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Abstract— There are many applications in motion planning
where it is important to consider and distinguish between
different homotopy classes of trajectories. Two trajectories are
homotopic if one trajectory can be continuously deformed into
another without passing through an obstacle, and a homotopy
class is a collection of homotopic trajectories. In this paper
we consider the problem of robot exploration and planning in
three-dimensional configuration spaces to (a) identify and classify
different homotopy classes; and (b) plan trajectories constrained
to certain homotopy classes or avoiding specified homotopy
classes. In previous work [1] we have solved this problem for
two-dimensional, static environments using the Cauchy Integral
Theorem in concert with graph search techniques. The robot
workspace is mapped to the complex plane and obstacles are poles
in this plane. The Residue Theorem allows the use of integration
along the path to distinguish between trajectories in different
homotopy classes. However, this idea is fundamentally limited
to two dimensions. In this work we develop new techniques to
solve the same problem, but in three dimensions, using theorems
from electromagnetism. The Biot-Savart law lets us design an
appropriate vector field, the line integral of which, using the
integral form of Ampere’s Law, encodes information about
homotopy classes in three dimensions. Skeletons of obstacles
in the robot world are extracted and are modeled by current-
carrying conductors. We describe the development of a practical
graph-search based planning tool with theoretical guarantees
by combining integration theory with search techniques, and
illustrate it with examples in three-dimensional spaces such as
two-dimensional, dynamic environments and three-dimensional
static environments. 1

I. INTRODUCTION
Homotopy classes of trajectories arise due to presence of

obstacles in an environment. Two trajectories connecting the
same start and goal coordinates are in the same homotopy class
if they can be smoothly deformed into one another without
intersecting any obstacle in the environment, otherwise they
are in different homotopy classes. In many applications, it
is important to distinguish between trajectories of different
homotopy classes, as well as identify the different homotopy
classes in an environment (e.g., trajectories that go left around

1We gratefully acknowledge support from the ONR Antidote MURI project,
grant no. N00014-09-1-1031; ONR Grants N00014-08-1-0696 and N00014-
09-1-1052; and NSF Grant IIP-0742304.

a circle in two dimensions versus right). For example, in
order to deploy a group of agents to explore an environment
[5], an efficient strategy ought to be able to identify the
multiple homotopy classes and deploy at least one agent in
each homotopy class. One may also wish to determine the
least cost path for each agent constrained to or avoiding
specified homotopy classes. In many problems the notion
of visibility is linked intrinsically with homotopy classes. In
tracking of uncertain agents in an environment with dynamic
obstacles, the ability to deal with occlusions during a certain
time frame is important [18]. A knowledge of the possible
homotopy classes of trajectories that the agent can take in
the environment during the period of occlusion can help more
efficient belief propagation.

Classification of homotopy classes in two-dimensional
workspaces has been studied in robotics literature using geo-
metric methods [8, 11], probabilistic road-map construction
[16] techniques and triangulation-based path planning [6].
However, efficient planning for least cost trajectories with
homotopy class constraints is not feasible using such represen-
tations. In our recent work [1] we have used complex analysis
and graph search-based path planning techniques for address-
ing the problem of optimal path planning with homotopy
class constraints. It gave us a compact way of representing
homotopy classes of trajectories which is independent of the
geometry, discretization of the environment, cost function or
search algorithm used to find trajectories in the environment.
The method is also robust to noise in the environment created
by sensor data. However, this method is only applicable to two
dimensional configuration spaces.

In this paper we propose a novel way of classifying and rep-
resenting homotopy classes in a 3-dimensional configuration
space using theorems from electromagnetism. We use Biot-
Savart’s Law and Ampere’s Law to define a differential 1-
form [17], the integration of which along trajectories allow us
to distinguish between different classes of trajectories.

Before proceeding further, we define homologous trajec-
tories and explain the difference between homology and
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homotopy. We say that tow trajectories τ1 and τ2 connecting
the same end points are homologous if and only if the closed
loop formed by them, τ1 t −τ2 is null-homologous. This is
equivalent to saying that τ1t−τ2 is the boundary of a surface
in the configuration space that is free of intersections with any
obstacle.

Because we use 1-forms and their integrals along closed
curves to classify trajectories, we naturally obtain invariants
for homologous trajectories [10, 15, 4]. However, we note that
in most practical robotics problems the notion of homology
and homotopy of trajectories can be equated. A detailed
discussion on this is provided in Section VI.

The novelty of the work and the advantage of the
integration-based representation we propose lies in the fact
that not only it allows us to identify/distinguish trajectories in
different homotopy classes, but also lets us compute least-cost
paths in 3-dimensional configuration spaces with homotopic
constraints using graph search-based planning algorithms. The
representation we propose is designed to be independent of
the type of the environment, the discretization scheme or cost
function. Using such a representation we show that homotopy
class constraints can be seamlessly integrated with graph
search techniques for determining optimal paths constrained
to specified homotopy classes or forbidden from others. We
also discuss how one can explore multiple homotopy classes
in an environment using a single graph search.

II. BACKGROUND

A. Homotopy Classes in Three Dimensional Spaces
While in the two-dimensional case, theoretically any finite

obstacle on the plane can induce multiple homotopy classes for
trajectories joining two points, the notion of homotopy classes
in three dimensions can only be induced by obstacles with
genus one or more, or with obstacles stretching to infinity in
two directions (The genus of an obstacle refers to the number
of holes or handles [14]. See Figure 1). For example, a torus-
shaped obstacle in a three-dimensional environment creates
two primary homotopy classes: i. The trajectories passing
through the “hole” of the torus, and ii. the trajectories passing
outside the “hole” of the torus. Figure 1 shows some examples
of obstacles that can or cannot induce homotopy classes for
trajectories. A sphere or a solid cube, for example, cannot
induce multiple homotopy classes in an environment.

Definition 1 (Simple Homotopy-Inducing Obstacle): A
Simple Homotopy-inducing Obstacle (SHIO) is a bounded
obstacle of genus 1, for example a torus (Figure 1(a), 1(b))
or a knot (Figure 1(e)).

B. Skeleton of a SHIO
In [1], each obstacle in a 2-dimensional plane that induces

the notion of multiple homotopy classes is assigned a rep-
resentative point. Analogously, for the 3-dimensional case,
we need to define a skeleton for every SHIO. Intuitively, a
skeleton of a 3-dimensional obstacle is a 1-dimensional curve
that is completely contained inside the obstacle such that the
surface of the obstacle can be “shrunk” onto the skeleton in a

(a) An unbounded obstacle and its
skeleton can be closed at a large
distance to create a closed loop.

O

O1

O2

(b) An obstacle with genus 2, O, can
be decomposed into 2 obstacles, each
with genus one, O1 and O2.

Fig. 2. Illustration of Constructions 1 and 2.

continuous fashion without altering the topology of the surface
of the obstacle. Formally, we define the skeleton of an obstacle
in terms of homotopy equivalence.

Definition 2 (Skeleton): A 1-dimensional manifold, S, is
called a skeleton of a SHIO, O, iff S is homeomorphic to S1 (a
circle), S is completely contained inside O, and if S and O are
homotopy equivalent (i.e., if the obstacle O is replaced by an
equivalent obstacle S, then the homotopy equivalence between
two arbitrary trajectories, τ1 and τ2, connecting every pair of
fixed points in the environment, will remain unchanged.)

In the literature, algorithms for constructing skeletons of
solid objects is a well-studied [3, 12]. However in the present
context we have a much relaxed notion of skeleton. While we
can adopt any of the different existing algorithms for auto-
mated construction of skeleton from a 3-dimensional obstacles,
this discussion is out of the scope of the present work. Figure
1(a) demonstrates how a skeleton can be constructed for a
generic genus 1 obstacle. There is definitely no unique way of
constructing such a skeleton. For the results in this paper with
the X−Y −Z domain, we either hand-picked key-points inside
obstacles to construct skeletons, or created obstacles around
a skeleton to begin with. For the X − Y − Time domain
we used similar notion as representative points [1] inside
moving obstacles, that automatically creates a skeleton for that
obstacles in X−Y −Time domain because of extrusion along
the time axis.
C. Conversion of generic obstacles into SHIOs

Given a set of obstacles in a three-dimensional environment,
we perform the following two constructions/reduction on the
obstacles so that the only kind of obstacle we have in the
environment are Simple Homotopy-Inducing Obstacles. The
Construction 1 is mostly trivial in the sense that it can be
easily automated for arbitrary obstacles. Construction 2 on the
other hand is linked with the construction of skeleton of the
obstacles (Definition 2) and is discussed later.

Construction 1 (Closing infinite, unbounded obstacles):
In most of the problems that we are concerned with, the
domain in which the trajectories of the robots lie is finite and
bounded. This gives us the freedom of altering/modifying
the obstacles or parts of obstacles lying outside that domain
without altering the problem. One consequence of this
freedom is that we can close infinite and unbounded obstacles
(e.g. Figure 1(d)) at a large distance from the domain of
interest (Figure 2(a)).

Construction 2 (Decomposing obstacles with genus > 1):
After closing all infinite, unbounded obstacles in an



(a) Skeleton of a generic genus
1 obstacle is modeled as a
current-carrying conductor.

(b) A torus-shaped
genus 1 obstacle.

(c) A genus 2 obstacle. (d) An infinite tube is a
genus 1 obstacle.

(e) A knot-shaped ob-
stacle with genus 1.

(f) A sphere does
not induce homotopy
classes and has genus 0.Fig. 1. Obstacles that do and do not induce homotopy classes in a 3-dimensional space.
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(a) Magnetic field due to current in S,
& its integration along closed loop Ci.
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(b) 2 trajectories, τ1 & τ2, connecting
the same points form a closed loop.

Fig. 3.

environment according to Construction 1, if there is
an obstacle with genus k (e.g. Figure 1(c)), we can
decomposed/split it into k obstacles, possibly overlapping
and touching each other, but each with genus 1 (Figure 2(b)).
This does not change the obstacles or the problem in any
way. This construction just changes the way we identify
obstacles. For example in Figure 2(b) the original obstacle O
with genus 2 is realized as two obstacles O1 and O2, each
with genus 1 and overlapping each other. The decomposition
of obstacles into SHIOs allows us define k skeletons for each
obstacle of genus k and simplify computations of h-signatures
of trajectories.

D. Biot-Savart law
Consider a single hypothetical current-carrying curve (a

current conducting wire) embedded in a 3-dimensional space
carrying a steady current of unit magnitude (Figure 3(a)). It
is to be noted that such a steady current is possible iff the
curve is closed (or open, but extending to infinity, where we
close the curve using a loop at infinity. See Figure 2(a) and
Construction 1). We denote the curve by S. Then, according to
the Biot-Savart Law [7], the magnetic field B at any arbitrary
point r in the space, due to the current flow in S, is given by,

B(r) =
µ0

4π

∫
S

(x− r)× dx

‖x− r‖3
(1)

where, x, the integration variable, represents the coordinate of
a point on S , and dx is an infinitesimal element on S along
the direction of the current flow.

E. Ampere’s Law
While Biot-Savart law gives a recipe for computing the

magnetic field from a given current configuration, Ampere’s
Law [7], in a sense, gives the inverse of it. Given the magnetic
field B at every point in the space, and a closed loop C
(Figure 3(a)), the line integral of B along C gives the current
enclosed by the loop C. That is,

Ξ(C) :=

∫
C

B(l) · dl = µ0Iencl (2)

where, l, the integration variable, represents the coordinate of
a point on C, and dl is an infinitesimal element on C.

In Biot-Savart Law and Ampere’s Law one can conveniently
choose the constant µ0 to be equal to 1 by proper choice of
units. Moreover, by choice, the value of the current flowing
in the conductor is unity. Thus, for any closed loop C, the
value of Ξ(C) is zero iff C does not enclose the conductor,
otherwise it is ±1 (the sign depends on the direction of
integration performed on C). Thus in Figure 3(a), Ξ(C1) = 1
and Ξ(C2) = 0.

III. APPLICATION OF THEORY OF ELECTROMAGNETISM IN
IDENTIFYING HOMOTOPY CLASSES

A. Skeleton of SHIOs as Current Carrying Manifolds
Construction 3: (Modeling skeleton of a SHIO as a

current carrying manifold) This is the key construction:
Given m obstacles in an environment, O1,O2, . . . ,Om, with
genus k1, k2, . . . , km respectively, we can construct M =
k1 + k2 + · · ·+ km skeletons from M SHIOs (obtained using
Constructions 1 and 2), namely S1, S2, . . . , SM . Each Si is a
closed, connected, boundary-less 1-dimensional manifold. We
model each of them as a current-carrying conductor carrying
current of unit magnitude (Figures 1(a), 2(a)). The direction
of the currents is not of importance, but by convention, each
is of unit magnitude.

Definition 3 (Virtual Magnetic Field due to a Skeleton):
Given Si, the skeletons of a Simple Homotopy-Inducing
Obstacle, we define a Virtual Magnetic Field vector at a point
r in the space due to the current in Si using Ampere’s Law
as follows,

Bi(r) =
1

4π

∫
Si

(x− r)× dx

‖x− r‖3
(3)

where, x, the integration variable, represents the coordinates
of a point on Si, and dx is an infinitesimal element on Si
along the chosen direction of the current flow in Si.

B. h-Signature
Definition 4 (h-Signature): Given an arbitrary trajectory,

τ , in the 3-dimensional environment with M skeletons, we
define the h-signature of τ to be the following M -vector,

H(τ) = [h1(τ), h2(τ), . . . , hM (τ)]T (4)
where, hi(τ) =

∫
τ

Bi(l) · dl (5)

is defined in an analogous manner as the integral in Ampere’s
Law. In defining hi, Bi is the Virtual Magnetic Field vector
due to the unit current through skeleton Si, l is the integration



variable that represents the coordinate of a point on τ , and dl
is an infinitesimal element on τ .

Lemma 1: If two trajectories τ1 and τ2 connecting the
same pair of fixed end points belong to the same homotopy
class, then their h-signatures are the same.

Sketch of Proof: Since τ1 and τ2 connect the same points,
τ1 ∪ −τ2, i.e. τ1 and −τ2 together (where −τ indicates the
same curve as τ , but with the opposite orientation) form a
closed loop in the 3-dimensional environment (Figure 3(b)).
We replace the obstacles O1,O2, . . . ,Om in the environments
with the skeletons S1, S2, . . . , SM .

Consider the presence of just the skeleton Si. By the direct
consequence of Ampere’s Law and our construction in which
a unit current flows through Si, the value of

hi(τ1 ∪ −τ2) =

∫
τ1∪−τ2

Bi(l) · dl

is non-zero if the closed loop formed by τ1 ∪ −τ2 encloses
the current carrying conductor Si. Otherwise it is zero. For
example, in Figure 3(b), hp(τ1∪−τ2) = 1 and hq(τ1∪−τ2) =
0. A direct consequence of this fact is that hi(τ1 ∪ −τ2) = 0
if τ1 can be smoothly deformed into τ2 without intersecting
Si. Now, by the definition of line integration we have the
following identity,

hi(τ1 ∪ −τ2) =
∫
τ1∪−τ2Bi(l) · dl

=
∫
τ1

Bi(l) · dl−
∫
τ2

Bi(l) · dl = hi(τ1)− hi(τ2)
(6)

Thus, hi(τ1) = hi(τ2) if τ1 can be smoothly deformed into
τ2 without intersecting Si (i.e homotopic).

Now in presence of skeletons S1, S2, . . . , SM the same
argument extends for each skeleton individually. Thus τ1 and
τ2 being homotopic will imply that their h-signatures are the
same.

Assumption 1: The converse statement of Lemma 1 holds
true in most practical robotics problems and applications.

Reasoning: The converse statement of Lemma 1 would
read “Two trajectories τ1 and τ2 connecting the same pair of
fixed end points belong to the same homotopy class if their
h-signatures are the same.”. While this statement at the first
glance appears quite intuitive using the same logic as before,
it in fact does not hold true in an universal sense.

The reason, as discussed earlier, is that the h-signature
we formulate is in fact a homology invariant rather than a
homotopy invariant of trajectories. Thus, if in the above state-
ment, we replace “homotopy” with “homology”, the statement
becomes a lemma. As we will discuss in greater details in
Section VI, the notion of homology, though more abstract
than homotopy, was developed as a part of algebraic topology
because of the fact that homotopy is difficult computationally.
While homology serves as a fair analog for homotopy in many
respects, there are subtle differences between two.

However, in robotics applications, for most practical sce-
narios, this separation is little. For example, homotopy and
homology classes of trajectories are one and the same for
trajectories in 3-dimensional configuration spaces with un-
bounded obstacles (e.g. X − Y − Time configuration space).

τ1

τ2

Si

τ2

(a) Trajectory that loops around a
skeleton & one that doesn’t. In
this figure hi(τ1) > 1 and 0 <
hi(τ2) = hi(τ2) < 1.

τSi

(b) In the most general case, it is
difficult to precisely identify a non-
looping homotopy class.

Fig. 4.

In such environments Assumption 1 becomes a lemma. More-
over, out of the two types of problems we will consider, the
one in which we explore/find least cost trajectories in different
homotopy classes in an environment, we are guaranteed to
find trajectories in distict homotopy classes without even the
need of Assumption 1 being true. This is because homotopic
trajectories are always guaranteed to be homologous [10].

In Section VI we discuss this in greater details and its
implications in robot planning problems.

C. Some notes on the value of h-Signature

“Looping” of a trajectory around an obstacle (Figure 4(a))
is similar in essence to non-Jordan curves on two-dimensional
planes. However in three dimensions their precise and univer-
sal definition is more difficult. One way of identifying one of
the homotopy classes of trajectories (joining a given start and
an end coordinate) that do not loop around a skeleton Si is by
joining the start and the end coordinates using a straight line
segment (call it τ ). Then the trajectories that are homotopic to
τ form a particular homotopy class of non-looping trajectories
w.r.t. Si (for example, in Figure 4(a), the homotopy class to
which τ2, and hence τ2, belong are non-looping). However,
for more complex obstacles (like knots), the notion of a non-
looping trajectory being a straight line segment breaks down
(See Figure 4(b)). In fact the notions of looping and non-
looping is imprecise in such cases. In [2] we show that for
the special simple case when Si is an infinitely long line,
the component of the h-signature hi(τ) for a line segment
τ lies between −1 and 1. We hence propose the following
mathematical definition of a non-looping trajectory,

Definition 5 (Non-looping trajectory w.r.t. Si): A trajec-
tory τ is said to be non-looping w.r.t. Si if hi(τ) ∈ (−1, 1).
The value is in [0, 1) if the trajectory goes around Si in
accordance with the right-hand rule with thumb pointing along
the direction of the current in Si. If the direction is opposite,
the value lies in (−1, 0].

This definition, in many cases, conform to our general
intuition of non-looping trajectories. If another trajectory, τ ′,
connecting the same start and end points as a non-looping
trajectory τ , goes on the “other side of the obstacle” without
looping around it, then τ ∪ −τ ′ forms a closed loop that
encloses Si. Then, hi(τ∪−τ ′) = ±1 = sign(hi(τ∪−τ ′)). But
since, τ and τ ∪−τ ′ goes around Si in the same orientation,
we have sign(hi(τ ∪−τ ′)) = sign(hi(τ)). Again by property
of line integration, hi(τ ∪ −τ ′) = hi(τ) − hi(τ

′). Thus,



hi(τ
′) = hi(τ) − sign(hi(τ)). Thus we have the following

definition.
Definition 6 (Complementary Homotopy Class): Given

a trajectory τ that is non-looping w.r.t. all the skeletons in
the environment (i.e. hi(τ) ∈ (−1, 1) ∀ i = 1, 2, . . . ,M ),
we define the Complementary Homotopy Class of the
homotopy class of τ to be the one for which the h-signature
is H(τ)− sign(H(τ)), where sign(·) gives the vector of signs
of the elements of its input vector.

IV. SEARCH-BASED PLANNING IN THREE DIMENSIONS
WITH HOMOTOPY CLASS CONSTRAINTS

We now investigate the problem of search-based path plan-
ning for trajectories in 3-dimensional configuration spaces. Pri-
marily we investigate two types of problems: (i.) Exploration
of the different homotopy classes of trajectories connecting
a given start and goal coordinates in the environment, and
(ii.) Planning for trajectories with specified homotopy class
constraints (where we are required to find trajectories restricted
to specified homotopy classes, and/or avoiding other specified
homotopy classes). We perform these tasks in two kinds of
environments: a) two-dimensional dynamic environment, and
b) three-dimensional static environment.

In the discussion that follows, we represent a point in the
3-dimensional configuration space using the coordinates v =
(x, y, z), with the understanding that z can represent time in
the time-varying 2-dimensional environment.

The approach, as in [1], is to discretize the configuration
space, construct a directed graph out of it, and perform a
graph search in it. The discretization can be quite general.
Approximate or exact cell decompositions can be used to
generate a roadmap. The roadmap can be probabilistic or
deterministic. Or a uniform grid representation can be used
to generate a graph, which is the representation used here.
The discretized space is represented by the graph G = (V, E),
in which each node v = (x, y, z) ∈ V represents the
coordinate of a discretized cell. Depending on the type of
configuration space, the nodes are connected to their relevant
neighboring nodes by weighted edges, where the weights are
equal to the cost of traversing the edge. A directed edge
connecting node v1 to v2 is represented by {v1 → v2}.
Inaccessible coordinates (lying inside obstacles or outside a
specified workspace) do not constitute nodes of the graph. A
path in this graph represents a trajectory of the robot in the
3-dimensional configuration space. Moreover, small obstacles
(e.g. created by sensor noise), or obstacles that we don’t desire
to contribute towards the homotopy class of trajectories, can
be chosen not to have a skeleton, thus preventing them from
claiming a component in the h-signature vector.

We will discuss the connectivity of the graph, G, and the
cost function in greater details for each of the two types of
configuration space we present in Section V.

A. Computation of h-Signature for an Edge of G
For all practical applications we assume that a skeleton of an

obstacle, Si, is made up of finite number (ni) of line segments:

s1

s2

sn

…
…

…

s j

s j+1 Bi

(a) A skeleton of an obstacle can be
constructed/approximated so that it
is made up of n line segments.

sj

sj'

α
α'

r

d

p

p'
n̂

(b) Magnetic field at r due to the
current in a line segment sji s

j′
i .

Fig. 5.

Si = {
−−→
s1i s

2
i ,
−−→
s2i s

3
i , . . . ,

−−−−−→
sni−1
i sni

i ,
−−−→
sni
i s1i } (Figure 5(a)). Thus,

the integration of equation (3) can be split into summation of
ni integrations,

Bi(r) =
1

4π

ni∑
j=1

∫
−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
(7)

where j′ ≡ 1 + (j mod ni).
One advantage of this representation of skeletons is that

for the straight line segments,
−−−→
sjis

j′
i , the integration can be

computed analytically. Specifically, using a result from [7]
(also, see Figure 5(b)),∫

−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
=

1

‖d‖
(sin(α′)− sin(α)) n̂

=
1

‖d‖2

(
d× p′

‖p′‖
− d× p

‖p‖

)
(8)

where, d,p and p′ are functions of sji , s
j′

i and r (Figure 5(b)),
and can be expressed as,

p=sji−r, p′=sj
′

i −r, d=
(sj

′

i −sji )× (p×p′)

‖sj′i −sji‖2
(9)

We define and write Φ(sji , s
j′

i , r) for the RHS of Equation (8)
for notational convenience. Thus we have,

Bi(r) =
1

4π

ni∑
j=1

Φ(sji , s
j′

i , r) (10)

where, j′ ≡ 1 + (j mod ni).
Given an edge e ∈ E , we can now compute the h-signature,

H(e) = [h1(e), h2(e), . . . , hM (e)]T , where,

hi(e) =
1

4π

∫
e

ni∑
j=1

Φ(sji , s
j′

i , l) · dl (11)

can be computed numerically.

B. h-Signature Augmented Graph

Let vs = (xs, ys, zs) be the start coordinate in the config-
uration space, and vg = (xg, yg, zg) be the goal coordinate.
By Lemma 1 and Assumption 1, any two trajectories from
vs to v that belong to the same homotopy class will have
the same h-signature. The h-signature can assume different,
but discrete values corresponding on the homotopy class of
the trajectory. We also write P(vs,v) to denote the set of all
trajectories from vs to v, and ṽsv ∈ P(vs,v) to denote a
particular trajectory in that set.



1) Allowed and Blocked Homotopy Classes: Suppose it
is required that we restrict all our search for trajectories
connecting vs and vg to certain homotopy classes, or not
allow certain homotopy classes. We denote the set of allowed
h-signatures of trajectories leading up to vg by the set A, and
the set of blocked h-signatures as B. A and B are essentially
complement of each other (A ∪ B = U , where the universal
set, U , is the set of the h-signatures of all the homotopy
classes of trajectories joining vs and vg), and B can be an
empty set when all homotopy classes are allowed. Following
the discussion in Section III-C, it is also possible to restrict
search to non-looping trajectories by putting all h-signatures
that have at least one element outside (−1, 1) into the set B.

2) h-Signature Augmented Graph: Once we have the means
of computing h-signature for each edge, we introduce the
concept of h-signature augmented graph. We define the h-
signature augmented graph of G as the graph GH(G) =
{VH , EH}, such that each node in this new graph has the
h-signature of a trajectory leading up to the coordinate of
the node from vs appended to it. That is, each node in
this augmented graph is given by {v,H(ṽsv)}, for some
ṽsv ∈ P(vs,v). Thus, corresponding to a given v ∈ V , since
there are discrete homotopy classes of trajectories from vs
to v, there are a discrete number of the augmented states,
{v,h} ∈ VH , where h is a M -vector and assumes the values
of the h-signatures corresponding to the discrete homotopy
classes. Thus, we define the h-signature augmented graph of
G as follows,

GH = {VH , EH}
where,
1.

VH =

{v,h}
∣∣∣∣∣∣∣∣∣∣

v ∈ V, and,
h = H(ṽsv) for some trajectory

ṽsv ∈ P(vs,v), and,
h ∈ A (equivalently, h /∈ B)

when v = vg


2. An edge {{v,h} → {v′,h′}} is in EH for {v,h} ∈ VH

and {v′,h′} ∈ VH , iff
i. The edge {v→ v′} ∈ E , and,

ii. h′ = h + H(v → v′), where, H(v → v′) is the h-
signature of the edge {v→ v′} ∈ E .

3. The cost/weight associated with an edge {{v,h} →
{v′,h′}} is same as that associated with edge {v→v′}∈E .

The consequence of point 3 in the above definition is that an
admissible heuristics for search in G will remain admissible
in GH . That is, if f(v,vg) was the heuristic function in G,
we define fH({v,h}, {vg,h′}) = f(v,vg) as the heuristic
function in GH for any h′ ∈ A.

The consequence of augmenting each node of G with a
h-signature is that now nodes are distinguished not only by
their coordinates, but also the h-signature of the trajectory
followed to reach it. Typically we use graph search algorithms
like A* (or variants like D* or D*-lite) where nodes in
the graph GH are expanded starting from the node {zs,0}
(where by 0 we mean a M -dimensional vector of zeros).
For exploration of homotopy classes, whenever we expand
a state {zg, h̃} ∈ VH , for some h̃ /∈ B, we store the path

up to that node, and continue expanding more states until
the desired number of homotopy classes are explored. That
way we explore homotopy classes in order of their path costs.
For searches with homotopy class constraint, we stop upon
expansion of a goal coordinate {zg, h̃} for some h̃ /∈ B (or
equivalently, h̃ ∈ A).

C. Theoretical Analysis

Theorem 1: If P∗H = {{v1,h1}, {v2,h2}, · · · , {vp,hp}}
is an optimal path in GH , then the path P∗ = {v1,v2, · · · ,vp}
is an optimal path in the graph G satisfying the h-signature
constraints specified by A and B

Proof: By construction of GH , the path {v1,v2, · · · ,vp}
satisfies the given h-signature constraints. Moreover by defi-
nition, P∗H is a minimum cost path in GH . Since the cost
function in GH is the same as the one in G and does not
involve hj , it follows that the projection of P∗H on G given
by P∗ = {v1,v2, · · · ,vp} is an optimal path in the graph G
satisfying the constraints defined in GH .

V. RESULTS

We implemented the graph structure, GH , and A* search
algorithm [9] to search in the graph using C++ programing
language. For the numerical integration in Equation (11) we
used the GNU Scientific Library. For the graphic visualization
we used OpenCV and OpenGL libraries.

A. Planning in 3-dimensional space with static obstacles
The first domain in which we implement the planning

algorithm is the space of 3 spatial dimensions, X,Y and Z.
For a particular problem, the domain of interest is bounded
by upper and lower limits of the 3 coordinates. The domain is
then uniformly discretized into cubic cells and a node of G is
placed at the center of each cell. Connectivity is established
between a node and its 26 neighbors (all cells that share at least
one corner, edge or face with it). Each edge is bi-directional
and its cost is the Euclidean length.

1) Simple environments with bounded obstacles: Fig-
ure 6(a) demonstrates a simple environment, 20 × 20 × 18
discretized, with two torus-shaped obstacles. The skeleton of
each obstacle is made up of line segments passing through
the central axis of the cylindrical segments. Here we restrict
search to non-looping trajectories. That is, we set B ={
h = [h1, h2]T

∣∣ |h1| > 1 or |h2| > 1
}

. We search for 4 ho-
motopy classes of trajectories connecting a given start and goal
coordinate. As shown in Figure 6(a), the algorithm finds four
such trajectories: (i) going through hoops 1 and 2; (ii) going
through hoop 1 but not through hoop 2; (iii) going through
hoop 2 but not through hoop 1; and (iv) not going through
either hoops. According to Theorem 1 each path is the least
cost one in the graph and in its respective homotopy class.

Figure 6(b) shows the exploration of 4 homotopy classes in
and around a room with windows on each wall. The skeletons
for this obstacle are defined as loops around each window
according to Construction 2. The trivial shortest path from the
given start to goal configuration goes outside the room (the



(a) Two hoops. (b) A room with windows.
Fig. 6. Exploring homotopy classes in X − Y − Z space.

(a) Exploring 10 distinct homotopy
classes.

(b) Plan in the complementary homo-
topy class of the least cost path.

Fig. 7. An environment with 7 unbounded pipes.

dark violet trajectory). Trajectories in other homotopy classes
pass through the room.

2) Environment with unbounded Pipes: Figure 7(a) shows a
more complex environment consisting of 7 pipes stretching to
infinity. The workspace of choice is 44× 44× 44 discretized,
with the start and goal coordinates at two opposite corners
of the discretized space. In Figure 7(a) we find the least cost
paths in 10 different homotopy classes.

3) Planning with Homotopy Class Constraint: Figure 7(b)
demonstrates a planning problem with homotopy class con-
straint. The darker trajectory is the global least cost path found
from a search in G for the given start and goal coordinates.
The h-signature for that trajectory was computed, and hence
we computed the signature of the complementary homotopy
class (Definition 6), and put it in A. The lighter trajectory is
the one planned with that A as the set of allowed h-signature.
This trajectory goes on the opposite side of each and every
pipe in the environment as compared to the darker trajectory.

4) Search Speed and Efficiency: We now present the run-
ning time for the case in Figure 7(a). The environment, as
described earlier, is 44 × 44 × 44 discretized, and hence G
contains 85184 nodes. Due to each node being connected to
26 of its neighbors, there are almost 13 times as many edges in
G. The program was run on a Intel Core 2 Duo processor with
2.1 GHz clock-speed and 3GB RAM. We first compute the
values of H(e) for all edges e ∈ E and store them in a cache,
which takes about 2273s. Then we perform the A* search in
GH , using the values from the cache whenever required. By
doing so we eliminate the requirement of re-computing the h-
signatures of the edges every time we perform a search, even
with changed start and goal coordinates. The search for the 10
homotopy classes in Figure 7(a) took about 30s and expansion
of 521692 nodes in GH . Figure 8 shows the cumulative time
required and the number of nodes in GH expanded.
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Fig. 8. Cumulative time taken and number of states expanded while searching
GH for 10 homotopy classes in the problem of Figure 7(a).
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Fig. 10. An example where the trajectories are homologous, but not homotopic

B. Planning in 2-dimensional plane with moving obstacles

The next 3-dimensional domain that we experiment with is
that of the two-dimensional plane, but with dynamic entities.
Thus the variables of interest are X,Y and time. The node
set was formed by uniform discretization of the domain of
interest. The connectivity of the graph is such that the time
variable can increase only in the positive direction (each node
connected to 9 neighboring nodes in next time step, including
the same x & y). The cost of an edge, e, with differences in
the coordinates of its end points ∆x,∆y and ∆t is computed
as c(e) =

√
∆x2 + ∆y2 + ε∆t2, where ε is a small value for

avoiding zero cost edges in GH . The skeleton of the moving
obstacles are the curves traced by their centers (yellow dots in
Figure 9) in the X−Y −Time space. The skeletons are closed
outside and far from the discretized domain (Construction 1).
Note that in doing so, segments of the skeleton may point
along negative time. However that does not effect the planning
since the X − Y − Time space itself can be treated no
differently from R3.

Figure 9 shows the screen-shots from exploration of 4
homotopy classes in X−Y −Time domain. The environment
is 40 × 40 discretized in X and Y directions, and have 100
discretization cells in time. There are two dynamic rectangular
obstacles,O1 andO2, that undergo a known oscillatory motion
inside a narrow passage between other static obstacles. The
4 different trajectories in the different homotopy classes are
marked by different colors as well as different numbers at their
current locations. The trajectories in the non-trivial homotopy
classes go behind the obstacles, a region that would otherwise
not be visited by the least cost path without any homotopy
class consideration.

VI. HOMOLOGY AS AN APPROXIMATION OF HOMOTOPY

As discussed earlier, the Assumption 1 may not always hold
true. Strictly speaking, the h-signature is a homology invariant
rather than homotopy invariant. The study of homology theory
as a part of algebraic topology emerged in the fist place
because homotopy is difficult to deal with computationally
[10]. Although there is much similarity between homotopy
and homology, the later is more abstract in nature. However



(a) t = 0.4s (b) t = 8.6s (c) t = 23.7s (d) t = 29.6s (e) t = 37.0s (f) t = 43.1s

Fig. 9. Screen-shots from an example with two moving obstacles (O1 and O2) showing the exploration of 4 homotopy classes in a dynamic environment.
The blue trajectory (3) passes above both O1 and O2. The red trajectory (2) passes above O2, but not O1. The light blue-gray trajectory (1) passes above
O1, but not O2. The dark gray trajectory (0) is the trivial shortest path.

homology is computationally favorable. Thus, very often ho-
mology is used as a modest substitute of homotopy. 2

The integrand in Ampere’s law that we used in defining
the h-signatures can be shown to be elements from De-Raham
cohomology groups [13, 15], which forms a dual to homology
groups of 1-dimensional manifolds (robot trajectories in our
case). Thus the h-signatures can be shown to be homology
invariants of the trajectories.

Without going into an in-depth discussion on homology the-
ory, we would like to emphasize a few important similarities
between homology and homotopy, especially in relation to the
application discussed in this paper:
(i) Two sub-manifolds are homotopic implies that they are

homologous [10, 15]. Thus, two trajectories that are homo-
topic will be in the same homology class, and hence their
h-signatures will be the same. Thus, in the problems where
we find least cost trajectories in different homotopy classes
in a configuration space using the proposed algorithm, we are
always guaranteed to obtain trajectories in distinct homotopy
classes even if we use h-signatures to find these trajectories.

(ii) The inverse of statement i. (i.e. homologous implies ho-
motopic) for robot trajectories is true for many practical path
planning problems as evident from the results in Section V
and the results in [1].

In our previous work [1], we have assumed an equivalence
between homotopy and homology for convenience (due to
Lemma 2 of the paper) since we were considering simple
examples. However, as we just discussed, the inverse of state-
ment (i) above is not necessarily true. To see this, consider the
example in Figure VI. One can observe that the two trajectories
are not homotopic when we consider both obstacles, but they
are homotopic with respect to individual obstacles. Hence
their h-signatures are the same (i.e. they are homologous).
Thus, if we were exploring different homotopy classes in this
environment using the described method, we would be finding
one trajectory for these two homotopy classes.

VII. CONCLUSION
In this paper we have proposed a novel and efficient way of

representing homotopy classes in 3-dimensional configuration
spaces by exploiting laws from theory of electromagnetism.
We have shown that this representation is well suited for
use with graph search techniques for finding least cost paths
respecting given homotopy class constraints as well as for

2We would like to thank Prof. Robert Ghrist and Dr. David Lipsky,
University of Pennsylvania, for providing valuable insights on homology
theory.

exploring different homotopy classes in an environment. The
method is independent of the discretization scheme or the cost
function. We have demonstrated the efficiency, applicability
and versatility of the method in our results. Although, in strict
mathematical sense the equivalence relation under considera-
tion is homology, we argued that it is very close to homotopy
in many practical robotic applications.
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