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Abstract 
 
In the present paper a simple, yet ingenious and accurate structural approach towards pattern 
recognition has been proposed, which can satisfactorily consider transformations on the 
image like translation, rotation, scaling and local & global deformations. The algorithms 
developed in the present work are inspired by an understanding and analysis of the way in 
which information about patterns are stored and accessed in a biological brain. The 
algorithm, though purely based on simple geometric and statistical tools, gives very 
satisfactory results. On the basic framework of the present algorithm application of Neural 
Network models and Genetic Algorithms can produce a much more fast and robust method 
for pattern recognition. 
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1   INTRODUCTION 
 
Taking a brief look at the history of Pattern Recognition we may find that after an early quest 
on pure structural approach to pattern recognition, the problem has much been influenced by 
modern soft computing techniques [5] like Fuzzy Logic, Neural Networks and Genetic 
algorithm. Fuzzy Logic has been an important and effective tool for matching of patterns 
with considerable amount of deformations and variations. Many works used Fuzzy Sets and 
Fuzzy Logic as tools for Pattern recognition with highly satisfactory results [6-12]. With the 
development of neural computing tools, the application of Neural Network has vastly found 
its place in the field of Pattern Recognition [13-16]. Neural Network models along with 
Fuzzy sets have proved to be highly effective in increasing the speed and robustness of the 
process [17]. 
 
However, the present work proposes a purely structural approach. Even without the 
application of such soft computing tools the present work gives quite satisfactorily results. As 
a continuation of this work, there are scopes of making radical improvements on the 
performance of the present algorithm by application of such modern soft computing tools. As 
for example, though in the present work Fuzzy Logic hasn’t been used actively, there are 
scopes for its use at several places in the algorithm where decisions have been made. This 
may definitely make considerable improvement on the performance. Moreover we may also 
try to make improvements on the robustness and speed of the present algorithm by feeding 
the results obtained from the algorithm to a suitably designed Neural Network. However 
these are out of the scope of the present work. 
 
The basic principle of the present algorithm for pattern recognition is based on an 
understanding and analysis of the way in which information about patterns are generally 
stored and accessed in a biological brain. This analysis used here is more of a hypothesis, and 
its rigorous proof is out of scope of the present work. The following paragraph makes a brief 
discussion on the result of this analysis and tries to explain the manner in which our brain 
attempts to remember and recognize a pattern. 
According to the present analysis, the biological brain can never remember a pattern exactly, 
i.e., it can’t store information of an image pixel by pixel (here pixel may be defined as the 
smallest picture element visible to the biological eye distinctly). Rather, what it tries to do is 
to mark some characteristic points in the pattern whenever it encounters a new pattern. Then 
it tries to remember the patterns local to those characteristic points and their relative 
positioning in the whole pattern with respect to each other. 
In the present algorithm for pattern recognition we approach in exactly the above mentioned 
manner. Whenever a new pattern is encountered, the algorithm tries to mark some 
characteristic points in the pattern, remembers the pattern local to those points, and the 
relative positioning of those characteristic points. In this way it develops a database of 
standard patterns. 
Finally when the time for recognizing an unknown pattern comes, it searches for closest 
match for those characteristic points inside the new pattern on the basis of minimum 
deviation in Local Patterns. Once the closest matches for the characteristic points are 
obtained, the relative positioning of the points in the respective patterns are checked for 
consistency. The error in the comparison between the relative positioning, together with the 
errors in the Local Patterns give a measure of difference of that particular database pattern 
from the unknown pattern. The database pattern with minimum value of the difference gives 
the required match. 



What precisely has been done in the algorithm is as follows. There are n Characteristic Points 
Q1, Q2, …, Qn in a Database Pattern. The corresponding closest matches (minimum difference 
in Local Pattern) in the Unknown Pattern be S1, S2, …, Sn . In the process let the determined 
differences in the Local Patterns be e1, e2, …, en respectively. Now it is checked if the 
arrangement of the points Q1, Q2, …, Qn among themselves matches with the arrangement of 
S1, S2, …, Sn among themselves. εu,v is a measure of difference in this arrangement. The two 
measure of differences, ei and εu,v, together gives a measure of difference between the two 
patterns, which in turn is the decisive factor for the conclusion. 
 
The following diagram shows how the seven points in a database pattern found their closest 
matches in the new pattern. They differ by their relative positioning and deformed local 
patterns: 

 
fig – 1 

 
The excellence of the algorithm lies in the fact that it attempts to exploit the method of 
pattern recognition in biological brain using a simple structural approach rather than creating 
the whole neural system artificially for vision and pattern recognition. Moreover the 
algorithm provides quite a few number of control parameters which gives lots of flexibilities 
to the working of the algorithm, making it suitable for a wide range of patterns. 
 
 



Symbols and Notations 
 

AΠ    Pattern A. 
Λε(P)   Local Pattern around point P. 
[x]y   The value closest to x which is a multiple of  y. 
{Ri}   Set of all points Ri, for all ‘relevant’ values of i. 
a (± b)   a or a±b. That is,  a-b or a or a+b. 

BA Π−Π∆   Difference between patterns AΠ  and BΠ . 

}{,}{, ii NM BA Π−Π∆  Difference between pattern AΠ  with Characteristic Points {Mi} and 
pattern  with corresponding match for Characteristic Points {Ni}. BΠ

 
 

Nomenclature of Parameters 
 
ε0  Local Pattern radius in Normalized scale 
φ   Exponential weight of Relative Positioning error over Local Pattern error 
η  Selection proportion exponent 
εthresh  Maximum allowable error in relative positioning 
p%  Minimum allowable proportion of points with high relative positioning error 
Uthreshold Maximum allowable irregularity in differences with the members of a class 
r0  Minimum Search Circle radius 
kr  Search Circle centre eccentricity factor for radius 
 
 
 
 
List of captions for figures: 
 
Fig - 1 Overview of the main working principle of the present algorithm. 

Fig - 2 The CG-PD coordinate system for the shown pattern. 

Fig - 3 Generation of the 8-valued local pattern about the point P as shown (The odd and even sectors are 
shown in dark and light grey colors). 

Fig - 4 Searching around  in the Unknown Pattern to obtain Si as the closest match for Qi . 
'
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2   THE ALGORITHM 
 
2.1   Initial definitions, hypothesis and preprocessing tools for the algorithm 
 
2.1.1   Representation of the ‘raw’ pattern 
 
A pattern  of size  pixels may be defined as a matrix of size  which contains 
a single layer of intensity level information for the pixels. Let the intensity layer matrix be 
represented by Π . For multicolored patterns the calculations for the other layers will follow 
in similar fashion. The elements of that matrix 

)(Π pm× pm×

Π  are represented as jkπ  (0 ≤ jkπ ≤ 1) and 
stores the intensity information of the (j, k)th pixel, where j and k are the discretized variables 
along the global axis directions X and Y. Henceforth a Database Pattern will be represented 
by  and an Unknown/New Pattern by DΠ UΠ . 
 
2.1.2   Defining a Local Coordinate System – The CG-PD coordinate system 
 

 
 

fig - 2 

For reduction of time complexity of the algorithm and various 
other purposes, a coordinate system local to the pattern was 
needed to be defined. This coordinate system should be fixed 
to the pattern, i.e. the position of the points on the pattern in 
this local coordinate system should not change with the change 
in the global coordinate system. 
Such property in local coordinate system is exhibited by the 
Centre of gravity – Principal Direction (CG-PD) Coordinate 
System [2]. 

The CG-PD coordinate system was determined for various patterns with different 
transformations on the intensity matrix, and the matrix of the complement elements was 
found to give best results. This is mainly because of a high intensity background for the 
patterns. The intensity matrix may be chosen directly instead for patterns with low intensity 
background. 
Let that local coordinate system be defined by the origin C, and the pair of axis x and y. 
Let jkjk ππ −= 1 . 
Hence the origin of the CG-PD coordinate system is defined as, 
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And the direction Pθ  made by the local x axis with the global X axis is given by, 

XXYY

XY
P II

I
−

=
22tan θ       (2) 

where,  ( )∑∑
= =

−=
m

j

p

k
jkYXX CkI

1 1

2 π ,   ( )∑∑
= =

−=
m

j

p

k
jkXYY CjI

1 1

2 π  



and ( )( )∑∑
= =

−−=
m

j

p

k
jkYXXY CkCjI

1 1
π  are second moments of pixel intensities [2]. 

It may be noted that from the above definition two values of Pθ  in (-π, π] are obtained. By 
convention, the one about which the second moment of pixels intensities on the top-right 
(first) quadrant is less than that on the bottom-left (third) quadrant may be chosen. 
 
Hence, the transformation from global X-Y coordinate system to the local x-y coordinate 
system is given by, 
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2.1.3   Normalization of a Pattern – Normalized CG-PD coordinate system 
 
In order to make the patterns (both the database and the unknown patterns) independent of 
scale, the coordinates of points on the patterns in their CG-PD coordinate system need to be 
divided by some normalization factors. 
These normalization factors along x and y directions may be satisfactorily defined as, 
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where, the double-summation is done over the whole of the pattern Π . 
 
Hence, finally the normalized coordinates are given by, 
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It can be noted that the Normalization done in the above mentioned method will work 
satisfactorily even in presence of unwanted noises in the pattern. 
 
 
2.1.4   Local Pattern around a point ‘P’ in the pattern 
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For defining the local patterns around a point P: 
• A circle of radius ε is taken around the point P, 
• The circle is divided into 8 sectors, 
• The weighted mean of the intensities of the pixels lying 

within each sector are determined, 
• The weights being any suitable monotonically 

decreasing function of the distance of the pixel from P. 

 
The sectors of the circle are created with respect to the global coordinate system, i.e. the 8 
lines forming the sectors are aligned at angles of 00, 450, …, 3150 with the global X axis. This 
is done to reduce computational complexity. 



As a measure of the local pattern around a point P, we obtain 8 values (the 8 weighed means 
corresponding to the 8 sectors) corresponding to the point: 
∴Local Pattern (P) = Λε(P) = [P1 P2 P3 P4 P5 P6 P7 P8] 
The radius ε will logically depend on the scale of the pattern. It can be satisfactorily chosen to 
be yx ff⋅= 0εε , where 0ε  is a constant value. 
 
 
2.1.5   Rotation Quantization Hypothesis 
 
The reason for taking 8 sectors with respect to the global coordinate system and how that can 
account for the rotation effects in the local pattern can be explained by a hypothesis. 
The hypothesis: ‘effect of rotation gets quantized as the size or resolution of the pattern 
decreases, i.e. it is sufficient to check only a few angles of rotation for considering the 
rotational effects while matching two patterns when the size of the patterns are sufficiently 
small or the patterns are  themselves quantized ’. 
This can be demonstrated easily by considering small patterns. Let’s consider a 1x1 pattern 
(i.e. a pixel) which has only one step of rotation possibility (i.e. the pixel itself). For a 2x2 
pattern it is sufficient to consider 4 steps of rotation (00, 900, 1800 and 2700). For 3x3 pattern 
8 steps are sufficient. And so on. 
Hence, it may be argued, by taking sufficiently small value for 0ε  the 8-valued Local Pattern 
Vector can satisfactorily account for rotation effects in the local patterns. 
The reason behind taking 8 sectors (i.e. maximum 8 steps of rotation consideration) is that it 
is the highest number of equally spaced sectors that can be handled in a computationally 
efficient way without any floating point operation. 
 
 
2.2   Remembering the Pattern – creating the database 
 
Each pattern in the database ( ) is hence stored as, lD ,Π

i. The coordinates of some characteristics points in the normalized CG-PD coordinate 
system of the pattern. Let these points be called Q1, Q2, …, Qn . (The characteristic 
points may be chosen to be some equally spaced points in the Normalized CG-PD 
coordinates of the pattern.) 

ii. And, 8-element vectors corresponding to each of these characteristic points which 
define their Local Patterns in the Normalized CG-PG coordinate system, i.e. Λε(Q1), 
Λε(Q2),…, Λε(Qn). 

 
 
2.3   Comparing a database pattern with an unknown pattern 
 
2.3.1   Preprocessing the Unknown Pattern 
 
Though this process is somewhat computationally expensive, it needs to be done only once 
and need not be performed before comparing with each of the patterns in the database. 
The following steps are performed to pre-process the unknown pattern UΠ . 

i. Determination of the CG-PD coordinate system. This includes calculation of CX, CY 
and Pθ . 



ii. Determination of the Normalization factors fx and fy. Hence determine the Normalized 
CG-PD coordinate system. 

iii. Determination of Local Pattern of some randomly selected points distributed over the 
whole of the unknown pattern. Ideally we should have determined Local Pattern of all 
the points in the pattern. But for reducing computational complexity we can 
satisfactorily restrict our search operation (described next) to around 50% of all the 
points in the unknown pattern, selected randomly. 

 
 
2.3.2   The Search Process 
 
Next, the closest matches of the Characteristic Points of the Database Pattern ( ) are 
needed to be searched for inside the Unknown Pattern (

lD ,Π

UΠ ). Moreover, In order to consider 
the rotational effect in the local patterns, searches need to perform by rotating the Local 
Patterns suitably. This is the most time-expensive process. Hence, in order to minimize the 
time complexity of the search process we make two hypotheses: 
 
Hypothesis – I : 
It can logically be argued that if the two patterns are exactly similar (i.e. one can be 
superimposed on another after suitable rotation, translation and scaling) then the coordinates 
of a particular characteristic point in the Normalized CG-PD coordinate system of either of 
the patterns will be the same. This is very evident. 
Hence we may say, if the Unknown Pattern differs from the Database Pattern moderately, 
then the coordinates of a particular Characteristic Point in the Database Pattern in its 
Normalized CG-PD coordinate system will have its closest match in the Unknown Pattern 
somewhere near the same coordinate in the Normalized CG-PD system of the Unknown 
Pattern. So it will be satisfactory if we restrict our search within a circle of radius ‘r’ near the 
coordinate of the Characteristic Point we are searching for. In fact, this provides a better 
result than searching over the whole Pattern because this eliminates the possibility of error 
due to similarity in Local Pattern at two or more places in the Pattern. 
 
Hypothesis – II : 
Similarly it can also be argued that if the two patterns are exactly similar then the angle of 
rotation on the database Local Patterns required while performing the search is 

DU ΠΠ∆ −= ,, PP θθθ . Again assuming moderate deviation of the angle of rotation of Local 
Patterns from this value, we restrict our rotational search to a few quantized values of angle 
around ∆θ  that can be achieved by just rotation of the Local Pattern vectors. In practice, the 
search for rotation in local patterns is done by angles [ ∆θ  - 450]45, [ ∆θ  ]45 and [ ∆θ  + 450]45, 
where [x]45 represents the value closest to x which is a multiple of 45. The reason behind 
choosing 45 is that while finding the Local Pattern the circle around a point was divided into 
8 sectors. 
 
Now the search process will be described with a particular Database Pattern  in the 
Unknown Pattern . At a time only one angle of rotation in the Local Patterns is 
considered. Let’s say the search is being done by considering a rotation of [

lD ,Π

UΠ

∆θ  (±450)]45 in 
the Local Patterns. Let the set of Characteristic Points in the Database Pattern  be {Q1, lD ,Π



Q2,…, Qn} Let the coordinates of the ith point (Qi) in the Normalized CG-PD coordinate 
system of the Pattern be . ),( ,, iNiN yx
 
The following steps are performed to find the closest match of a characteristic point Qi in the 
Unknown Pattern  assuming a rotation of [UΠ ∆θ  (±450)]45 in Local Pattern: 

 
fig -- 4 

 
i. The point  with coordinates  in the 

Normalized CG-PD coordinates of Unknown Pattern 

'
iQ ),( ,, iNiN yx

UΠ  is marked. 
 

ii. All the points whose Local Patterns have been 
determined in the Preprocessing step and which lie 
inside a search circle of radius r = r0 + kr|CQi| 
(measured in the Normalized CG-PD units, and |CQi| 
being the dist between C and  in ) around  
in 

'
iQ UΠ '

iQ

UΠ  are considered. 

iii. Next, the Local Pattern of each of these points are compared with the Local Pattern of 
Qi rotated by [ ∆θ  (±450)]45 degrees. This rotation can be conveniently done by just 
pushing the Local Pattern Vector Λε(Qi) by ( [ ∆θ  (±450)]45 / 45 ) elements. Hence 
rotation of Λε(P) = [P1 P2 P3 P4 P5 P6 P7 P8] by 90 degrees may give something like 
[P7 P8 P1 P2 P3 P4 P5 P6]. 
The comparison can be done on the basis of the value of summation of the squares of 
the differences in the corresponding elements of the two vectors, i.e., difference 
between Λε(M) and Λε(N) is the dot-product (Λε(M) - Λε(N)). (Λε(M) - Λε(N)). 
 

iv. The point with the minimum value of the sum-square-difference is considered as the 
closest match for the point Qi in UΠ . Let’s call this point  . 

45
0 )]45([

,
±∆θiS

 
Hence corresponding to a particular point Qi and for a particular rotation considered in the 
Local Pattern a point Si is obtained in UΠ  which have the closest match in Local Pattern with 
Qi with that particular rotation being considered. 
Hence, corresponding to the n Characteristic Points Qi (i=1 to n) in lD ,Π , 3 sets of n points in 

 are obtained (for each of the 3 angles of rotation). Let these 3 sets be called { } , 

 and { }  for the three angles of rotation respectively. 
UΠ

45
0 ]45[ −∆θiS

{ }
45][ ∆θiS

45
0 ]45[ +∆θiS

 
For demonstration of the next step of calculation, the set {Qi} (i=1 to n) and any one of the 
sets of corresponding closest match points {Si} (i=1 to n) are considered. 
Let the difference (i.e. the sum-square-difference) in the Local Patterns in the corresponding 
points of the two sets be e1, e2, …, en respectively. 



2.3.3   Checking the relative positions  
 
Now, the two sets of n points, {Qi}and {Si}, which are the corresponding points of the two 
patterns are needed to be tested for consistency in relative positioning in the two Patterns. 
For this purpose, the properties of Complex Numbers can be utilized so that the effects of 
translation, rotation and scaling in the positioning of the patterns can be easily considered 
without even taking the CG-PD system as our coordinate system. This process, which allows 
dealing with the global coordinates of the points rather than the CG-PD coordinates, reduces 
the time complexities to a great extent. 
 
Let the points in {Qi} be represented by complex numbers q1, q2, …, qn and those in {Si} be 
represented by s1, s2, …, sn in some reference coordinate system of real & complex axes 
(these need not be the CG-PD coordinate systems, and qi & si can be represented in 
independent coordinate systems. For example, the global coordinate system of the screen may 
be chosen to represent the complex numbers). 
Now, using the elementary properties of complex numbers, it can be stated that if the two 
patterns are exactly similar and the corresponding points in {Si} are obtained by just suitable 
affine transformation of points in {Qi} (i.e. one can be superimposed on another after suitable 
rotation, translation and scaling), then the quantity, 
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is constant for all u and v,  u ≠ v. 
 
But because of difference in the patterns, different values of vu ,ρ  are obtained. The measure 
of this error in positioning can be expressed by a convenient non-dimensional complex 
expression (or rather a vector with two elements), 
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))(inf())(sup()( ,, vuvu ArgArgArg ρρρ −=∆ , where sup(x) is supremum and inf(x) is infimum 
of the set of all possible values of x (i.e. all vu ,ρ  for all possible u and v in this case), 
and,  f is a suitable monotonically increasing even function. We chose f(a) = a2. 
 
The real and complex parts of εu,v  give the errors in the relative spacing and relative 
orientations of the points respectively. It can be noted that ρu,v = ρv,u and εu,v = εv,u. 
Note: It may be mentioned here that the error εu,v  has been defined complex just for the mere 
convenience of including both the errors in relative spacing and orientation into a single 
variable. Its real and complex parts are as such quite independent. Hence, here εu,v may be 
viewed more as a vector with two elements {Re(εu,v), Im(εu,v)} than a complex number. 
 
 
2.3.4   The Elimination 
 
On the basis of some threshold values of Local Pattern errors ek and the relative positioning 
errors εu,v , some of the points are rejected using a convenient rejection procedure. The 
number of accepted points be naccpt. 



As rejection procedure the following rule was used, 
if (ek > ethresh) or (Number of v’s satisfying (Re(εk,v)>Re(εthresh) or Im(εk,v)>Im(εthresh)) is 
more than p% of n) then reject the kth point. 

where, p and ethresh are real constants and εthresh is a complex constants. 
 
After the elimination process, εu,v is redefined for all accepted u and v as, 
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2.3.5   The Difference Calculation 
 
Once the values of the errors ek and εu,v for the selected points are obtained, the difference 
between the patterns with respect to the sets of corresponding points {Qi} in  and {Si} in 

 can be given by two expressions, 
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and, 
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where, φ  and η are a constants. 
 
The expressions in (8a) and (8b) respectively gives the differences with respect to the relative 
spacing and relative orientations of the points {Qi} and {Si}. 
 
Considering both the above said differences to have equal importance, and that they are not 
on the same scale, the final measure of the difference can be given by their product, 
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And finally, the difference between lD ,Π  and UΠ  is obtained as the minimum among the 
three values of  corresponding to the three angles of rotation in Local Pattern, ∆
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2.3.6   The final Decision Making 
 
Let database be divided into C classes (C1, C2, …, CC ) and let the ith class has ci patterns in 
the database. Let the jth pattern of the ith class be called jiD ,,Π , i=1 to C, j=1 to ci. 
Then the difference between  and the ith class Ci can be defined as [1], UΠ
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And a class Ci is rejected if the comparison with patterns of that class gives highly irregular 
predictions, that is, 
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Among the accepted Ci, the one with minimum value of  is selected as the class of 
pattern with closest match. 

UiC Π−∆

 
 
3   ESTIMATION OF COMPLEXITIES 
 
3.1   Time Complexity 
 
On performing some simple analysis it can be easily found that the approximate time 
complexities in recognizing an unknown pattern of size pm×  by comparison with a database 
of L patterns, are, 

 Preprocessing step: 
o Determination of Normalized CG-PD coordinate system: O(mp). Each step 

consisting of approx O(10) multiplications and O(10) additions (integer or 
floating point depending on the nature of jkπ ). 

o Determination of Local Pattern of Characteristic Points (50% of total points in 
the pattern): O(mpε2). Each step consisting approx O(1) division and O(1) 
additions (floating point). 

 Comparison with L Database Patterns, each with n Characteristic Points: 
o The total Search Process for all the patterns: O(Lnr2). Each step containing 

approx 3 sets of O(10) addition/subtractions and O(10) multiplications (all 
floating point) and 1 comparison. 

o Checking relative position and difference calculation: O(Ln2). Each step 
consisting approx 4 sets of O(10) multiplications and O(10) 
addition/subtractions (all floating point). 

 
It can be noted that except the preprocessing step, the complexities don’t depend much on the 
original size of the pattern ( pm× ). However it depends on n, which can be logically chosen 
to be proportional to pm× . 
 
 
3.2   Space Complexity 
 
For storing the data after preprocessing the unknown pattern: 8mp floating point values. 
For storing the L database patterns in the memory: O(10.Ln) floating point values. 
Hence, with the present day computers, the space complexity of the algorithm isn’t a major 
problem. 



4   RESULTS 
 
The algorithm was implemented using Microsoft Visual Basic 6.0 with the following values 
of the parameters:    ε0 = 0.5, 5.0=φ , η = 1.5, p = 80%, εthresh = 0.4 + 0.4i, Uthreshold = 0.5, r0 = 
0.1 and kr= 0.6.  The value of n was on an average 49 for each pattern. 
 
 
4.1    Testing with English alphabets in binary intensity level 
 
Description of the database: 

 There were 25 classes of Patterns in the database corresponding to 25 English 
alphabets (Capital). The database contained a total of 70 entries, i.e. on an average 2.8 
patterns corresponding to each class. 

 The size of the raw patterns (database and unknown) were 39 x 42 pixels. 
 The images used only two intensity levels, namely 1 and 0. 

 
The following are some of the characters used for testing the ability of the algorithm in 
resolving close looking different characters. The pictures of the characters used for test are 
shown and the corresponding recognition by the program is written below each of them: 
 
Resolving between ‘C’ and ‘G’: 

       
  C   C   C   G 

Resolving between ‘L’ and ‘V’: 

       
    L     L     L     V 

Resolving between ‘U’ and ‘V’: 

         
   U    U    U    V    V 

Resolving ‘H’ and ‘A’: 

       
  A     A       H      H 

 
Some other example of results obtained from the program: 
 

                               
    C        J          J      K       K         Y        D        D           O 
 

                           
    P       P         R            O            O           Q      M        N          E 
 
 
The time taken by the Visual Basic program for recognizing a new pattern (consisting 
preprocessing time and the time for comparison with all the 70 database patterns) on a AMD 
Athlon 2000 machine with 128MB RAM and running Microsoft Windows XP was found to 
be approximately 3.6 seconds.



4.2    Testing with a database of 4 patterns 
 
The test was performed with, 

 A database of 4 grayscale patterns as shown below: 
 

                                       
       Pattern 1       Pattern 2      Pattern 3       Pattern 4 
 
 The size of the raw patterns (database and unknown) were 39 x 42 pixels. 

 
It was then tested with the following unknown Patterns, and the results of closest match 
obtained are as written below each pattern: 
 

                                         
 Pattern 1          Pattern 4         Pattern 4         Pattern 3 

 
It may be noted that the matches that the program gives for the unknown patterns with the 
ones in database pattern are in quite agreement with what our ‘common sense’ tells us! 
 
 
5   CONCLUSIONS 
 
The present work provides a robust structural approach to the problem of pattern recognition. 
The algorithm tries to mimic the way in which human brain attempts to recognize patterns. 
Hence, the results from the algorithm are closer to what predicted by a human brain. 
The algorithm tested for 25 English capital alphabets gave highly satisfactory results which 
makes it suitable for application like OCR. The test with the database of 4 patterns 
demonstrated the ability of the algorithm in mimicking human ‘common sense’. 
Among the drawbacks, the time complexity of the algorithm makes it unsuitable for real time 
processes. Moreover, as the algorithm depends mainly on ‘Characteristic Points’ in the 
patterns, the algorithm fails more often with patterns which have lesser characteristic features 
(for example the alphabets ‘I’ or ‘O’). 
However, further developments on the present algorithm may be attempted in order to reduce 
the time complexity and increasing the robustness of the algorithm. This may be attempted by 
optimizing the various parameters in the algorithm and using better Search process for 
finding best Local Pattern match. The search process may be attempted to be improved by 
Genetic Algorithms. 
The working of the algorithm may be greatly improved by implementation of a suitably 
designed Neural Network model for the algorithm. A possible working principle of the NN 
model may be that the coordinates of the Characteristic Points in the unknown pattern in its 
CG-PD coordinate system and the corresponding Local Patterns are fed into the model 
through the input layer, and the outputs from the NN will be the differences with the database 
patterns. This will reduce the complexity of the processes of Search, Relative position check, 
Elimination and Difference calculation to a great extent. But this will require the NN model 
to be a dynamic one so that new patterns may be incorporated into the database.
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