, γ)

x'

y'

(a) Gnomonic projection maps points on the sphere to
points on a plane. Geodesics are mapped to straight
lines. However the map does not preserve distances.
In this figure, three evenly separated points on the
sphere maps to three points on the plane that are not
evenly separated. However since they are on a great
circle, their images lie on a straight line.

x

y Z

y
x

(b) The gnomonic projection hence gives an ortho-
geodesic embedding of half of the 2-sphere, which has
a constant positive curvature everywhere, into the Eu-
clidean 2-plane, which has zero curvature. This figure
illustrates the physical interpretation of the coordi-
nate variables introduced in Equation (7.3.2).

Figure 7.3: Gnomonic projection gives an orthogeodesic embedding of the half sphere.

The matrix representation of the metric using these coordinate variables is the well-known round

metric,

g =

[
1 0

0 sin2(x)

]
(7.3.1)

One can perform a direct computation of Ricci scalar curvature (Equation (2.2.7)) using the

above matrix representation of g, and would obtain a constant value of 2 (constant positive curva-

ture). This immediately implies that it is impossible to find a coordinate chart such that the matrix

representation of the metric will be the identity matrix even in a small open subset of the sphere –

that is, it is impossible to isometrically embed any part of the 2-sphere in R2.

Now consider the plane Z = 1. The line passing through the center of the sphere and a point

on the positive-Z half of the sphere intersects the sphere at an unique point. This is called the

gnomonic projection of the point on the sphere (Figure 7.3(a)). Now, any geodesic on the sphere

can be represented as the intersection of the sphere with a plane passing through the center of the

sphere. This plane would intersect the plane Z = 1 in a straight line. Thus, under the gnomonic

projection, geodesics on the half-sphere maps to straight lines on the Z = 1 plane (an orthogeodesic

embedding). However, it is to be noted that this map is not an isometry.

Using a suitable Euclidean coordinate on the plane Z = 1, one obtains the following coordinate

transformation for describing the gnomonic projection (Figure 7.3(b)),

x = tan(x) cos(y)

y = tan(x) sin(y) (7.3.2)

One can then compute the matrix representation of the metric tensor in (x, y) (which we will

146

henceforth call the barred coordinates) to obtain the following,

g =


1 + y2

1 + x2 + y2

−x y
1 + x2 + y2

−x y
1 + x2 + y2

1 + x2

1 + x2 + y2

 (7.3.3)

Once again, a direct computation of Ricci scalar curvature using this matrix unsurprisingly gives a

constant value of 2. However, this barred coordinate chart induces an orthogeodesic embedding of

the half-sphere in R2.

One can also easily compute the inverse transformation of (7.3.2) for x ∈ [0, π/2], y ∈ [−π, π],

x = arctan

(√
x2 + y2

)
y = arctan2(y, x) (7.3.4)

An Example in Robot Planning

We follow an example similar to the one in Section 7.1.2. We assume that we are given the

matrix representation of the metric tensor exactly as the one in Equation (7.3.1) in the un-barred

coordinates (although this can be generalized to a much larger family of matrix representations –

ones that can be reduced to (7.3.1) vis some non-singular coordinate transformation, or equivalently,

ones that can be obtained from (7.3.1) via some non-singular coordinate transformation). Unlike

before, this does not represent an isotropic cost function. Moreover the scalar curvature due to this

metric is positive as we just discussed.

We consider the region bounded by x ∈ [0, 1.05], y ∈ [0, 1.05] as our region of interest (Fig-

ures 7.4(a)-(b), Figure 7.5(b)). A robot needs to plan its trajectory from some point inside this

region to some other, avoiding a circular obstacle at the center. Figures 7.4(a)-(b) shows the ‘cost’ of

moving an unit distance along the x and y directions respectively in this environment (as prescribed

by the metric in Equation (7.3.1)).

In order to solve this problem we transform the obstacle and the given start & end coordinates to

the barred coordinates, and create an uniform grid in the barred coordinates. Since this coordinate

system described by coordinate variables (x, y induces an orthogeodesic embedding, we can use

visibility-based techniques. Thus, after a simple graph-search based planning (with metric g –

i.e. an edge e in the graph will have cost
∫
e
gij dxi dxj), we use visibility-based post-processing

to obtain a ‘piece-wise linear’ curve (Figure 7.5(a)). Inverse-transforming this trajectory in the

original unbarred coordinates gives us the desired result trajectory that minimizes the length L =∫
gij dxi dxj =

∫
gij dxi dxj (where subscripts 1 and 2 in x∗ respectively indicate the coordinate

variables x and y. Same is implied for the barred coordinates.).

7.3.2 Klein-Beltrami Model of the Hyperbolic Plane

The N -dimensional hyperbolic space is a space that has a constant curvature of −1 (or a constant

negative curvature after scaling). That means at every points on the manifold it locally looks like

147

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cost of moving an unit distance
along x−axix (= 1)

x

y

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) The cost for moving along the direction of x is con-
stant everywhere. Black indicate an obstacle.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cost of moving an unit distance
along y−axis (= sin(x))

x

y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) The cost for moving along the y direction varies with
x. Black indicate an obstacle.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The mesh in the barred coordinates

x

y

(c) The mesh in (a) and (b) transformed to the barred
coordinates according to Equation (7.3.2). The axes
show values of x and y.

Figure 7.4: (a),(b): Anisotropic cost for robot motion as a function of position indicated by color.
(c): Gnomonic projection of the mesh. Black indicates the inaccessible points (obstacles) in both
the coordinates.

148

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Planning in an uniform grid in the barred coordinates (red traj.)
followed by post−processing (green trajectory)

x

y

(a) An uniform mesh laid on the barred (transformed)
coordinates for constructing a graph. The shortest path
in the graph (red) is constrained to be oriented at mul-
tiples of 45◦. A post-processing gives the piece-wise
liner trajectory (green). Each linear piece is a part of a
geodesic since this is an orthogeodesic embedding.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

optimal trajectory transformed from the barred
to the unbarred coordinates

x

y

(b) The optimal trajectory in the un-barred (the origi-
nal/given) coordinates is obtained by transforming the
optimal trajectory in (a) back to the un-barred coordi-
nates. This is the required least cost trajectory in the
given metric space (using the inverse transformation of
Equation (7.3.4)). The mesh from the barred coordi-
nates is also transformed to show correspondence.

Figure 7.5: Robot planning problem in a metric space with constant positive curvature. The
problem of planning a least cost trajectory from (xs, ys) = (0.524, 0.126) to (xe, ye) = (0.524, 0.922)
in the un-barred coordinates (figure on the right) is translated to finding the least cost trajectory in
the barred coordinates from (xs, ys) = (0.5728, 0.0724) to (xg, yg) = (0.3491, 0.4599) (figure on the
left). Since the barred coordinates induce an orthogeodesic embedding, the geodesics are straight
lines on the plane. The intensity of the color of the mesh is just to establish correspondence and
does not indicate cost. The anisotropic cost function is properly described in Figures 7.4(a)-(b).

149

P

(a) An isolated saddle point.

Z

P

(b) Dini’s surface is an isometric im-
mersion of part of the hyperbolic
plane in R3. Every point on it re-
sembles a saddle point.

x

y

φ

(c) The Klein-Beltrami Model of the
hyperbolic plane maps geodesics in
H2 to chords of the unit circle in R2.
This coordinate chart induces a or-
thogeodesic embedding of H2 in R2.
However, the embedding is not iso-
metric.

Figure 7.6: The hyperbolic plane.

a saddle point (Figure 7.6(a)). In this section we will mostly discuss the case when N = 2, when

it is known as the hyperbolic plane (represented as H2). There are several possible local isometric

embeddings of H2 in R3, which are typically known as pseudo-spheres (Figure 7.6(b)). However,

unlike a 2-sphere, it is not possible to achive a global embedding of H2 (which is topologically

diffeomorphic to R2) in R3 [43].

Consider the following matrix representation of a metric on a 2-dimensional manifold in a coor-

dinate chart consisting of variables (x, y),

g =


1− y2

(1− x2 − y2)2

xy

(1− x2 − y2)2

xy

(1− x2 − y2)2

1− x2

(1− x2 − y2)2

 (7.3.5)

A direct computation of the Ricci scalar curvature (Equation (2.2.7)) using this g reveals that the

curvature is identically equal to −2. Thus, by definition, this coordinate chart describes a part of

the hyperbolic plane. This metric, in particular, is known as the Cayley-Klein-Hilbert Metric [86],

and this coordinate chart is known as the ‘Klein-Beltrami Model’ of hyperbolic geometry [68].

The interesting property of this particular coordinate chart on the hyperbolic plane is that

geodesics passing through points (x, y) lying inside the unit disk of the embedding space (R2)

form ‘straight’ chords of unit circle (Figure 7.6(c)). This coordinate chart hence clearly induces an

orthogeodesic embedding of the hyperbolic plane in R2. However this embedding is not isometric

since the lengths of the chords on the Euclidean plane do not correspond to length of the geodesics

they represent.

While there are various other coordinate charts that can describe the hyperbolic place, and

hence there are the corresponding matrix representations of the metric tensor (e.g. Poincar disc

model, Poincar half-plane model, hyperboloid model), one can always find a transformation from

those coordinate charts to the coordinate chart of the Klein-Beltrami model described above.

150

7.3.3 Coordinate Charts that Induce Orthogeodesic Embedding

We would now like to investigate the property of a coordinate chart and the corresponding ma-

trix representation of the metric that induces an orthogeodesic embedding. Consider the geodesic

equation in a coordinate chart (U, φ) with variables x = (x1, x2, · · · , xN), and g being the matrix

representation of the metric tensor, on a particular Riemannian manifold,

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0 (7.3.6)

The condition that the geodesic maps to a straight line in RN (i.e. a geodesic in RN under the

standard Euclidean metric) is that the [d2x1

dt2 ,
d2x2

dt2 , · · ·] (obtained from Equation (7.3.6)) be parallel

to [dx1

dt ,
dx2

dt , · · ·] at every point in RN× T∗RN . That is,[
d2x1

dt2
,

d2x2

dt2
, · · ·

]
= Θ(x, ẋ)

[
dx1

dt
,

dx2

dt
, · · ·

]
for some Θ : RN× TRN → R. Using (7.3.6), this condition becomes

Γijk(x) ej ek = θ(x, e) ei (7.3.7)

for every x ∈ Img(φ) ⊆ RN and every [e1, e2, · · ·] ∈ RN (i.e. coefficients of e ∈ TRN), for some

θ : RN× RN → R.

Given the matrix representation of the metric tensor in terms of the coordinate variables x, the

Christoffel symbols, Γijk, are simply functions of x. Moreover, it is clear from (7.3.7) that θ, when

expressed in the particular coordinate chart, needs to be linear in ei.

Multiplying both sides of (7.3.7) by gip and taking sum over p we obtain,

1

2
(gpj,k + gpk,j − gjk,p) ej ek = (θre

r) gipe
i

= θrgip er ei (7.3.8)

where, due to linearity we could write θ(x, e) = θre
r, where each θr is a function of x only. Replacing

the repeated indices r and i on the right hand side of the last equation by j and k respectively, and

then equating the coefficients of ej ek the condition becomes,

gpj,k + gpk,j − gjk,p = θjgkp + θkgjp, ∀p, j, k (7.3.9)

The equations are symmetric in j and k. Thus we have N2(N + 1)/2 equations. There are N

functions, θ•. Thus upon eliminating the θ’s, we obtain N(N2 + N − 2)/2 equations that the

components of g need to satisfy.

The conditions in (7.3.9), upon elimination of the θ’s, constitute the conditions for orthogeodesic

embedding being induced by the specific coordinate chart. Thus, the matrix representation of the

metric in equations (7.1.1) (7.3.3) and (7.3.5) would satisfy (7.3.9).

151

Open Question: Existence of and Finding an Orthogeodesic Embedding

The more fundamental and significantly more difficult question that one would like to answer

is that of finding a coordinate chart that induces orthogeodesic embedding. This question, in

essence, has some similarity with Hilbert’s fourth problem [35]. With the definition of orthogeodesic

embedding at hand, we can now look forward to put forth a rigorous statement for the problem.

A given coordinate chart may not induce an orthogeodesic embedding. However, one can possibly

find a coordinate transformation such that the transformed coordinates induce an orthogeodesic

embedding. The existence of such a coordinate system for an arbitrary metric space is also a

question worth investigation. If such coordinate charts exist only for some specific types of metric

spaces, we would also like to be able to make assertions about the properties of such spaces. Besides

the questions of existence of such a coordinate chart, and how to find one, one may attempt to solve

the partial differential equations described by (7.3.9), thus obtaining the exact functional forms of

the components of the metric tensor, given some boundary conditions.

152

Chapter 8

Conclusion

In this thesis we have tried to demonstrate how graph search-based algorithms, which are extremely

powerful tools widely used for solving many practical robot planning problems, can be used syner-

gistically with ideas from topology, algebraic topology, Riemannian geometry and gradient decent

type algorithms. In doing so, we have been able to make some of the richer information about

the underlying configuration space available to the search-based algorithms, which otherwise would

have got lost due to the process of discretization and graph construction. We have kept as one of

our top priorities the efficiency of the search algorithms and designed our approaches such that we

do not compromise on it in order to achieve our goals. In the last two chapters we have proposed

some ideas that help compensate for two of the main drawbacks of search-based algorithms - the

exponential growth of complexity with increase in the dimensionality of the configuration space,

and suboptimality of the shortest path in the graph because of restriction of the metric in the

original configuration space to the graph. We have demonstrated the applicability of the proposed

algorithms by solving some realistic example problems from robotics. Moving forward, we would

like to look into more practical robotics problems and applications that require reasoning about

topology and metric of the underlying configuration space, and hence be able to make use of the

proposed methods in conjunction with graph search-based techniques to solve those problems.

In chapters 3 and 4 we have proposed a novel and efficient way of representing topological

information of trajectories for robot motion planning. We have shown that this representation

is well suited for use with graph search techniques for finding least cost paths respecting given

homology class constraints as well as for exploring different homotopy classes in an environment.

The method is independent of the discretization scheme, cost function or the search algorithm used.

We have demonstrated the efficiency, applicability and versatility of the method in our results with

examples from practical problems in robotics involving two and three dimensional configuration

spaces. The analysis in Chapter 4, using tools from algebraic topology, not only provides strong

theoretical justifications behind the proposed constructions and design of homology class invariants,

but also help us generalize the proposed method to dimensions greater than 3. In particular, we

demonstrate an example of exploration of homotopy classes in a 4 dimensional configuration space.

In Chapter 5 we presented a search-based algorithm for computing a geodesic Voronoi tessellation

in non-convex environments and with non-Euclidean metric. We hence addressed the problem of

153

deriving optimal control laws to deploy heterogeneous robotic networks in realistic environments.

This has the advantage of formulating coverage as a feedback control policy that can be easily

decentralized. We also presented a distributed algorithm which allows for efficient computation of

the proposed control law. This algorithm is based on wavefront propagation in the same spirit of the

Dijkstra Algorithm. By doing these we end up achieving a generalization of the Lloyd’s algorithm to

non-Euclidean metric spaces and non-convex environments. This enabled us achieve simultaneous

coverage and exploration of an unknown or partially known environment in a distributed manner.

Uncertainty in the environment description is introduced through the development of an entropy-

based metric; enabling the computation of the instantaneous geodesic Voronoi tessellation given

an uncertain environment. We provide exploration and convergence guarantees resulting from this

approach and present results that demonstrate through simulation its application in real indoor

environments environment.

In Chapter 6 we developed an algorithm for solving large optimization problems with pair-

wise nonlinear constraints and arbitrary objective functions in a distributed fashion. We have

successfully implemented the algorithm to solve the problem of multi-robot path planning with

distance constraints between pairs of robots. Our theoretical analysis gives the conditions under

which the algorithm converges to an optimal solution and a prescription for making sure that those

conditions are satisfied. We have successfully implemented the algorithm to solve a large multi-

robot path planning problem in complex environment with arbitrary shaped obstacles and distance

constraints using discrete graph searches for individual sub-problems. We even extended the method

to support an unordered set of tasks that the robots need to execute, while obeying the inter-robot

distance constraints. We integrated the task order into the search graph of each robot and as a

result obtained the order of execution of the tasks as part of the natural solution to the problem.

The simulations demonstrate the efficiency of the algorithm in solving very large problems. The

algorithms we proposed has therefore the potential of solving extremely complex planning problems

with complicated constraints in a relatively short period of time. In addition the algorithm provides

strong theoretical guarantees on solution quality.

In Chapter 7 we proposed certain ideas that we hope will inspire a new direction of research.

Our preliminarily analysis shows the existence of certain metric spaces (for example, the metric on

a flat space as described in Equation (7.1.1), the round metric of Equation (7.3.1), or the metric

on a hyperbolic space) that allow coordinate charts which induce orthogeodesic embedding. We

have shown, with concrete examples, how such embeddings can be useful for efficient optimal path

planning in the original metric space. We have derived an explicit set of equations that describe the

conditions under which the given representation of a metric induces an orthogeodesic embedding.

However, the question of existence of such a coordinate chart and finding such a chart for a given

metric space is still under investigation. At the moment, we are able to apply this approach to

solve problems in a very limited class of metric spaces. Although many fundamental questions

remain to be answered, the preliminary work suggests that we may be able to apply this method

to solve practical problems. This is a nascent research direction and more thorough analysis of the

conditions as well as application to realistic problems are within the scope of future work.

154

Appendix A

Looping and Non-looping

trajectories in 3-dimensional

Configuration Space

“Looping” of a trajectory around an obstacle in 3 dimensions (Figure A.1(a)) is similar in essence to

non-Jordan curves on two-dimensional planes. However in three dimensions their precise and uni-

versal definition is more difficult. One way of identifying one of the homotopy classes of trajectories

(joining a given start and an end coordinate) that do not loop around a skeleton Si is by joining

the start and the end coordinates using a straight line segment (call it τ). Then the trajectories

that are homotopic to τ form a particular homotopy class of non-looping trajectories w.r.t. Si (for

example, in Figure A.1(a), the class to which τ2, and hence τ2, belong are non-looping). However,

for more complex obstacles (like knots), the notion of a non-looping trajectory being a straight

line segment breaks down (See Figure A.1(b)). In fact the notions of looping and non-looping is

imprecise in such cases. In this appendix we show that for the special simple case when Si is an

infinitely long line, the component of the H -signature hi(τ) for a line segment τ lies between −1

and 1. We hence propose the following mathematical definition of a non-looping trajectory,

Definition A.0.1 (Non-looping trajectory w.r.t. Si). In a 3-dimensional configuration space, a

trajectory τ is said to be non-looping w.r.t. Si if hi(τ) ∈ (−1, 1) (as defined in Equation (3.4.11)).

The value is in [0, 1) if the trajectory goes around Si in accordance with the right-hand rule with

thumb pointing along the direction of the current in Si. If the direction is opposite, the value lies

in (−1, 0].

This definition, in many cases, conform to our general intuition of non-looping trajectories. If

another trajectory, τ ′, connecting the same start and end points as a non-looping trajectory τ , goes

on the “other side of the obstacle” without looping around it, then τ t −τ ′ forms a closed loop

that encloses Si. Then, hi(τ t −τ ′) = ±1 = sign(hi(τ t −τ ′)). But since, τ and τ t −τ ′ goes

around Si in the same orientation, we have sign(hi(τ t −τ ′)) = sign(hi(τ)). Again by property of

line integration, hi(τ t−τ ′) = hi(τ)−hi(τ ′). Thus, hi(τ
′) = hi(τ)− sign(hi(τ)). Thus we have the

155

Ĳ
1

Ĳ
2

S
i

Ĳ
2

(a) Trajectory that loops around a skeleton &
one that doesn’t. In this figure hi(τ1) > 1 and
0 < hi(τ2) = hi(τ2) < 1.

τSi

(b) In the most general case, it is difficult to pre-
cisely identify a non-looping homotopy class.

Figure A.1: Looping and non-looping trajectories.

following definition.

Definition A.0.2 (Complementary Homology Class). Given a trajectory τ that is non-looping

w.r.t. all the skeletons in the environment (i.e. hi(τ) ∈ (−1, 1) ∀ i = 1, 2, . . . ,M), we define

the Complementary Homology Class of the class of τ to be the one for which the H -signature is

H(τ)− sign(H(τ)), where sign(·) gives the vector of signs of the elements of its input vector.

We now show that when Si is an infinitely long line, and τ is a line segment, the component of

the H -signature hi(τ) lies between −1 and 1. Making use of the result from Equation (3.4.8), if

the current carrying line segment stretches to infinity in both direction (i.e. it becomes a line), we

have α′ = π
2 and α = −π2 . The virtual magnetic field due to Si at a point r becomes

Bi =
1

4π

2 n̂

‖d‖
=

1

2π

n̂

‖d‖
(A.0.1)

Note that the contribution of the closing curve at infinity (Construction 3.4.3) becomes zero in the

above quantity.

Now consider the straight line segment trajectory τ = rArB . Let the line containing τ (i.e.

formed by extending τ to infinity in both directions) be T (Figure A.2). Consider the shortest

distance between Si and T and let it be D. Assuming Si and T are not parallel, there is a unique

point on each of these line (p and q respectively) that are closest and are separated by the distance

D. The line segment joining the closest points, pq, is perpendicular to both Si and T . The main

diagram of Figure A.2 shows the projection of Si and T on a plane perpendicular to pq. Note that

this plane (the plane of the paper) is parallel to both Si and T , since it is perpendicular to pq.

We define an orthonormal coordinate system with unit vectors î pointing along Si in the direction

of the current, and unit vector k̂ pointing along pq. Using these, and referring to Figure A.2, we

156

�i

l sin ĳ

�k
�j

d

D

�j

S
i firstͲangle projection

(side view)

r dr

�iS
i

firstͲangle projection
(front view)

D �k

l

ĳ
�n

T

p, q

p

q

ȕA

B

Figure A.2: An infinitely long skeleton and h-signature of a straight line segment.

now can write the following equations,

‖d‖2 = D2 + l2 sin2 φ

n̂ = cosβ k̂− sinβ ĵ , dr = (cosφ î + sinφ ĵ) dl
(A.0.2)

where, φ is a constant angle between Si and T on the plane of the paper, cosβ = l sinφ
‖d‖ , sinβ = D

‖d‖ ,

and l is the length parameter along T starting at q. Thus from (A.0.1),

Bi · dr = − 1

2π

sinβ sinφ

‖d‖
dl = − D sinφ

2π

dl

D2 + l2 sin2 φ
(A.0.3)

Thus, ∫
τ

Bi · dr = −D sinφ

2π

∫ lB

lA

dl

D2 + l2 sin2 φ

= − 1

2π

(
arctan

(
lB

D/ sinφ

)
− arctan

(
lA

D/ sinφ

)) (A.0.4)

An arctangent of a quantity, with consideration for proper quadrants, can assume values between

−π and π. Thus the quantity within the outer brackets of Equation (A.0.4), that is the difference of

two arctangents, can assume values between −2π and 2π. Thus the integral
∫
τ

Bi · dr, can assume

values between −1 and 1. Thus, a straight line segment trajectory indeed has the value of hi(τ) in

(−1, 1) for this simple case of infinitely long line Si.

157

Appendix B

Proofs Related to Homology of

Punctured Euclidean Spaces

B.1 Proof of Proposition 4.2.1

Statement of the Proposition: Let O be a compact, locally contractible and orientable sub-

manifolds of RD. Let S be a (D−N)-dimensional compact, locally contractible and orientable sub-

manifolds of O contained in the interior of O such that HD−N (S) u HD−N (O) and HD−N (O,S) u
0. Then the inclusion map i : (RD −O) ↪→ (RD − S) induces an isomorphism i∗:N−1 : HN−1(RD −
O)→ HN−1(RD − S).

Proof. One consequence of O and S being orientable manifolds, and our coefficients being in field

R, is that the homology groups of the spaces are freely and finitely generated (see pp. 198 of [40]).

Given a compact, locally contractible and orientable subset K ⊂ RD, such that the homology

groups of K are finitely and freely generated, consider the following isomorphism,

HD−n(K) u HD−n(K) [Using Corollary 3.3 of [40] and noting that the torsion

subgroups of freely generated groups are trivial.]

u Hn(RD,RD −K) [By Theorem 3.46 of [40].]

u Hn−1(RD −K) [Using the long exact sequence of homology groups

for pair (RD,RD −K), and using contractibility of RD.]

(B.1.1)

Thus, for n = N , setting K = O and K = S, we respectively obtained

HD−N (O) u HN−1(RD −O) and HD−N (S) u HN−1(RD − S)

158

This, along with the given condition, HD−N (O) u HD−N (S), gives the following isomorphism,

HN−1(RD −O) u HN−1(RD − S) (B.1.2)

Now we need to prove that this isomorphism is induced by the inclusion i : (RD −O) ↪→ (RD − S).

Consider the following sequence of isomorphisms,

HN (RD−S,RD−O) u HD−N (O−S) [By setting M = RD − S, K = O − S in

Theorem 3.46 of [40].]

u HD−N
c (O−S) [Since O−S is compact, its cohomology groups are isomorphic

to cohomology with compact support (pp. 242 of [40])]

u lim−−→
U

HD−N (O−S,U−S) [By definition of cohomology with compact support.]

u lim−−→
U

HD−N (O,U) [By excision.]

u HD−N (O,S) [Due to local contractibility of S, U approaches a local

neighborhood of S in the limit, which deformation retracts to S

(see Theorem A.7 and 3.44 of [40]).]

u HD−N (O,S) [Due to trivial torsion sub-groups by hypothesis

(Corollary 3.3 of [40]).] (B.1.3)

In the third isomorphism, U represents an open set in O containing S (thus U −S are open sets in

O−S). The limit is taken over a sequence of such sets, {Uα}, approaching S. The arguments behind

the third to fifth isomorphisms are similar in essence to the ones used in the proof of Alexander

Duality (Theorem 3.44) in [40].

Thus, due to the isomorphism in (B.1.3) along with the given condition HD−N (O,S) u 0, we

have

HN (RD − S,RD −O) u 0 (B.1.4)

Consider the following part of the long exact sequence of homology groups for pair (RD−S,RD−
O),

· · · −→ HN (RD−S,RD−O)
∂∗−→ HN−1(RD−O)

i∗:N−1−−−−→ HN−1(RD−S)
j∗−→ HN−1(RD−S,RD−O) −→ · · ·

We have just shown that HN (RD − S,RD − O) u 0. Thus the image of ∂∗ is 0 in HN−1(RD−O).

By exactness of the sequence, that is the kernel of i∗:N−1.

Now HN−1(RD − O) and HN−1(RD − S) are isomorphic by (B.1.2). Moreover they are freely

and finitely generated. Thus, a homomorphism between them that has a zero kernel must be an

isomorphism. Hence i∗:N−1 is an isomorphism.

159

B.2 Proof of Proposition 4.3.5

Statement of the Proposition: If HN (X) = HN−1(X) = 0, and HD−N (B) = HD−N−1(B) = 0,

then the linking number between cycles ς ∈ ZN−1(A) and µ ∈ ZD−N (Y,B) is uniquely identified by

the value of (i.e. a complete invariant for the linking number is)

(−1)D−N
∫
ς×u

p∗(η0)

where u ∈ ZD−N (Y) is such that j′(u) = µ, with j′ the quotient map Y → Y/B (See Thm.

2.13 of [40] – note that for a given µ, in general, there can be many possible choices for u), and

η0 ∈ ΩD−1
dR (R − {0}) is a closed but non-exact differential form in (R − {0}) such that [η0] ∈

HD−1
dR (R− {0}) u R is a generator of HD−1

dR (R− {0}). .

Proof. By the condition of Proposition 4.3.3, we have already seen using the long exact sequence

for the pair (X,A), that the map ∂∗ : HN (X,A)→ HN−1(A) is invertible.

Similarly, from the long exact sequence for the pair (Y,B), using the condition HD−N (B) =

HD−N−1(B) = 0, the map j′∗ : HD−N (Y)→ HD−N (Y,B) is an isomorphism.

Finally, the contractibility of RD gives us the isomorphism ∂′′∗ : HD−1(RD,RD − {0}) →
HD−1(RD − {0}).

Thus we have the following diagram,

HN (X,A)
∂∗−−⇀↽−−
∂−1
∗

HN−1(A)

× ×
HD−N (Y,B)

j′−1
∗−−−⇀↽−−−
j′∗

HD−N (Y)y× y×
HD(X × Y,A× Y ∪X ×B) HD−N (A× Y)y(−1)D−Np∗

y(−1)D−Np∗

HD(RD,RD − {0})
∂′′∗−−−⇀↽−−−
∂′′−1
∗

HD−1(RD − {0})

Clearly, this diagram commutes since all the horizontal arrows are isomorphisms, and the vertical

arrows represent the same sequence of morphisms for the two columns.

From the diagram, considering the two possible representations for the map HN−1(A) ×
HD−N (Y,B) → HD(RD,RD − {0}), we have the following expressions for linking number of

ς ∈ HN−1(A) and µ ∈ HD−N (Y,B),

L (ς, µ) = (−1)D−N p∗ (∂−1
∗ ς × µ) [By following the sequence marked in red]

= (−1)D−N ∂′′
−1
∗ ◦ p∗ (ς × j′−1

∗ µ) [By following the sequence marked in green]

Now, due to the isomorphism ∂′′∗, a linking number l ∈ HD(RD,RD−{0}) is uniquely identified

by its corresponding element ∂′′∗l ∈ HD−1(RD −{0}). Thus the linking number between ς and µ is

uniquely identified by L(ς, µ)
def.
= ∂′′∗L (ς, µ) = (−1)D−N p∗ (ς × j′−1

∗ µ).

Again, by the Universal Coefficient Theorem, HD−1(RD −{0}) u Hom(HD−1(RD −{0}),R) u

160

R. This, along with the De Rham theorem, implies that the homology class (with coefficients in R)

of any cycle m ∈ ZD−1(RD − {0}) is uniquely identified by the value of the integral
∫
m
η0 (i.e. the

value of the integral is a complete invariant for the homology class of m).

Thus, using the functoriality of homology, the linking number between cycles ς ∈ ZN−1(A) and

µ ∈ ZD−N (Y,B) = ZD−N (Y) is uniquely identified by∫
(−1)D−Np(ς×u)

η0

where u ∈ ZD−N (Y) is such that j′∗([u]) = [µ]. Upon a pullback via p, this integral becomes equal

to

(−1)D−N
∫
ς×u

p∗(η0)

Hence proved.

B.3 Proof of Proposition 4.4.1

Statement of the Proposition: If S̃ =
⋃m
i=1 Si, where each Si is path connected, compact, closed,

locally contractible and orientable (D − N)-dimensional manifold such that Si ∩ Sj = ∅, ∀i 6= j,

then

HN−1(RD − S̃) u
m⊕
k=1

HN−1(RD − Sk) u Rm

The first isomorphism is induced by the direct sum of the inclusion maps ĩk : (ED−S̃) ↪→ (ED−Sk).

Proof. We start by observing that for any p,

(RD − Sp) ∪ (RD − ∪mi=p+1Si) = RD

(RD − Sp) ∩ (RD − ∪mi=p+1Si) = RD − ∪mi=pSi

We thus use the Mayer-Vietoris sequence [40] for the triads (RD, RD − Sp, RD −
⋃m
i=p+1 Si)

for p = 1, 2, · · · ,m− 1. For an arbitrary p, using the contractibility of RD, the part of the sequence

that is of interest to us is,

0 −−→ HN−1(RD−∪mi=pSi)
(ũp∗,ṽp∗)−−−−−−→ HN−1(RD−Sp)⊕HN−1(RD−∪mi=p+1Si)) −−→ 0

(B.3.1)

Due to exactness, the middle map (which is induced by the respective inclusion maps) is an iso-

morphism. Note that ũ1∗ = ĩ1∗ and, ṽ1∗ ◦ ṽ2∗ ◦ · · · ṽ(p−1)∗ ◦ ũp∗ = ĩp∗.

Starting from p = 1, if we successively apply the isomorphism to the second homology group in

161

sequence (B.3.1), we obtain the following sequence of isomorphisms,

HN−1(RD − S̃)
(̃i1∗,ṽ1∗)−−−−−−−−→

u
HN−1(RD − S1)⊕HN−1(RD − ∪mi=2Si))

(̃i1∗ ,̃i2∗,ṽ2∗)−−−−−−−−→
u

HN−1(RD − S1)⊕HN−1(RD − S2)⊕HN−1(RD − ∪mi=3Si))

· · · · · ·
⊕mk=1 ĩk∗−−−−−−−−→

u

m⊕
k=1

HN−1(RD − Sk) (B.3.2)

The fact that this is isomorphic to Rm follows from Equation (4.4.1), where we showed HN−1(RD−
Sk) u R.

162

Appendix C

Proofs Related to Distributed

Optimization

Please refer to Section 6.4.1 for meaning of the notations used in the proves.

C.1 Proof of Theorem 6.4.2

Statement of the Theorem: If the Step Direction, V k, returned by procedure

ComputeStepDirection at the kth iteration in Line 5 of the Algorithm 6.3.1, along with the chosen

Step Size, εk, define a Separable Optimal Flow at W k for Ψrκ , ∀ k, then ∀ k:

{πk1 , . . . , πkN} = argmin{π}

 ∑
i∈NN

c(πi) +
∑

{ij}∈PN
W k
ij · Ωij(πi, πj)



Proof. The theorem clearly holds when for k = 0 since W 0
ij = 0 for all {ij} ∈ PN .

We prove the theorem by induction. Assume it holds for k = 0 through k = κ. We will now

prove that it continues to hold for the k = κ+ 1. By inductive assumption we have:

{πκ1 , πκ2 , · · · , πκN} = argminπ1,π2,··· ,πN

 ∑
i∈NN

ci(πi) +
∑

{ij}∈PN
Wκ
ijΩij(πi, πj)


That is,

πκi = Πi(W
κ), ∀i ∈ NN (C.1.1)

We also note that, by Line 8 of the Algorithm,

πκ+1
j = πκj = Πj(W

κ), ∀ j ∈ NN
−rκ (C.1.2)

163

We prove by contradiction. Let us assume that

{πκ+1
1 , πκ+1

2 , · · · , πκ+1
N } 6= argminπ1,π2,··· ,πN

 ∑
i∈NN

ci(πi) +
∑

{ij}∈PN
Wκ+1
ij Ωij(πi, πj)


This implies that there exist π′1, π

′
2, · · · , π′N given by

{π′1, π′2, · · · , π′N} = argminπ1,π2,··· ,πN

 ∑
i∈NN

ci(πi) +
∑

{ij}∈PN
Wκ+1
ij Ωij(πi, πj)


such that,

π′i = Πi(W
κ+1), ∀i ∈ NN (C.1.3)

and∑
i∈NN

ci(π
κ+1
i) +

∑
{ij}∈PN

Wκ+1
ij · Ωij(πκ+1

i , πκ+1
j) >

∑
i∈NN

ci(π
′
i) +

∑
{ij}∈PN

Wκ+1
ij · Ωij(π′i, π′j) (C.1.4)

Again, by the algorithm, it holds that:

πκ+1
rκ = argminπrκ

crκ(πrκ) +
∑

{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(πκi , πrκ)

 (C.1.5)

Noting that {irκ} ∈ PNrκ ⇒ i ∈ NN
−rκ , and using equation (C.1.2), we get from (C.1.5),

πκ+1
rκ = argminπrκ

(
crκ(πrκ) +

∑
{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(πκ+1

i , πrκ)
)

= argminπrκ

(
crκ(πrκ) +

∑
{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(Πi(W

κ), πrκ)
)

= Πrκ(Wκ+1,Wκ)

⇒ Ψrκ(Wκ+1,Wκ) = crκ(πκ+1
rκ) +

∑
{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(πκ+1

i , πκ+1
rκ) (C.1.6)

Also, from (C.1.3) and (6.4.4),

π′rκ = Πrκ(Wκ+1) = Πrκ(Wκ+1,Wκ+1)

Thus,

Ψrκ(Wκ+1,Wκ+1) = crκ(π′rκ) +
∑

{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(π′i, π

′
rκ) (C.1.7)

164

Thus from (C.1.4), (C.1.6) and (C.1.7), upon rearrangement,∑
i∈NN−rκ

ci(π
κ+1
i) +

∑
{ij}∈(PN−PNrκ)

Wκ+1
ij · Ωij(πκ+1

i , πκ+1
j) + Ψrκ(Wκ+1,Wκ)

>
∑
i∈NN−r

ci(π
′
i) +

∑
{ij}∈(PN−PNrκ)

Wκ+1
ij · Ωij(π′i, π′j) + Ψrκ(Wκ+1,Wκ+1)

⇒
∑

i∈NN−rκ

(
ci(π

κ+1
i)− ci(π′i)

)
+

∑
{ij}∈(PN−PNrκ)

Wκ+1
ij ·

(
Ωij(π

κ+1
i , πκ+1

j)− Ωij(π
′
i, π
′
j)
)

> Ψrκ(Wκ+1,Wκ+1)−Ψrκ(Wκ+1,Wκ) (C.1.8)

On the other hand, according to our inductive assumption, {πκ1 , πκ2 , · · · , πκN} is a minimum for the

global objective function with Wκ. Thus,

U({πκ1 , πκ2 , · · · , πκN},W k) ≤ U({π′1, · · · , π′rκ−1,Πrκ(Wκ,Wκ+1), π′rκ+1, · · · , π′N},W k) (C.1.9)

Now, since V κ is a Separable Flow Direction Direction (Definition 6.4.1) according to our hypothesis,

it holds that Wκ+1
ij −Wκ

ij = V κij = 0 ∀{ij} ∈ PN − PNrκ . Again from (C.1.2) we have πκ+1
j =

πκj ∀j ∈ NN
−rκ . Using these, along with (C.1.1) and (C.1.3), we get from (C.1.9),∑

i∈NN
ci(π

κ
i) +

∑
{ij}∈PN

Wκ
ij · Ωij(πκi , πκj)

≤
∑

i∈NN−rκ

ci(π
′
i) +

∑
{ij}∈(PN−PNrκ)

Wκ
ij · Ωij(π′i, π′j)

+ ci(Πrκ(Wκ,Wκ+1)) +
∑

{irκ}∈PNrκ

Wκ
irκ · Ωirκ(π′i,Πrκ(Wκ,Wκ+1))

⇒
∑

i∈NN−rκ

ci(π
κ
i) +

∑
{ij}∈(PN−PNrκ)

Wκ+1
ij · Ωij(πκi , πκj) + Ψrκ(Wκ,Wκ)

≤
∑

i∈NN−rκ

ci(π
′
i) +

∑
{ij}∈(PN−PNrκ)

Wκ+1
ij · Ωij(π′i, π′j) + Ψrκ(Wκ,Wκ+1)

⇒
∑

i∈NN−rκ

(
ci(π

κ+1
i)− ci(π′i)

)
+

∑
{ij}∈(PN−PNrκ)

Wκ+1
ij ·

(
Ωij(π

κ+1
i , πκ+1

j)− Ωij(π
′
i, π
′
j)
)

≤ Ψrκ(Wκ,Wκ+1) − Ψrκ(Wκ,Wκ) (C.1.10)

Thus from (C.1.8) and (C.1.10),

Ψrκ(Wκ + εκV κ,Wκ + εκV κ) − Ψrκ(Wκ + εκV κ,Wκ)

− Ψrκ(Wκ,Wκ + εκV κ) + Ψrκ(Wκ,Wκ) < 0
(C.1.11)

However this is a contradiction to our assumption that the V κ and εκ defines a Separable Optimal

Flow at Wκ for Ψrκ . Hence our assumption of the existence of {π′1, π′2, · · · , π′N} was incorrect. This

proves Theorem 6.4.2.

165

C.2 Proof of Theorem 6.4.4

Statement of the Theorem: If the Step Direction, V k, returned by the procedure

ComputeStepDirection at the kth iteration in Line 5 of the Algorithm 6.3.1, along with the chosen

Step Size, εk, is an Ascent Flow as well as a Separable Optimal Flow (for the rthk partition) at W k,

for every k, then the Algorithm converges to an optimal solution, if one exists.

Proof. Due to Theorem 6.4.2, the Separable Optimal Flow condition implies that πki =

Πi(W
k), ∀i, k. That means, as we change W , at every iteration we are at the minimum of

U({π},W k) for the chosen W k of that iteration. However that does not guarantee that we will be

gradually minimizing the global objective Ψ(W) := min{π} U({π},W). The Ascent Flow condition

tries to guarantee that.

Due to definition of Ψ, we have,

U({Π(W + εV)},W) ≥ Ψ(W)

Again,

Ψ(W + εV) = U({Π(W + εV)},W) + ε
∑

{ij}∈PN
VijΩij(Πi(W + εV),Πj(W + εV))

Thus, combining the above two,

Ψ(W + εV)−Ψ(W) ≥ ε
∑

{ij}∈PN
VijΩij(Πi(W + εV),Πj(W + εV))

Thus we have,

ε
∑

{ij}∈PN
VijΩij(Πi(W + εV),Πj(W + εV)) > 0 ⇐⇒ Ψ(W + εV) > Ψ(W) (C.2.1)

The last result implies that if V k, along with εk is an Ascent Flow, then in every iteration we take

a step such that Ψ increases.

Again, since U({π},W) is linear in W , from [10] we know that Ψ(W) := min{π} U({π},W) is

concave in W . Moreover we do not have any constraints on the weights, W . Thus Ψ can have

only an unique bounded optimum, which is a maximum. Hence taking steps towards the maximum

means that we will eventually reach the feasible point, if it exists (within errors defined by the Step

Size).

C.3 Proof of Theorem 6.4.5

Statement of the Theorem: If the functions cr and Ωir ∀{ir} ∈ PNr abide by the Problem

Assumptions, we can find an Ascent Flow and a Separable Optimal Flow for the rk
th partition at

W k, if it exists, along with a small enough Step Size, εk, at Lines 5 and 6 of the Algorithm 6.3.1.

166

This can be achieved using only the following quantities that are readily known or computable:

W k, πki ≡ Πi(W
k), ∀i ∈ NN (known from previous iteration),

c
(2)
i (πki), ∀i ∈ NN ,

Ω
(0,2)
ij (πki , π

k
j), Ω

(1,1)
ij (πki , π

k
j) and Ω

(1,0)
ij (πki , π

k
j), ∀{ij} ∈ PN ,

In general we get to choose from a large set of possible Separable Optimal Flows and a large set of

possible Ascent Flows, thus giving us the opportunity to find a common “flow” (V k and εk) from

the two sets.

Proof. Since we are concentrating in computations in kth iteration only, for convenience we will

drop the superscripts and write W ≡W k for the weights in the previous iteration, and thus due to

Theorem C.1, Πi(W) ≡ πki will be the trajectories in the previous iteration.

From the definitions of Ur, Πr and Ψr, by optimality condition, U
(1,0,0)
r (Πr(W1,W2),W1,W2) =

0,

⇒ c(1)r (Πr(W1,W2)) +
∑

{lr}∈PNr

W1,lrΩ
(0,1)
lr (Πl(W2),Πr(W1,W2)) = 0 (C.3.1)

Differenciating (C.3.1) w.r.t. W1, and using Problem Assumption 4.ii.,

c
(2)
r (Πr(W1,W2)) ·

[
Π

(1,0)
r (W1,W2)

]
ij

+∑
{lr}∈PNr

W1,lrΩ
(0,2)
lr (Πl(W2),Πr(W1,W2)) ·

[
Π

(1,0)
r (W1,W2)

]
ij

=

{
Ω

(1,0)
qr (Πk(W2),Πr(W1,W2)), when {i, j} ≡ {q, r} ∈ PNr

0, when i 6= r, j 6= r

Finally, setting W1 = W2 = W , and using (6.4.4) & (6.4.5),(
c
(2)
r (Πr(W)) +

∑
{lr}∈PNr

WlrΩ
(0,2)
lr (Πl(W),Πr(W))

)
·
[
Π

(1,0)
r (W,W)

]
ij

=

{
Ω

(1,0)
qr (Πk(W),Πr(W)), when {i, j} ≡ {q, r} ∈ PNr

0, when i 6= r, j 6= r

=⇒ Mr(W) ·
[
Π

(1,0)
r (W,W)

]
ij

=

{
Ω

(1,0)
qr (Πk(W),Πr(W)), when {i, j} ≡ {q, r} ∈ PNr

0, when i 6= r, j 6= r

(C.3.2)

Similarly, differentiating (C.3.1) w.r.t. W2,

c
(2)
r (Πr(W1,W2)) ·

[
Π

(0,1)
r (W1,W2)

]
ij

+
∑
{lr}∈PNr

W1,lr

(
Ω

(1,1)
lr (Πl(W2),Πr(W1,W2)) ·

[
Π

(1)
l (W2)

]
ij

+ Ω
(0,2)
lr (Πl(W2),Πr(W1,W2)) ·

[
Π

(0,1)
r (W1,W2)

]
ij

)
= 0

167

followed by setting W1 = W2 = W , and using (6.4.4) & (6.4.5),

c
(2)
r (Πr(W)) ·

[
Π

(0,1)
r (W,W)

]
ij

+∑
{lr}∈PNr

Wlr

(
Ω

(1,1)
lr (Πl(W),Πr(W)) ·

[
Π

(1)
l (W)

]
ij

+ Ω
(0,2)
lr (Πl(W),Πr(W)) ·

[
Π

(0,1)
r (W,W)

]
ij

)
= 0

=⇒
(
c
(2)
r (Πr(W)) +

∑
{lr}∈PNr

WlrΩ
(0,2)
lr (Πl(W),Πr(W))

)
Mr(W) ·

[
Π

(0,1)
r (W,W)

]
ij

+
∑
{lr}∈PNr

WlrΩ
(1,1)
lr (Πl(W),Πr(W)) ·

[
Π

(1)
l (W)

]
ij

= 0

(C.3.3)

Adding (C.3.3) and (C.3.2), and using (6.4.5),(
c
(2)
r (Πr(W)) +

∑
{lr}∈PNr

WlrΩ
(0,2)
lr (Πl(W),Πr(W))

)
·
[
Π

(1)
r (W)

]
ij

+
∑
{lr}∈PNr

WlrΩ
(1,1)
lr (Πl(W),Πr(W)) ·

[
Π

(1)
l (W)

]
ij

=

{
Ω

(1,0)
qr (Πk(W),Πr(W)), when {i, j} ≡ {q, r} ∈ PNr

0, when i 6= r, j 6= r

⇒ Mr(W) ·
[
Π

(1)
r (W)

]
ij

+
∑
{lr}∈PNr

WlrNlr(W) ·
[
Π

(1)
l (W)

]
ij

=

{
Ω

(1,0)
qr (Πk(W),Πr(W)), when {i, j} ≡ {q, r} ∈ PNr

0, when i 6= r, j 6= r

(C.3.4)

Equation (C.3.4) can be written as follows,


M1(W) W12N12(W) W13N13(W) · · ·
W21N21(W) M2(W) W23N23(W) · · ·
W31N31(W) W32N32(W) M3(W) · · ·
.
.
.

.

.

.
.
.
.

. . .





[
Π

(1)
1 (W)

]
mn[

Π
(1)
2 (W)

]
mn[

Π
(1)
3 (W)

]
mn

.

.

.

 =



· · ·
0

Ω(1,0)
mn (Πm(W),Πn(W))

0

· · ·
0

Ω(1,0)
mn (Πn(W),Πm(W))

0

· · ·



→ mth row

→ nth row

(C.3.5)

For all {m,n} ∈ PN .

Note: We emphasize that equations (C.3.2) and (C.3.5) gives prescriptions for computing

a. the derivatives of Πr, and,

b. the derivatives of Πr

in terms of

i. Πr,

ii. the derivatives of cr, and,

iii. the derivatives of Ωij .

It is important to note that while the later (i., ii. and iii.) are readily available or computable, the

former (a. and b.) aren’t.

Now we will compute Ψ
(1,1)
r using what we obtained from equations (C.3.2) and (C.3.5).

168

Differentiating (6.4.2) w.r.t. W1 and using the optimality condition that

U
(1,0,0)
r (Πr(W1,W2),W1,W2) = 0,

Ψ(1,0)
r (W1,W2) = U (1,0,0)

r (Πr(W1,W2),W1,W2) ·Π(1,0)
r (W1,W2) + U (0,1,0)

r (Πr(W1,W2),W1,W2)

= U (0,1,0)
r (Πr(W1,W2),W1,W2)

Thus,

[
Ψ

(1,0)
r (W1,W2)

]
ij

=

{
Ωqr(Πk(W2),Πr(W1,W2)), when {i, j} ≡ {q, r} ∈ PNr
0, when i 6= r, j 6= r

(C.3.6)

Differentiating (C.3.6) w.r.t. W2,

[
Ψ

(1,1)
r (W1,W2)

]
ij,mn

=



Ω
(1,0)
qr (Πk(W2),Πr(W1,W2)) ·

[
Π

(1)
k (W2)

]
mn

+

Ω
(0,1)
qr (Πk(W2),Πr(W1,W2)) ·

[
Π

(0,1)
r (W1,W2)

]
mn

when {i, j} ≡ {q, r} ∈ PNr

0, when i 6= r, j 6= r

(C.3.7)

From (C.3.7), using Problem Assumptions 4.ii., then setting W1 = W2 = W , using (6.4.4) & (6.4.5),

we get,

[
Ψ

(1,1)
r (W,W)

]
ij,mn

=


Ω

(1,0)
qr (Πk(W),Πr(W,W)) ·

[
Π

(1)
k (W)

]
mn

− Ω
(1,0)
qr (Πk(W),Πr(W,W)) ·

[
Π

(0,1)
r (W,W)

]
mn

,

when {i, j} ≡ {q, r} ∈ PNr
0, when i 6= r, j 6= r

=


Ω

(1,0)
qr (Πk(W),Πr(W)) ·

[
Π

(1)
k (W)−Π

(1)
r (W)

]
mn

+ Ω
(1,0)
qr (Πk(W),Πr(W)) ·

[
Π

(1,0)
r (W,W)

]
mn

,

when {i, j} ≡ {q, r} ∈ PNr
0, when i 6= r, j 6= r

(C.3.8)

Now using (C.3.2) and (C.3.5), we can compute
[
Ψ

(1,1)
r (W,W)

]
ij,mn

in terms of the quantities

mentioned in the statement of the theorem. It is important to note that the sole purpose of this

treatment was to be able to express the derivatives of Π and Π in terms of computable quantities.

Computing Separable Optimal Flow Direction (Definition 6.4.1): Once we obtain the complete

matrix for Ψ
(1,1)
r (W,W), we can choose a Separable Optimal Flow Direction as a linear combination

of the right eigenvectors corresponding to the non-negative eigenvalues of Ψ
(1,1)
r (W,W), as it is

clear from the first order approximation described below. The step size, ε, is chosen according to a

desired accuracy. Thus, if we choose V = a1e1 + a2e2 + · · · , where e1, e2, · · · are the eigenvectors

169

corresponding to non-negative eigenvalues λ1, λ2, · · · , we get,

Ψr(W + εV,W + εV)−Ψr(W,W + εV)

−Ψr(W + εV,W) + Ψr(W,W)

⇒ (εV)T
[
Ψ

(1,1)
r (W,W)

]
(εV) ≥ 0

' (εV)T
[
Ψ

(1,1)
r (W,W)

]
(εV)

= ε2 (a1e1 + a2e2 + · · ·)T (a1λ1e1 + a2λ2e2 + · · ·)
= ε2 (λ1a

2
1 + λ2a

2
2 + · · ·) ≥ 0

(C.3.9)

We note that all the Vij for which i 6= r, j 6= r does not influnce the condition (C.3.9) since[
Ψ

(1,1)
r (W,W)

]
ij,mn

=0 when i 6= r, j 6= r. Thus we can always choose the V such that Vij = 0, i 6=
r, j 6= r. Also, we note that it is even possible to choose the negative eigenvalues provided the final

combination given in (C.3.9) is non-negative. Thus, within the limits of the error introduced by the

finite step-size ε (which can be either positive or negative), such a choice of V is a Separable Optimal

Flow Direction (if one exists). It is easy to see that if no positive real eigenvalue exists, then there

does not exist a Separable Optimal Flow at W for that particular Ψr. Under such circumstances

we can choose to skip to the next element in the sequence {rk} and retry.

Computing Ascent Direction (Definition 6.4.3): Computing an Ascent Direction is much simpler

and wouldn’t require any of the described computations. The simple assumption of small ε makes

W + εV 'W . Then the approximate condition becomes

ε
∑

{ij}∈PN
VijΩij(Πi(W),Πj(W)) > 0

Thus, after choosing a Separable Optimal Flow Direction, all we need to do is choose the sign of

the step, ε, correctly so that the above condition is satisfied. If the quantity on the left becomes

zero, we choose a different vector from the set of possible Separable Optimal Flow Direction. Thus

finally, V , along with ε, becomes both a Separable Optimal Flow as well as an Ascent Flow.

170

Bibliography

[1] Ali Ahmadzadeh, Gilad Buchman, Peng Cheng, Ali Jadbabaie, Jim Keller, Vijay Kumar, and

George Pappas. Cooperative control of uavs for search and coverage. Proceedings of the AUVSI

Conference on Unmanned Systems, 2006.

[2] Ali Ahmadzadeh, James Keller, George J. Pappas, Ali Jadbabaie, and Vijay Kumar. Critical

cooperative surveillance and coverage with unmanned aerial vehicles. In Vijay Kumar Ous-

samma Khatib and Daniela Rus, editors, International Symposium on Experimental Robotics,

STAR, Rio de Janeiro, July 2006. Springer-Verlag.

[3] William E. Baylis. Clifford (Geometric) Algebras With Applications in Physics, Mathematics,

and Engineering. Birkhuser Boston, 1 edition, 1996.

[4] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2007.

[5] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:Numerical

Methods. Prentice Hall, 1989.

[6] Harry Blum. A Transformation for Extracting New Descriptors of Shape. In Weiant W.

Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380. MIT

Press, Cambridge, 1967.

[7] J.A. Bondy and U.S.R. Murty. Graph theory. Graduate texts in mathematics. Springer, 2007.

[8] R. Bott and L.W. Tu. Differential forms in algebraic topology. Graduate texts in mathematics.

Springer-Verlag, 1982.

[9] Frederic Bourgault, Alexei A. Makarenko, Stefan B. Williams, Ben Grocholsky, and Hugh F.

Durrant-Whyte. Information based adaptive robotic exploration. In in Proceedings IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS, pages 540–545, 2002.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2009.

[11] R.L. Boylestad and L. Nashelsky. Electronic devices and circuit theory:. Prentice Hall, 1996.

[12] F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Networks: A Mathe-

matical Approach to Motion Coordination Algorithms. Applied Mathematics Series. Princeton

University Press, 2009.

171

[13] H.M. Choset. Principles of robot motion: theory, algorithms, and implementation. Intelligent

robotics and autonomous agents. MIT Press, 2005.

[14] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Search-based planning for manipula-

tion with motion primitives. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 2010.

[15] David C Conner, Alfred Rizzi, and Howie Choset. Composition of local potential functions for

global robot control and navigation. In Proc. Int’l Conf. on Intelligent Robots and Systems

(IROS), pages 3546–3551, 2003.

[16] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks.

IEEE Trans. Robot. Autom., 20(2):243–255, April 2004.

[17] Jorge Cortez, S. Martinez, and Francesco Bullo. Spatially-distributed coverage optimization

and control with limited-range interactions. ESIAM: Control, Optimisation and Calculus of

Variations, 11:691–719, 2005.

[18] Jorge Cortez, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for

mobile sensing networks. IEEE Trans. Robot. and Automat., 20(2):243–255, 2004.

[19] H. S. M. Coxeter. Introduction to Geometry. Wiley, New York, 2nd edition, 1969.

[20] B. d’Andrea Novel, G. Campion, and G. Bastin. Control of nonholonomic wheeled mobile

robots by state feedback linearization. The International Journal of Robotics Research, 14(6),

Sept. 1995.

[21] K. Daniel, A. Nash, S. Koenig, and A. Felner. Theta*: Any-Angle Path Planning on Grids.

Journal of Artificial Intelligence Research, 39:533–579, 2010.

[22] Douglas Demyen and Michael Buro. Efficient triangulation-based pathfinding. In AAAI’06:

Proceedings of the 21st national conference on Artificial intelligence, pages 942–947. AAAI

Press, 2006.

[23] J. Desai, J. Ostrowski, and V. Kumar. Modeling and control of formations of nonholonomic

mobile robots. IEEE Transactions on Robotics and Automation, 17(6):905–908, December

2001.

[24] Jaydev P. Desai and Vijay Kumar. Motion planning for cooperating mobile manipulators.

Journal of Robotic Systems, 16:557–579, 1999.

[25] M Bernardine Dias, Robert Michael Zlot, Nidhi Kalra, and Anthony (Tony) Stentz. Market-

based multirobot coordination: a survey and analysis. Proc. of the IEEE, 94(7):1257 – 1270,

2006.

[26] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-

matik, 1:269–271, 1959.

[27] A. Dold. Lectures on algebraic topology. Classics in mathematics. Springer, 2nd edition, 1995.

172

[28] David Ferguson, Christopher R. Baker , Maxim Likhachev, and John M Dolan. A reasoning

framework for autonomous urban driving. In Proceedings of the IEEE Intelligent Vehicles

Symposium (IV 2008), pages 775–780, Eindhoven, Netherlands, June 2008.

[29] Jonathan Fink, M. Ani Hsieh, and Vijay Kumar. Multi-robot manipulation via caging in

environments with obstacles. In IEEE International Conference on Robotics and Automation

(ICRA), Pasedena, CA, May 2008.

[30] Harley Flanders. Differential Forms with Applications to the Physical Sciences. Dover Publi-

cations, New York, 1989.

[31] S.V. Fomin and R.A. Silverman. Calculus of variations. Dover Books on Mathematics. Dover

Publications, 2000.

[32] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Michael Booth, and

Fabrice Rossi. Gnu Scientific Library: Reference Manual. Network Theory Ltd., February

2003.

[33] Brian Gerkey and Maja Mataric. A formal analysis and taxonomy of task allocation in multi-

robot systems. Int’l. J. of Robotics Research, 23(9):939–954, 2004.

[34] Robert Ghrist. Elementary Applied Topology. From

http://www.math.upenn.edu/∼ghrist/notes.html.

[35] Jeremy J. Gray. The hilbert challenge. 2000.

[36] David J. Griffiths. Introduction to Electrodynamics (3rd Edition). Benjamin Cummings, 1998.

[37] D. Grigoriev and A. Slissenko. Polytime algorithm for the shortest path in a homotopy class

amidst semi-algebraic obstacles in the plane. In ISSAC ’98: Proceedings of the 1998 interna-

tional symposium on Symbolic and algebraic computation, pages 17–24, New York, NY, USA,

1998. ACM.

[38] Eric A. Hansen and Rong Zhou. Anytime heuristic search. Journal of Artificial Intelligence

Research (JAIR), 28:267–297, 2007.

[39] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of

minimum cost paths. IEEE Transactions on Systems, Science, and Cybernetics, SSC-4(2):100–

107, 1968.

[40] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[41] John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homotopy

class. Comput. Geom. Theory Appl, 4:331–342, 1991.

[42] Dennis W. Hong, Shawn Kimmel, Rett Boehling, Nina Camoriano, Wes Cardwell, Greg Jan-

naman, Alex Purcell, Dan Ross, and Eric Russel. Development of a Semi-Autonomous Vehicle

Operable by the Visually Impaired. pages 455–467. 2009.

173

[43] J.X. Hong. Isometric embedding of Riemannian manifolds in Euclidean spaces. Mathematical

surveys and monographs. American Mathematical Society, 2006.

[44] M. A. Hsieh and V. Kumar. Pattern generation with multiple robots. In IEEE International

Conference on Robotics and Automation, Orlando, FL, May 2006.

[45] M. A. Hsieh, S. Loizou, and V. Kumar. Stabilization of multiple robots on stable orbits via

local sensing. In IEEE International Conference on Robotics and Automation, Rome, Italy,

May 2007.

[46] Anil K. Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1989.

[47] J. Jost. Compact Riemann Surfaces. Springer-Verlag, 1997.

[48] J. Jost. Riemannian Geometry and Geometric Analysis. Springer, 2008.

[49] Nejat Karabakal and James C. Bean. A multiplier adjustment method for multiple shortest

path problem. Technical report, The University of Michigan, June 1995.

[50] Lydia E. Kavraki, Petr Svestka, Lydia E. Kavraki Petr Vestka, Jean claude Latombe, and

Mark H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration

spaces. IEEE Transactions on Robotics and Automation, 12:566–580, 1996.

[51] Pradeep Khosla and Richard Volpe. Superquadric artificial potentials for obstacle avoidance

and approacb. In Proc. of the IEEE Intl. Conf. on Robot. and Autom., Philadelphia, Apr 1988.

[52] J. O. Kim and P. K. Khosla. Real-time obstacle avoidance using harmonic potential functions.

Robotics and Automation, IEEE Transactions on, 8(3):338–349, Jun 1992.

[53] A.G. Kovalev. Vector bundles. 2007. From http://www.dpmms.cam.ac.uk/∼agk22/.

[54] Andrea L’Afflitto and Cornel Sultan. Calculus of variations for guaranteed optimal path plan-

ning of aircraft formations. pages 1972–1977, May 2010.

[55] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.

Available at http://planning.cs.uiuc.edu/.

[56] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning, 1998.

[57] Maxim Likhachev and Anthony Stentz. R* search. In Proceedings of the National Conference

on Artificial Intelligence (AAAI), 2008.

[58] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28:129–137,

1982.

[59] Savvas G. Loizou and Kostas J. Kyriakopoulos. Closed loop navigation for multiple holonomic

vehicles. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 2861–2866,

2002.

174

[60] Gabriel A. D. Lopes and D. E. Koditschek. Navigation functions for dynamical, nonholonom-

ically constrained mechanical systems. Springer Advances in Robot Control, 2006.

[61] J. P. May. A Concise Course in Algebraic Topology. The University of Chicago Press, 1999.

[62] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov, Scott Et-

tinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard Huhnke, Doug Johnston, Stefan

Klumpp, Dirk Langer, Anthony Levandowski, Jesse Levinson, Julien Marcil, David Orenstein,

Johannes Paefgen, Isaac Penny, Anna Petrovskaya, Mike Pflueger, Ganymed Stanek, David

Stavens, Antone Vogt, and Sebastian Thrun. Junior: The stanford entry in the urban chal-

lenge. J. Field Robot., 25(9):569–597, September 2008.

[63] James Munkres. Topology. Prentice Hall, 1999.

[64] Diego A. Murio. The Mollification Method and the Numerical Solution of Ill-Posed Problems.

Wiley-Interscience, 1993.

[65] J. F. Nash. The imbedding problem for riemannian manifolds. Annals of Mathematics,

63(1):20–63, 1956.

[66] I. Necoara and J.A.K. Suykens. Interior-point lagrangian decomposition method for separable

convex optimization. Journal of Optimization Theory and Applications, 143:567–588, 2009.

[67] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira. Sensing and coverage for a

network of heterogeneous robots. In Proc. of the IEEE Conf. on Decision and Control, pages

3947–3952, Cancun, Mexico, December 2008.

[68] Arlan Ramsay and Robert D. Richtmyer. Introduction to Hyperbolic Geometry. Springer, 1995.

[69] E. Rimon and D.E. Koditschek. The construction of analytic diffeomorphisms for exact robot

navigation on star worlds. Trans. of the American Mathematical Society, 327(1), Sept. 1991.

[70] E. Rimon and D.E. Koditschek. Exact robot navigation using artificial potential fields. IEEE

Transactions on Robotics and Automation, 8(5):501–518, 1992.

[71] Joseph J. Rotman. An Introduction to Algebraic Topology. Springer, 1988.

[72] Walter Rudin. Real and complex analysis, 3rd ed. McGraw-Hill, Inc., New York, NY, USA,

1987.

[73] Sikandar Samar, Stephen Boyd, and Dimitry Gorinevsky. Distributed estimation via dual

decomposition. 2007.

[74] Conrad Sanderson. Armadillo: An open source c++ linear algebra library for fast prototyping

and computationally intensive experiments. Technical report, NICTA, 2010.

[75] E. Schmitzberger, J.L. Bouchet, M. Dufaut, D. Wolf, and R. Husson. Capture of homotopy

classes with probabilistic road map. In International Conference on Intelligent Robots and

Systems, volume 3, pages 2317–2322, 2002.

175

[76] M. Schwager, J. McLurkin, and D. Rus. Distributed coverage control with sensory feedback

for networked robots. In Proc. of Robot.: Sci. and Syst., Philadelphia, PA, August 2006.

[77] M. Schwager, J. E. Slotine, and D. Rus. Decentralized, adaptive control for coverage with

networked robots. In Proc. of the IEEE Intl. Conf. on Robot. and Autom., pages 3289–3294,

Rome, Italy, April 2007.

[78] H. Seifert, W. Threlfall, J.S. Birman, and J. Eisner. Seifert and Threlfall, A textbook of topology.

Pure and applied mathematics. Academic Press, 1980.

[79] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD thesis, University of Freiburg,

Freiburg, Germany, April 2006.

[80] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using rao-

blackwellized particle filters. In Proc. of Robot.: Sci. and Syst., pages 65–72, Cambridge, MA,

June 2005.

[81] A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 1652–1659, 1995.

[82] J. Stoer and R. Bulirsch. Introduction to numerical analysis. Texts in applied mathematics.

Springer, 2002.

[83] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent Robotics

and Autonomous Agents). The MIT Press, 2005.

[84] Benjamn Tovar, Fred Cohen, and Steven M. LaValle. Sensor beams, obstacles, and possible

paths. In Workshop on the Algorithmic Foundations of Robotics, pages 317–332, 2008.

[85] Christopher Urmson, Joshua Anhalt, Hong Bae, J. Andrew (Drew) Bagnell, Christopher R.

Baker , Robert E Bittner, Thomas Brown, M. N. Clark, Michael Darms, Daniel Demitrish,

John M Dolan, David Duggins, David Ferguson, Tugrul Galatali, Christopher M Geyer, Michele

Gittleman, Sam Harbaugh, Martial Hebert, Thomas Howard, Sascha Kolski, Maxim Likhachev,

Bakhtiar Litkouhi, Alonzo Kelly, Matthew McNaughton, Nick Miller, Jim Nickolaou, Kevin

Peterson, Brian Pilnick, Ragunathan Rajkumar, Paul Rybski, Varsha Sadekar, Bryan Salesky,

Young-Woo Seo, Sanjiv Singh, Jarrod M Snider, Joshua C Struble, Anthony (Tony) Stentz,

Michael Taylor , William (Red) L. Whittaker, Ziv Wolkowicki, Wende Zhang, and Jason Ziglar.

Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field

Robotics Special Issue on the 2007 DARPA Urban Challenge, Part I, 25(1):425–466, June 2008.

[86] Eric W. Weisstein. Cayley-Klein-Hilbert Metric. MathWorld–A Wolfram Web Resource.

[87] Milos Zefran. Continuous methods for motion planning. PhD thesis, University of Pennsylvania,

Philadelphia, PA, USA, 1996. Supervisor-Vijay Kumar.

[88] H. Zhang, V. Kumar, and J. Ostrowski. Motion planning under uncertainty. In IEEE Inter-

national Conference on Robotics and Automation, Leuven, Belgium, May 16-21 1998. IEEE.

176

[89] Yan Zhou, Bo Hu, and Jianqiu Zhang. Occlusion detection and tracking method based on

bayesian decision theory. In Long-Wen Chang and Wen-Nung Lie, editors, Advances in Image

and Video Technology, volume 4319 of Lecture Notes in Computer Science, pages 474–482.

Springer Berlin / Heidelberg, 2006.

177

	Introduction
	Configuration Spaces
	Continuous Approaches to Robot Motion Planning
	The Discrete Approach

	Contributions of this Thesis

	Preliminaries
	Basic Algebraic Topology
	Background: Point-set Topology
	Motivation of Algebraic Topology
	Formal Description of Homology
	Properties of Homology
	Cohomology

	Elementary Riemannian Geometry
	Manifolds, Coordinate Charts, Atlases and Tangent Space
	Riemannian Metric, Geodesics and Curvature

	Graph Search Algorithms
	Dijkstra's Algorithm
	A* Algorithm

	Search-based Path Planning with Topological Constraints in 2 and 3 Dimensional Euclidean Spaces
	Introduction
	Motivation: Homotopy Classes of Trajectories
	Capturing Topological Information in Search-based Planning
	H-signature as Class Invariants for Trajectories

	Homotopy and Homology Classes of Trajectories
	H-signature in 2-dimensional Euclidean Configuration Space
	Background: Complex Analysis
	Designing a H-signature
	Computation for a Line Segment

	H-signature in 3-dimensional Euclidean Configuration Space
	Background: Electromagnetism
	Designing a H-signature
	Computation for a Line Segment

	H-signature Augmented Graph
	Uses of the H-signature Augmented Graph
	Theoretical Analysis

	Results
	Two-dimensional Configuration Space
	Three-dimensional Configuration Space

	Identification of Homology Classes in Euclidean Spaces with Punctures
	Introduction
	Simplifying the Problem by Taking (D-N)-dimensional Equivalents of Obstacles
	Reduced Problem Definition

	Preliminaries on Linking Numbers
	Definitions
	Propositions on Linking Number
	Computation of Intersection/Linking Number for Given Cycles

	Computation in Our Specific Problem
	Computation of the integral in S
	Incorporating Multiple Connected Components of S"0365S

	Validations in Low Dimensions
	D=2,N=2 :
	D=3,N=2 :
	D=3,N=3 :

	Examples and Applications
	An Example for D=5,N=3
	Exploring Paths in Different Homotopy Classes in a 4-dimensional Space

	From Homology to Homotopy
	Results

	Coverage and Exploration Using Search-based Methods
	Introduction
	Background: Coverage Functional, Voronoi Tessellation and Continuous-time Lloyd's Algorithm
	Generalization to non-Euclidean Distance Function
	Graph-search Based Lloyd's Algorithm
	Graph-search Based Voronoi Tessellation
	Algorithm for Tessellation and Control Computation
	Overall Algorithm: Adapted Lloyd's Algorithm
	Results

	Application to Simultaneous Coverage and Exploration Problem
	Entropy as Density Function
	Entropy-Based Metric
	Time Dependence of Entropy, Coverage, and Convergence
	Results

	Dimensional Decomposition for Efficient Planning
	Motivation
	Problem Definition
	The Optimization Problem
	Problem Assumptions

	The Algorithm
	Theoretical Analysis
	Notations and Preliminaries
	Theorems

	Discrete Solution for the Sub-problems
	Basic Graph Construction
	Product with Task Graph

	Results
	An Exact Implementation
	A Discrete Implementation
	Additional Complexity with Tasks

	Coordinate Transformation for Efficient Optimal Planning in Environments with Non-Euclidean Metric
	Introduction and Motivation
	Problem Definition
	A Motivating Example in Two Dimensions

	Embeddings in Euclidean Spaces
	Isometric Embedding in Euclidean Space
	Non-isometric Embedding with Geodesics Mapping to `Straight Lines'

	Orthogeodesic Embedding of Spaces of Constant Intrinsic Curvatures
	Motivating Example: Gnomonic Projection of Half-sphere
	Klein-Beltrami Model of the Hyperbolic Plane
	Coordinate Charts that Induce Orthogeodesic Embedding

	Conclusion
	Looping and Non-looping trajectories in 3-dimensional Configuration Space
	Proofs Related to Homology of Punctured Euclidean Spaces
	Proof of Proposition 4.2.1
	Proof of Proposition 4.3.5
	Proof of Proposition 4.4.1

	Proofs Related to Distributed Optimization
	Proof of Theorem 6.4.2
	Proof of Theorem 6.4.4
	Proof of Theorem 6.4.5

