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Abstract

In this article we will describe a general algorithm (of computational complexity O(n2)) for com-
puting a continuous inverse kinematics for a planar robot arm with n segments, IK : R+ → R, z 7→
[θn−1, θn−2, · · · , θ0]. The algorithm, in essence, is a recursive one, that decomposes the planar arm into
sub-arms, and incrementally construct the inverse kinematics of the full arm. The proposed algorithm
can be used effectively for planning trajectories through critical points in the configuration space as is
required in [BP14].

Full publication:

Subhrajit Bhattacharya and Mihail Pivtoraiko, “A Classification of Configuration Spaces
of Planar Robot Arms for a Continuous Inverse Kinematics Problem”, Acta Applicandae
Mathematicae, online first, Springer, September, 2014. DOI: s10440-014-9973-1.

Live demonstrations:

– http://subhrajit.net/wiki/index.php?xURL=arm_JS-HTML5

– http://hans.math.upenn.edu/~subhrabh/nowiki/robot_arm_JS-HTML5/arm.html

1 Introduction: Notations and Basic Observations

Configuration Space of a Robot Arm: Consider a n-segmented planar robot arm with segment lengths
r0, r1, · · · , rn−1. The configuration space of this robot arm is Tn, which we coordinatize using the angles
that the segments of the arm make with the positive X axis (see Figure 1). Thus, [θn−1, θn−2, · · · , θ0], with
θi ∈ S1, gives an unique configuration of the arm.

Throughout the paper we will assume that the end effector of the arm can be at points q ∈ (R2 − {0}),
where {0} is the location of the fixed base of the arm. That is, we eliminate the cases when the end effector
of the robot arm coincides with the base (equivalently, the base-length, z, vanishes). Thus the configuration

space that is of interest to us is (Tn − Õ), where Tn ⊃ Õ = {[θn−1, θn−2, · · · , θ0] ∈ Tn
∣∣ ∑n−1

i=0 ri sin(θi) =∑n−1
i=0 ri cos(θi) = 0}. We call this the non-singular configuration space.

Restricted Configuration Space: It is sufficient to study the configuration space of the arm up to an
equivalence of rotations of the entire arm about the base. In fact the equivalence can be extended to
translations and scalings of the arm as discussed in [KM94, Jag92]. However, the base of the robot arm
being fixed at a point, and the segment lengths being fixed for a given robot arm, those equivalences are
not relevant in our problem. In particular, we define the restricted configuration space as R = (Tn − Õ)/∼,
where the equivalence ‘∼’ deems two arm configurations to be equivalent if one can be rotated about the base
point to obtain the other. We represent an element in R by the configuration in the equivalence class that
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Figure 1: A general planar arm at a configuration that is in its restricted configuration space, R ⊂ Tn.

has its end effector placed along the positive X axis (i.e., [θn−1, θn−2, · · · , θ0] such that
∑n−1
i=0 ri sin(θi) =

0,
∑n−1
i=0 ri cos(θi) 6= 0 — Figure 1), and thus focus our inverse kinematics design problem only on R. For

computing to an inverse kinematics for the entire configuration space, given an end effector position, we can
simply set our positive X axis along the line joining the base of the arm and the end effector, and thus use
the designed IK for the restricted configuration space.

It is easy to observe that the entire non-singular configuration space is the trivial S1-bundle, (Tn− Õ) u
R× S1. Likewise, the entire end-effector space is the trivial S1-bundle (R2 − {0}) u R+ × S1. On the other
hand, a continuous inverse kinematics designed on the restricted configuration space, IK : R+ → R, is a
map between base spaces of these trivial bundles. Thus, a pull-back by IK of the end-effector bundle will
give the bundle map ÎK : (R2−{0})→ (Tn− Õ), which is an inverse kinematics on the entire configuration

space. This discussion can be summarized in the following diagram with ÎK = IK × IdS1 :

(Tn − Õ) u R × S1

(R2 − {0})

ÎK

OO

u R+ × S1
IdS1

OO

IK

OO

Equivalence of Configuration Spaces Under Segment Reordering: Suppose the lengths of the segments of
a robot arm, R, in sequence, starting from the base, are rn−1, rn−2, · · · , r0. We call these the (n− 1)th, (n−
2)th, (n − 3)th, · · · , and 0th segments. Let the arm’s restricted configuration space be R. A arm, R′, with
segment lengths rσ(n−1), rσ(n−2), · · · , rσ(0) (respectively, starting from the base), where σ is a permutation
of the ordered set [n − 1, n − 2, · · · , 0], will have a restricted configuration space, R′, that is diffeomor-
phic to R (the diffeomorphism being given by the permutation map σ : R → R′, [θn−1, θn−2, · · · , θ0] 7→
[θσ(n−1), θσ(n−2), · · · , θσ(0)]).

This diffeomorphism preserves base length: DR([θ∗]) = DR′ ◦σ([θ∗]) (where, DR : [θn−1, θn−2, · · · , θ0] 7→∑n−1
i=0 ri cos(θi), is the base-length map on the restricted configuration space of robot arm R) — Figure 2.

Furthermore, every continuous inverse kinematics for arm R, IK : R+ → R, z 7→ [θm−1, θm−2, · · · , θ0], gives
a continuous inverse kinematics for the arm R′ via the permutation map, IK ′ = σ ◦ IK : R+ → R′. Thus,
although R and R′ are the restricted configuration spaces of two different arms, as far as forward and inverse
kinematics are concerned, it does not matter which arm we use for computation — results from one can be
used for the other, with the angles only permuted.

2 Inverse Kinematics Algorithm

Consider a robot arm, R, with n segments. In this section we will describe a general algorithm (of
computational complexity O(n2)) for computing a continuous inverse kinematics IK : R+ → R, z 7→
[θn−1, θn−2, · · · , θ0]. Consider the arm configuration described by the orientations, θp ∈ S1, p = 0, 1, · · · , n−
1, that the pth segment makes with the positive X axis as described in Figure 3(a). Let xp be the distance
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Figure 2: Two arms R and R′, with the segments permuted. Any computations on one of the arms (say, angles computed using
an inverse kinematics) can be used, via a permutation, for the other arm.

of the end-effector from the base of the pth segment, as shown. Since z = xn−1, an inverse kinematics can
be described as a set of maps xp 7→ xp−1, p = n−1, n−2, · · · , 1, and the corresponding description of the
configurations of the triangles formed by the sides of lengths lp, xp and xp−1 as ilustrated in Figure 3(b).

As a first step towards designing the inverse kinematics, we relate these lengths with the angles subtended
by the pth segment at the end-effector. Figure 3(c) shows the two possible triangles subtended by the pth

segment at the end effector such that the two other sides of the triangle are xp and xp−1 (the order being
consistent with the direction in which the segment points).
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(a) A general robot arm configuration.
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Figure 3: .

Θ±lp(xp, xp−1) = ± arccos

(
l2p + x2p − x2p−1

2lpxp

)
, Φ±lp(xp, xp−1) = ± arccos

(
x2p + x2p−1 − l2p

2xpxp−1

)
(1)
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The range of Θ+
lp

and Φ+
lp

is [0, π] ⊂ S1, while that of Θ−lp and Φ−lp is {π} ∪ (−π, 0] ⊂ S1. These functions
are continuous, except when any side of the triangle is of length zero. By hypothesis lp > 0. Hence, in order
to ensure that we don’t encounter singularities or discontinuities in designing the inverse kinematics, we will
steer clear of xp = 0 or xp−1 = 0.

2.1 The Relationship Between Ranges of Partial Arms

We determine the range of values that xp can assume using a recursive argument by relating the range of xp
with that of xp−1. Clearly x0 = l0 is always constant. Suppose xp−1 can assume all values in the interval
[xp−1, xp−1]. Using triangle inequality for the triangle subtended by the pth segment,

|xp−1 − lp| ≤ xp ≤ xp−1 + lp (2)

it is easy to check that the range of values that xp can assume, [xp, xp], is given by,

xp =: R(xp−1, xp−1; lp) =


xp−1 − lp, if lp ≤ xp−1
0, if xp−1 < lp ≤ xp−1
lp − xp−1, if xp−1 < lp

xp =: R(xp−1, xp−1; lp) = lp + xp−1 (3)

Thus, using x0 = x0 = l0 and the recursive relation of (3), we can work out xp and xp for all p =
0, 1, 2, · · · , n− 1 (the computational complexity being linear in n). Moreover, since xp or xp depend only on
the values in the set {l0, l1, · · · , lp}, we re-write the above recursive relations using the following simplified
notations:

xp = R({l0, l1, · · · , lp})
xp = R({l0, l1, · · · , lp}) (4)

Proposition 1 (The closed-form expressions for R and R).

1. R({l0, l1, · · · , lp}) =
∑p
j=0 lj

2. Since, due to the discussion of Section 1, the order of the elements in the set {l0, l1, · · · , lp} does not
change the value of R({l0, l1, · · · , lp}), without loss of generality we assume lp ≥ lp−1 ≥ · · · ≥ l1 ≥ l0.

Then, R({l0, l1, · · · , lp}) =

{
lp −

∑p−1
j=0 lj , if lp >

∑p−1
j=0 lj ,

0, otherwise.

Proof. ‘1.’ follows trivially from the recursive expression for xp in (3).

We prove ‘2.’ by considering the value of R({l0, l1, · · · , lp}) separately for the two cases.
Case lp >

∑p−1
j=0 lj: Using (3),

R({l0, l1, · · · , lp})
= lp − xp−1 [where, xp−1 = R({l0, l1, · · · , lp−1}), and since R({l0, l1, · · · , lp−1}) =

∑p−1
j=0 lj < lp]

= lp −
∑p−1

j=0 lj

Case lp ≤
∑p−1

j=0 lj : This condition implies lp ≤ R({l0, l1, · · · , lp}) =: xp−1. Furthermore, xp−1 is the minimum
value of the base of an arm with segment lengths {l0, l1, · · · , lp−1}. It is easy to check that since the values are
ordered, we have 0 ≤ lp−1− lp−2 + lp−3− lp−4 + · · · l0 ≤ lp−1, and the base-length of (lp−1− lp−2 + lp−3−· · · ) is
achievable by the arm with segment lengths {l0, l1, · · · , lp−1} (in the configuration when all the segments are
aligned along a single line, but with alternating orientations). Thus for its minimum possible value we must have
xp−1 ≤ (lp−1−lp−2+lp−3−· · · ) ≤ lp−1. Thus we have xp−1 ≤ lp−1 ≤ xp−1. Using (3) we thus immediately have

R({l0, l1, · · · , lp}) = 0
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(a) Fp−1 of type lp ≥ xp−1. An inverse kinematics component
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also shown. The ‘+’ and ‘−’ indicate a choice of sign assignment.
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(c) Fp−1 of type xp−1 ≥ lp.

Figure 4: Relation between [xp, xp] and [xp−1, xp−1], and the feasibility set Fp−1 (hatched region). An example of a IKCF-
IKCSSS-IKCSA tuple is also shown in (a).

Corollary 1.
R({l0, l1, · · · , lp}) ≤ | ± l0 ± l1 ± · · · ± lp|

for any assignment of ‘+’ or ‘−’ for the ‘±’ signs on the right hand side of the inequality.

Proof. Once again we assume, without the loss of generality, that lp ≥ lp−1 ≥ · · · ≥ l1 ≥ l0. The R.H.S. is
always non-negative. The L.H.S. is either 0 or lp −

∑p−1
j=0 lj (when lp >

∑p−1
j=0 lj). If L.H.S. is 0 there is nothing

to prove. However, if lp >
∑p−1

j=0 lj , we note that the R.H.S. can be re-written as lp ± lp−1 ± lp−2 ± · · · ± l0, for
any assignment of ‘+’ or ‘−’ for the ‘±’s. This clearly is greater than or equal to lp − lp−1 − lp−2 − · · · − l0 ≥
R({l0, l1, · · · , lp}).

For convenience we define the following:

Definition 1 (Feasible set for the graph of a function relating xp and xp−1.). We define

Fp−1 =
{

(xp−1, xp)
∣∣ xp ∈ [xp, xp], xp−1 ∈ [xp−1, xp−1] and |xp−1 − lp| ≤ xp ≤ xp−1 + lp

}
This is the feasible set, due to inequality (2), inside which the graph of any function relating xp and xp−1
should lie.

We can thus classify the possible “shapes” of Fp−1 into three types (not mutually disjoint): i. type
lp ≥ xp−1, ii. type xp−1 ≥ lp ≥ xp−1 and iii. type xp−1 ≥ lp (see Figure 4).

2.2 Inverse Kinematics Components

Definition 2 (IKCF). We define a (p−1)th “inverse kinematics component function” (IKCF) as a continuous
function fp−1 : [xp, xp]→ [xp−1, xp−1] such that (fp−1(xp), xp) ∈ Fp−1 and fp−1(xp) > 0, ∀xp ∈ [xp, xp].
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It is always possible to construct such a IKCF if lp, xp > 0, since then Fp−1 is a non-empty convex
polygon (Figure 4). Clearly, f0 : [x1, x1]→ {l0} is a constant function (since x0 = x0 = l0).

Definition 3 (IKCSSS). For a given IKCF, fp−1 : [xp, xp]→ [xp−1, xp−1], let

Ξ(fp−1) =
{
xp ∈ [xp, xp]

∣∣ Either xp = |fp−1(xp)− lp| or xp = fp−1(xp) + lp.
}

Note that this set contains at least one point, namely, xp. A finite countable subset of points, Sp =

{ξ1p, ξ2p, · · · , ξ
hp−1
p , ξ

hp
p = xp} ⊆ Ξ(fp−1), such that xp is an element of the set, is called an “inverse kinematics

component sign switching set” (IKCSSS). Without loss of generality we assume Sp to be an ordered set with

ξ1p ≤ ξ2p ≤ · · · ≤ ξ
hp−1
p ≤ ξ

hp
p = xp (see Figure 4(a)). The points in such a set have the property that

Θ+
lp

(ξ, fp−1(ξ)) = Θ−lp(ξ, fp−1(ξ)) and Φ+
lp

(ξ, fp−1(ξ)) = Φ−lp(ξ, fp−1(ξ)), ∀ξ ∈ Sp (Figure 3(c)).

Definition 4 (IKCSA). Given a IKCF, fp−1, and a corresponding valid choice of IKCSSS, Sp, we define a
“inverse kinematics component sign assignment” (IKCSA) as a map sgp : Sp → {‘+’, ‘−’}.

Definition 5 (IKCISF). The reason of defining the IKCSSS and a corresponding IKCSA is that now we

can assign a ‘sign’ to the intervals [xp, ξ
1
p), [ξ1p, ξ

2
p), [ξ2p, ξ

3
p), · · · , [ξ

hp−1
p , xp], as follows:

SSp,sgp
: [xp, xp]→ {‘+’, ‘−’}

: xp 7→


sgp(ξ

1
p), if xp ≤ xp < ξ1p

sgp(ξ
2
p), if ξ1p ≤ xp < ξ2p

...

sgp(ξ
hp
p ), if ξ

hp−1
p ≤ xp ≤ ξ

hp
p = xp

(5)

This function, SSp,sgp
, defined using a given pair of IKCSSS and IKCSA, will be refereed to as “inverse

kinematics component interval sign function” (IKCISF), or simply the “interval sign function”. This is
illustrated using the ‘+’ or ‘−’ in Figure 4(a).

[Note: If ξj−1p = ξjp, then sgp(ξ
j
p) is essentially not used in the construction of SSp,sgp

.]

We will write {fp−1,SSp,sgp
} to indicate a choice of IKCF, and an interval sign assignment due to the

choice of a corresponding IKCSSS-IKCSA pair. Due to the following lemma, a choice of these determines
a continuous map from the range of xp to the space of configuration for the triangle with sides lp, xp and
fp−1(xp) (Figure 3(c)).

Lemma 1. Given a IKCF-IKCSSS-IKCSA tuple, {fp−1,SSp,sgp
}, the following functions, Θp,Φp : [xp, xp]−

{0} → S1, are continuous:

Θp(xp) := Θ
SSp,sgp (xp)

lp
(xp, fp−1(xp))

Φp(xp) := Φ
SSp,sgp (xp)

lp
(xp, fp−1(xp)) (6)

where, by Θs
lp

we mean Θ+
lp

or Θ−lp , depending on whether s is ‘+’ or ‘−’ (and likewise for Φ).

Proof. As described earlier, Θ
+/−
lp

,Φ
+/−
lp

: R2
+ → S1 are continuous functions in their respective domains

except where either of their inputs are zero. Again, by the construction of IKCF, fp−1 is a continuous function

which does not have zero in its image. Thus for all xp ∈ [xp, xp]−{0}, Θ
+/−
lp

(xp, fp−1(xp)) and Φ
+/−
lp

(xp, fp−1(xp))
are continuous functions.

Next recall that Θ+
lp

(ξip, fp−1(ξip)) = Θ−lp(ξip, fp−1(ξip)) and Φ+
lp

(ξip, fp−1(ξip)) = Φ−lp(ξp, fp−1(ξip)) for all ξip ∈ Sp.

Thus Θp,Φp : R+ → S1 are made up of piece-wise continuous functions that agree at the points where the
constituent functions are pieced together. This concludes the proof.

In the above Lemma, Φp and Θp are defined for p = 1, 2, · · · ,m− 1. We extend the definition for p = 0
by letting Φ0,Θ0 : {l0} → 0 ∈ S1.

6



2.3 The Inverse Kinematics Algorithm

Thus, given IKCF-IKCSSS-IKCSA tuples, {fp−1,SSp,sgp
}, for p = 1, 2, · · · , n− 1, and given a base-length,

z ≡ xn−1 > 0, we construct a continuous inverse kinematics for the entire arm as follows:

For a given value of z ≡ xn−1 (the base-length), we can compute

xk = Fk(z) := fk ◦ fk+1 ◦ fk+2 ◦ · · · ◦ fn−2(z) (7)

Clearly, Fk are continuous ∀k = 0, 1, 2, · · · , n− 2. Moreover, by the definition of IKCF, z > 0⇒
xk > 0.

Thus, a complete configuration for the arm is determined by the following expression for the
orientation of the pth segment,

θp = Θp(xp) − φp+1 = Θp(xp) −
n−1∑
k=p+1

Φk(xk) (refer to Figure 3(b))

= Θ
SSq,sgq (xq)
q (xq, fq−1(xq)) −

n−1∑
k=q+1

Φ
SSk,sgk

(xk)

k (xk, fk−1(xk)) (8)

Since xk > 0, using Lemma 1 it follows that θq varies continuously with the base-length, z.
Furthermore, the fact that [θn−1, θn−2, · · · , θ0] ∈ R ⊂ Tn follows from our very construction
(see Figure 3). This can also be proved explicitly by simplifying the trigonometric expressions

xe =
∑n−1
j=0 lj cos(θj), ye =

∑n−1
j=0 lj sin(θj) using the trigonometric formulae for Θ+/− and Φ+/−

to show that ye = 0. This we omit, considering it a simple but lengthy exercise.

We thus have the following proposition:

Proposition 2. The map from base-length, z > 0, to the space of arm configurations described by the segment
orientations as determined by (8) (along with (7)) is a continuous map from R+ to the restricted configuration
space, R. Since the map is completely determined by the tuple {fp−1,SSp,sgp

}, p = 1, 2, · · · , n−1, for brevity
we write this map as

IK{f∗−1,SS∗,sg∗} : R+ → R

z 7→ [θn−1, θn−2, · · · , θ0]

3 Some Particular IKCFs

In this section we will describe three types of functions, , that will be particularly useful for constructing the
desired IKCFs, fp−1 : [xp, xp]→ [xp−1, xp−1], in the next sections:

MIN{xp−1,lp} : [xp, xp]→ [xp−1, xp−1],

: xp 7→ max(xp−1, |xp−1 − lp|) (9)

MAX{xp−1,lp} : [xp, xp]→ [xp−1, xp−1],

: xp 7→ min(xp−1, xp−1 + lp) (10)

It is important that we do not use MIN{xp−1,lp} if xp−1 = 0, since that will violate the positivity condition
for the IKCF.
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Figure 5: The functions MIN, STEP and MAX that we use to construct IKCFs.

Also, for given x1p, x
2
p ∈ [xp, xp], with x1p < x2p, we define

STEP{xp−1,xp−1,lp,x1
p,x

2
p} : [xp, xp]→ [xp−1, xp−1],

: xp 7→


MAX{xp−1,lp}(xp), if xp ≤ x1p
x2
p−xp

x2
p−x1

p
MAX{xp−1,lp}(xp) +

xp−x1
p

x2
p−x1

p
MIN{xp−1,lp}(xp), if x1p < xp < x2p

MIN{xp−1,lp}(xp), if x2p ≤ xp
(11)

Once again we will be careful not to use STEP{xp−1,xp−1,lp,x1
p,x

2
p} when x2p = lp and xp−1 = 0. It is however

worth noting that even when x1p or x2p are not in [xp, xp], this still defines a valid IKCF.
Referring to Figure ??, the function MIN essentially returns the minimum of the possible values of xp−1

(within the feasible region – the hatched region of Figure 4) for a given xp, while MAX returns the maximum.
STEP on the other hand, returns the minimum when xp is greater than x2p, and maximum when xp is less
than x1p, while linearly interpolating in between.
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