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Abstract— Distributed approaches to constrained optimization
problems have immense applications to multi-robot path plan-
ning, scheduling, task allocation and other problems requiring
multiple robots to optimize a global objective function. The aim of
these approaches is to solve a series of smaller optimization prob-
lems for each robot while sharing information among the robots,
and in the process, solve the global optimization problem, which
otherwise would have been intractable. Distributed approaches to
separable convex optimization problems with linear constraints
have been studied extensively in the past using techniques of
dual and Lagrangian decomposition. In the present work, we
investigate a distributed implementation of a general separable
optimization problem with pair-wise non-linear constraints. On
the theoretical side, we show the conditions under which the
algorithm converges to an optimal solution. On the experimental
side, we demonstrate the utility of the algorithm on the problem
of multi-robot path planning with pair-wise distance constraints
in large complex 2-D environments with obstacles.

I. INTRODUCTION

Distributed implementation of optimization problems is an
important field of research in distributed systems [15, 4]. In
many optimization problems the joint state space of all the
search variables is too big or too complex for the optimization
problem to be solved centrally. At other times the complete
information about all the state variables is not available to
any central processor. Thus distributed implementation of such
problems become indispensable. One example of particular
interest to us is multi-robot planning problems. For instance,
robots navigating towards their respective goals while stay-
ing within the communication range is one of the common
planning problems in multi-robot robotics. Here the search
variables are the robot trajectories, each of which theoretically
lies in an infinite dimensional Hilbert space. Planning in the
joint state-space of all the robots in such a case while satisfying
complex constraints may be very expensive, if not practically
impossible. Multi-robot path planning suffers from the in-
herent complexity resulting from the necessity of operating
in Cartesian products of configuration and state spaces [7].
The continuous path planning problem is even more difficult
to solve in a centralized setting [12] unless the problem is
solved sequentially for each robot [16]. Open loop trajectory
planning problems can be reduced to optimization problems.
While completeness results are often possible [1] for simple

problems with no constraints, it is difficult to respect more
complex multi-robot constraints.

Another instance of distributed optimization problem is
task allocation for multiple robots [10]. In these methods,
one can impose rendezvous constraints at intermediate time
points as tasks and reformulate the path planning problem as
a task allocation problem. This then lends itself to auction-
based solutions [8] for the team. However, these methods can
produce highly sub-optimal solutions in the environments with
obstacles without guarantees on convergence. There also exist
an extensive research on distributed planning in a more general
sense (a good survey can be found in [9]).

Separable optimization problems [4] (optimization problems
that can be split up into simpler sub-problems involving only
certain partitions of the variable set) with linear constraints
have been studied extensively in the past and solved in a dis-
tributed fashion using techniques based on dual decomposition
[15, 4]. Augmented Lagrangian type methods have been used
for solving similar problems more efficiently [3, 14]. However
such methods are limited to problems with linear constraints
and rely on convexity of cost functions.

In the present work we investigate a distributed implemen-
tation of a separable optimization problem with non-linear
constraints arising from coupling between pairs of robots. We
do not make any assumption on the convexity of the cost
or the constraint functions. Our theoretical analysis shows
that the algorithm converges to an optimal solution under
certain conditions. As a demonstration of the implementation
of our algorithm we will mostly concentrate on solving the
problem of path planning for teams of robots coupled with
constraints on the distances between pairs of robots. Con-
tinuous motion planning is possible for such problems [2],
but only practical in environments with moderate complexity.
In this paper we explore discrete path planning algorithms
for solving the individual simpler optimization problems in a
large environment with obstacles and solve the global problem
using our distributed optimization algorithm. We show that our
approach is able to find efficiently optimal paths with complex
cost functions, in arbitrarily complex environments, and with
non-linear pair-wise constraints. We therefore demonstrate the
utility and versatility of the proposed algorithm by solving



large scale optimization problems in a distributed fashion,
which otherwise would have been intractable.

II. PROBLEM DEFINITION

A. The Optimization Problem

In this paper we study the following problem: Find

{π∗1 , . . . , π∗N} = argminπ1...πN

∑
j=1...N

cj(πj) (1)

subject to the pairwise constraints

Ωij(π∗i , π
∗
j ) = 0, i, j = 1 · · ·N (2)

We call each πi a partition of the set of search variables. In
the context of multi-robot planning problem πi will represent
the path of robot i, while cj(πj) will be the cost of path πj .
Ωij will represent the violation of the constraint between the
trajectories of robot i and j.

B. Problem Assumptions

The following assumptions are made about the variables and
functions appearing in the problem definition:

1. The optimization variables πi lie in abstract vector spaces
that are continuous, differentiable and simply connected.
In the general case they may be considered as vectors in
a finite dimensional Euclidean space, but they can lie (as
we’ll discuss later) in more complex spaces like infinite
dimensional Hilbert spaces. We represent the space in
which πi lies as H

2. The cost functions ci : H → R+ are assumed to be
continuous and smooth. In context of path planning for
mobile robots, an example of such a cost function is the
Euclidean length of the trajectories in an environment
without obstacles. However, in our implementation we
will later relax the condition. Note that we don’t make
any immediate assumption on the convexity of the cost
functions.

3. The functions Ωij : H × H → R, defined for the
unordered pair {i, j}, are continuous. Also, we require
that the second derivatives of Ωij with respect to each
of its parameters as well as the first mixed derivative
are defined. That is, Ω(0,2)

ij ,Ω(2,0)
ij and Ω(1,1)

ij are defined,
where the superscripts denote the order of partial deriva-
tives w.r.t. the respective parameters. A simple example of
such a constraint function in context of multi-robot path
planning is constraint on the distance between trajectories
of two robots.

4. The functions Ωij are assumed to have the following
properties

i. Ωij is symmetric in its two parameters (i.e.
Ωij(πi, πj) = Ωij(πj , πi)), and

ii. Ω(1,0)
ij (πi, πj) = −Ω(0,1)

ij (πi, πj).
It is easy to note that these properties will be true if
Ωij has the functional form Ωij(πi, πj) = Gij(πi − πj),
where Gij : H → R is a continuous, smooth even func-
tion. Note that we don’t make any immediate assumption
on the convexity of Ωij .

6. We assume that besides cr and Ωij , the quantities c(2)
r ,

Ω(1,0)
ij , Ω(2,0)

ij and Ω(1,1)
ij are readily computable for a

given set of input variables. This may be achieved either
by knowing the expressions of the derivatives in closed
form, or by computing them numerically.

If in a particular problem the cost and constraint functions
are not smooth, they can always be approximated by smooth
functions at the non-smooth regions using one of the many
Mollification techniques [13]. We also note that inequality con-
straints can be converted to equality constraints (as required by
2) by taking max or min with zero, followed by Mollification
treatments.

It is to be noted that in spite of the conditions imposed on
Ωij , they can represent a wide variety of constraints, especially
in robotics applications. The proposed functional form of the
constraints can model constraints on communication, visibility,
rendezvous, convoying, collision avoidance, and other more
complex coordination between pairs of robots involving their
trajectories as well as their derivatives (say, to incorporate
dynamic and kinematic constraints).

III. THE ALGORITHM

A pseudo-code of our algorithm is presented in Figure 1.
The global optimization problem is decomposed into a series
of lower-dimensional unconstrained optimization problems,
each of which is solved in a single partition, πr, of the search
variables. In each iteration the penalty weights on the violation
of constraints, W k, are incremented along the direction given
by V k. The intuitive concept behind the algorithm is that we
start off by solving the global unconstrained problem, which is
completely decoupled (line 1). Then we gradually increase the
penalty weights (line 6) for the constraints which are modeled
as soft constraints. The directions in which we can change the
weights to guarantee optimality and convergence are described
later in the Theoretical Analysis section. With the new set of
weights we solve a sub-problem, which is an unconstrained
optimization problem on only a single partition, namely πr
(line 7). Thus we note that in each iteration only the variables
in a single partition are changed, while the others remain
unchanged.

An application of the algorithm in goal-directed navigation
of multiple robots with rendezvous constraints at various
points on the trajectory is illustrated in Figure 2. We note that
the algorithm starts off with unconstrained trajectories at k = 0
and in each iteration only a single robot plans its trajectory.
As the iterations progress, the robots gradually change their
trajectories due to increase in penalty weights and try to satisfy
the rendezvous constraints. Eventually they reach the global
solution. It is to be noted that the gradual increment in the
weights play a key role in ensuring that the solution is optimal.
One-shot increase in the weights to large values to satisfy the
constraints would have resulted in suboptimal trajectories since
the robots are planning sequentially. This particular example
is described in more details in the “Results” section of the
paper.



procedure DistributedOptimization()
1 compute π0

i = argminπici(πi), ∀i ∈ NN ;
2 set W 0

ij = 0 for all unordered {i, j} ∈ PN ;
3 r = r0 ∈ S, k = 0;
4 while

`
Ωij(π

k
i , π

k
j ) 6= 0 ∀{i, j} ∈ PN

´
5 set V k = ComputeStepDirection(W k, {π}k, r)
6 set W k+1 = W k + εkV k;
7 compute πk+1

r = argminπr
ˆ
cr(πr)

+
P
{ir}∈PNr

W k+1
ir Ωir(π

k
i , πr)

˜
;

8 set πk+1
j = πkj for all other j 6= r;

9 set k = k + 1;
10 set r = rk ∈ S;
11 end

Fig. 1. Distributed Optimization Algorithm
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(a) Unconstrained
plans, k = 0
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(b) k = 50
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(c) k = 150
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(d) Converged solu-
tion, k = 216

Fig. 2. Demonstration of convergence towards global optimal solution with
progress of iterations. In this example there are 3 robots with unconstrained
trajectories 12 units long, parallel and separated by 5 units. Trajectories are
defined by displacements along Y of 11 unit-spaced points on each.

The sets NN is the set of all natural numbers from 1 to
N , and PN is the set of all unordered pairs of numbers
in NN . The set S gives a sequence of partitions for which
the individual sub-problems are solved in each iteration.
S = {r0, r1, r2, · · · }, where ri ∈ {1, 2, · · · , N} ∀i ∈ N
can be constructed such that the partitions appear almost at
equal frequency in the sequence. As we will see later, the
sequence does not influence the convergence or optimality
of the solution, but may influence the number of iterations
required to converge.

Also, the step-sizes, εk, are small and determine the preci-
sion of the solution. The theoretical analysis in the paper are
guaranteed to hold when the step-sizes are infinitesimal. But
for practical purpose we choose finite and small step-sizes.
The sequence E = {ε0, ε1, ε2, · · · } may be predefined, set to
a fixed constant step-size, or may be adaptive.

The procedure “ComputeStepDirection” in the Algorithm
computes the direction in which to increase the penalty
weights, W . We call this direction a Step Direction. In the
following section (and especially Theorem 3) we will discuss
the ways of computing such a direction.

IV. THEORETICAL ANALYSIS
In this section we investigate the conditions under which

the proposed algorithm will converge to an optimal solution.
Theorem 2 along with Theorem 1 proves that under certain
conditions the algorithm is guaranteed to converge to an
optimal solution. Theorem 3 gives a prescription, using which
will ensure that the said conditions hold.

A. Notations and preliminaries
1) Unordered pair: We define the set of unordered pairs of

natural numbers from 1 to N , and its subsets as follows:

PN = {{1, 2}, {1, 3}, · · · , {1, N}, {2, 3}, {2, 4}, · · · , {N−1, N} }

and, PNr = {{1, r}, · · · , {r − 1, r}, {r + 1, r}, · · · , {N, r}}

In the following discussions, the subscripts “ij” of quanti-
ties (like W ) or functions (like Ω) are elements from PN . Thus
the order of the subscripts does not matter. When we write W
(or W1, or W2), we mean the vector of length 1

2N(N − 1) of
all the Wij’s. Also, often we will write {i, j} ≡ {k, r} ∈ PNr
to indicate that {i, j} is such that exactly one of i or j is equal
to r, while the other one, which is not equal to r, is denoted
by k.

2) Other notations:
i. For notational convenience we define the sets NN =
{1, 2, · · · , N} and NN

−r = {1, 2, · · · , r− 1, r+ 1, · · ·N}
ii. We denote the set {π1, π2, · · · , πN} as {π}. On similar

lines, if there are arbitrary functions Υi : A → B,
i = {1, 2, · · ·N}, we denote the collection of all these
functions as {Υ} : A→ B×B×· · ·×B. Conversely, the
jth element of {Υ} is denoted as [{Υ}]j or Υj

iii. The subset of {π} without the rth element
is denoted by {π}−r. Thus, {π}−r =
{π1, π2, · · · , πr−1, πr+1, · · · , πN}

iv. If we have a smooth function f : A1 × A2 × · · ·An →
R, its derivatives are represented by f (a1,a2,··· ,an). Thus,
f (1) ≡ ∇f , f (2) ≡ ∇2f , f (1,1) ≡ ∇x∇yf , etc.

v. We define the Lagrangian of the global problem U , and
the Dual function Ψ,
U({π},W ) :=

X
k∈NN

ck(πk) +
X

{kl}∈PN
WklΩkl(πk, πl)

{Π}(W ) := arg min{π}
ˆ
U({π},W )

˜
Ψ(W ) := min{π}

ˆ
U({π},W )

˜
= U({Π}(W ),W ) (3)

In other words, {Π}(W ) is the global optimum for the
penalized objective function with W as penalty weights,
and Ψ(W ) is the optimal value.

vi. Similarly, we define for each partition πr,
Ur(πr,W1,W2) := cr(πr)+

X
{kr}∈PNr

W1,krΩkr(Πk(W2), πr)

Πr(W1,W2) := arg minπr [Ur(πr,W1,W2)]

Ψr(W1,W2) := minπr [Ur(πr,W1,W2)]

= Ur(Πr(W1,W2),W1,W2) (4)

That is, for a given value, {Π}−r(W2), of the partitions
(except the rth one), Πr(W1,W2) gives the optimum for
an individual sub-problem with W1 as penalty weights.

vi. Finally, we define the following,
Mr(W ) = c

(2)
r (Πr(W ))

+
P
{lr}∈PNr

WlrΩ
(0,2)
lr (Πl(W ),Πr(W ))

Nlr(W ) = Ω
(1,1)
lr (Πl(W ),Πr(W ))

(5)
Also, we note that the rth component of {Π}(W ) is given by,

Πr(W )

= arg minπr

“
cr(πr) +

P
{kr}∈PNr

WkrΩkr(Πk(W ), πr)

+
P
k∈NN−r

ck(Πk(W ))

+
P
{kl}∈PN/PNr

WklΩkl(Πk(W ),Πl(W ))
”

= arg minπr

“
cr(πr) +

P
{kr}∈PNr

WkrΩkr(Πk(W ), πr)
”

= Πr(W,W )
(6)

Thus, Π
(1)

r (W ) = Π(1,0)
r (W,W ) + Π(0,1)

r (W,W ) (7)



B. Theorems
Definition 1: [Separable Optimal Flow] Given the func-

tions cr, Ωir ∀{ir} ∈ PNr we call V a Separable Optimal
Flow Direction and ε a Separable Optimal Flow Step at W
for Ψr if and only if the following holds,

Ψr(W + εV,W )−Ψr(W,W )
≤ Ψr(W + εV,W + εV )−Ψr(W,W + εV )

and, Vij = 0, ∀{i, j} such that r /∈ {i, j}
(8)

Together, V and ε are said to define a Separable Optimal
Flow at W for Ψr.

Theorem 1: [Optimality at each Iteration] If the Step Di-
rection, V k, returned by procedure ComputeStepDirection
at the kth iteration in Line 5 of the Algorithm, along with the
chosen Step Size, εk, define a Separable Optimal Flow at W k

for Ψrκ , ∀ k, then ∀ k:

{πk1 , . . . , πkN}
= arg min{π}

hP
i∈NN c(πi) +

P
{ij}∈PNW

k
ij · Ωij(πi, πj)

i
Proof: Detailed proof can be found in Appendix

The result of the Theorem 1, in brief, can be stated as

πki = Πi(W
k), ∀i, k (9)

The implication of the result is that there are specific
directions (which we call Separable Optimal Flow Directions)
in which we can increment the penalty weight vector W , such
that the global optimum for the new set of penalty weights
differs from the previous global optimum (i.e. optimum for
the previous set of weights) in only one partition of the
optimization variables, namely πr. Thus, by moving along
such a direction in kth iteration, we only need to change πrk ,
and still remain at an optimum of the penalized net cost.

Definition 2: [Ascent Direction] We call V an Ascent Di-
rection at W if and only if the following holds,X

{ij}∈PN
VijΩij(Πi(W ),Πj(W )) > 0 (10)

Theorem 2: [Convergence of the Algorithm] If the condi-
tions in Theorem 1 hold, and the Step Direction, V k, returned
by the procedure ComputeStepDirection at the kth iteration
in Line 5 of the Algorithm is also an Ascent Direction at
W k for every k, then the Algorithm converges to an optimal
solution if one exists.

Proof: Detailed proof can be found in Appendix
The result of Theorem 2 implies that if we always increment

the penalty weights along directions that are both Ascent
Directions and Separable Optimal Flow Directions, we will
eventually converge to the global optimum, if it exists. Know-
ing the πki ’s from previous iterations, it is easy to choose such
a direction V k for the current iteration as one that has positive
inner product with the vector of all constraint violations at kth

iteration (i.e., the vector made of Ωij(πki , π
k
j )’s).

Theorem 3: [Computation of Separable Optimal Flow Di-
rection] If the functions cr and Ωir ∀{ir} ∈ PNr abide by the
Problem Assumptions, we can find a Separable Optimal Flow
Direction for Ψrk at W k defined by V k, if it exists, along with
a small enough Step Size, εk, at Line 5 of the Algorithm, using
only the following quantities that are readily computable:

W k, c
(2)
i (πki ) ∀i ∈ NN ,

Ω(0,2)
ij (πki , π

k
j ), Ω(1,1)

ij (πki , π
k
j )

and Ω(1,0)
ij (πki , π

k
j ) ∀{ij} ∈ PN ,

In general we get to choose from a large set of possible
Separable Optimal Flow Directions, thus giving us the oppor-
tunity to make it as an Ascent Direction as well.

Proof: Detailed proof can be found in Appendix
The theorem implies that we can compute Separable Opti-

mal Flow Directions, if one exists, in terms of quantities that
can be easily computed using the variables from the previous
iteration. Within the limits of the error introduced by the finite
step-size, we can compute a Separable Optimal Flow.

It is important to note that in general the freedom of
choosing from a large set of possible Separable Optimal
Flow Direction (set of linear combinations of the eigenvectors
such that (30) is satisfied) gives us the opportunity to choose
a vector V k that is an Ascent Direction as well. In case
the intersection between the set of Separable Optimal Flow
Directions and the set of Ascent Directions is empty, we can
choose to skip to the next element in the sequence {rk}.

V. RESULTS

A. An Exact Implementation
We demonstrate the algorithm using a MATLAB imple-

mentation of an idealized planning problem. The specific
problem under consideration may be considered as a multi-
robot goal-directed path planning in an environment without
obstacles, where the trajectories of the robots are defined
by displacements of unit-spaced points on the trajectories in
vertical direction. Thus the trajectory, of a robot is given
by πr = [startr, yr2, yr3, · · · , yrL, goalr]T , where yri, i =
2 · · ·L are the search variables and represent displacement
of a point at xi of the rth robot’s trajectory. The constraints
between robots a and b are rendezvous constraints defined by

Ωab(πa, πb) =
`
(yac1 − ybc1)2 + (yac2 − ybc2)2 + · · ·

´1/2
= 0

where c1, c2, · · · are the points where a and b need to
rendezvous. There are two components to the costs functions
cr - the length of the trajectory, and the integral of the square
of accelerations over the trajectory. Assuming the robots have
constant X-velocity, the net cost is thus given by a weighted
sum of the two components,

cr(πr) = α
`
(yr2 − startr)2 + (yr3 − yr2)2 + · · ·

´1/2
+ β

`
((yr4 − yr3)− (yr3 − yr2))2+

((yr5 − yr4)− (yr4 − yr3))2 + · · ·
´

The individual unconstrained optimization problems in Line
7 of the Algorithm were solved using MATLAB’s fminunc.

Figure 2 demonstrates how the algorithm approaches the
optimal feasible solution with progress of iterations. In this
example we chose α=1, β=0 and a constant step size of εk=
0.01. The constraints are that the top robot needs to rendezvous
with the middle one at the middle point (i.e. at x7), while the
bottom and middle ones rendezvous at two points (y4 and
y10). Since it is a symmetric case with only trajectory length
as cost, it’s easy to compute the optimal solution separately by
optimizing over just 2 variables. The optimal cost that way is
found to be 43.946, while our algorithm terminates at a cost of
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(a) Symmetric case:
α = 0, β = 1
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(b) Symmetric case:
α = 1, β = 0.2
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(c) An asymmetric case:
α = 1, β = 0

Fig. 3. Converged Solutions

43.962 for the said step size. Figures 3(a) and (b) illustrate the
results for other values of α and β demonstrating the ability of
the algorithm in dealing with complex cost functions. Figure
3(c) demonstrates an asymmetric case with 4 robots.

We attempted to solve these problems in a centralized
fashion using MATLAB’s Pseudo-Newton search method im-
plemented in fmincon. Even when the gradient and Hessian
functions were explicitly provided, it failed to find a solution
satisfying the required tolerance with computation time limit
of 20 minutes and 5000 as the limit on number of iterations.
In contrast, our algorithm solved these problems in about a
minute and a few hundred iterations.

B. A Discrete Implementation

In the following examples we perform a more realistic
multi-robot path planning with pair-wise distance constraints
in a complex environment with large number of obstacles.
Thus, even the individual sub-problems that we need to solve
at Line 7 of the Algorithm become significantly complex.

The three-dimensional state-space of each robot, X − Y −
Time, was discretized into uniform cells, each cell represent-
ing nodes of the graph, and an A* graph search technique
was employed to obtain an optimal path in the graph as
an approximation of the trajectory of rth robot, πr. The
connectivity of the graph was such that a cell in the x, y, t
space connected to its 8 neighboring cells and itself in x, y
but with the time step incremented by one. This implies that
any path in the graph will be discrete approximation of an
element of H. While an 8-connected grid is quick and efficient
to perform search in, it confines the motion of the robot to 8
directions (45◦ orientations). A consequence of this is that
some seemingly sub-optimal solutions are actually optimal
(minimum cost paths) in the 8-connected graph.

The cost function, c, is the Euclidean length of the trajectory.
The constraints between the pairs of robots are defined by
maximum distance, φij(t), that the robots i and j can be apart
at a given instant of time. Thus, the constraints are defined by,

Ωij(πi, πj) =

Z T

0

$(πi(t), πj(t), φij(t)) = 0

where, $(s, s′, p) = max(0, d(s, s′)− p) and d is a distance
function.

1) Dealing with Obstacles: The algorithm and theoretical
analysis described so far relies on the fact that the values of all
the variables can be changed in small steps in each iterations.
Unfortunately the presence of obstacles in the environment
violates that condition. However the Optimality condition of
Theorem 1 still holds in a single Homotopy class of all the

trajectories. This means that as long as a trajectory changes in
small steps and does not make big jump from one side of an
obstacle to the other, Theorem 1 and the related results from
Theorem 3 hold. Thus, whenever we get stuck in a particular
homotopy class for all the trajectories, or whenever one of the
trajectories makes a jump to a new homotopy class, we block
this homotopy class as invalid and restart the planning. It is
worth noting here that we use only large connected obstacles
to characterize homotopy classes and avoid unnecessary cre-
ation of homotopy classes by small obstacles that do not effect
optimality significantly. We primarily employed two different
methods of blocking homotopy classes:

i. Use of Blacklists - We maintain a list of blocked regions
(or balls) in the joint state-space of the robots violating
one or more constraints. Every time we need to restart
the planning as above, we update the “Blacklist” with the
latest violation information in the homotopy class without
a feasible solution. Thus, when we restart the planning
we eventually will avoid the homotopy class, provided
our choice of blocking ball was proper.

ii. Systematic identification and blocking of Homotopy class
- Homotopy classes can be systematically identified using
geometric methods [11] or complex analysis. We inte-
grated such a method with our A* searches which enabled
us to restrict searches in specific homotopy classes or
block some homotopy classes.

In the following subsections we will present the perfor-
mances of our algorithm in different environments.

C. Three interconnected rooms

The environment shown in Figure 4 consists of 3 inter-
connected rooms and 3 robots. The environment is made of
discretized cells 89 × 94 in space and 200 time-steps. This
results in the joint state-space of all the robots to have 1014

states. Our planner avoids planning in this huge state-space,
but rather breaks up the problem into a series of plans in
individual state-spaces with < 2× 106 states. The robots start
from the left side of the environment and need to reach their
goals on the right end. Figure 4(a) shows the unconstrained
optimal plan. A constraint is defined between R1 (black) and
R3 (blue) such that they need to be within a distance of 2
discretization units at t = 40. And the constraint between R1

(black) and R2 (green) is such that they need to be within
a distance of 2 discretization units at t = 120. The solution
shown in Figure 4(b) was found in about one minute and 72
iterations on a computer running on 1.2GHz processor.

D. Extended rendezvous

The environment shown in Figure 5 is similar to the
previous example in size and discretization. In this example
R1 (black) and R2 (green) need to traverse the environment
from left to right, while R3 (blue) needs to traverse it from
top to bottom. Figure 5(a) shows the unconstrained optimal
plan. Constraints between R2 and R3 is that they need to be
within 2 discretization units distance from t = 32 to t = 68,
and the constraints between R1 and R3 is that they need to be
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Fig. 5. Extended rendezvous in environment with three interconnected rooms

within 2 discretization units distance from t = 84 to t = 120
The solution in Figure 5(b) was found after 75 iterations with
ε = 0.1 as the fixed step-size.

E. Extended rendezvous in a real environment

Figure 6 shows a part of the 4th floor of Levine hall in Uni-
versity of Pennsylvania. The original map is 35 meters by 35
meters, discretized into 100x100 cells (each cell 35cmx35cm,
almost the dimension of the Scarab robot, described later).
There are 170 discretization steps in time. There are 3 robots
and the unconstrained objectives, resulting in the solution in
Figure 6(a), are that both Robot 1 (dashed trajectory) and
Robot 2 (dash-dot trajectory) need to start at t = 0 inside
the big room at the bottom and need to reach their respective
goals by t = 170. Robot 3 (dotted trajectory) needs to start
at t = 45 inside the small lower cubicle on the left side of
the map and needs to reach the small storage space at the top
right by t = 120. Figures 6(b) shows the converged feasible
solution that satisfy the following constraints: A. Robot 2
needs to stay within 3 discretization units of robot 3 from
t = 60 to t = 80; and B. Robot 1 then needs to stay within
3 discretization units of robot 3 from t = 90 to t = 110.
Looking at the converged solution we observe that in order to
satisfy constraint A, robot 2 loops it’s trajectory around the
central and lower cubicles, while to satisfy constraint B, robot
1 loops its trajectory around the central and upper cubicles.

F. Performance

We have successfully implemented the algorithm on teams
of up to six robots and in 3 dimensions, that is planning in
X − Y −Z. We do not present those results in the paper due
to limitation on space, as well as to focus on the key features
of the algorithm rather than the multitude of applications that
it can have. More results and applications can be found in [5].

We tested the performance of our algorithm by running the
previous example (Extended rendezvous in a real environment)
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(b) Converged feasible solution

Fig. 6. Extended rendezvous in a real environment

multiple times, but with randomized initial & goal states and
randomized time spans for the constraints. The implementation
of the problem was made in C++ and was run on a computer
with Intel 1.2 GHz processor. The table below gives a sum-
mary of the run-time from 54 runs.

Min Max Average
28 s 169 s 59.7 s

The joint state-space of the three robots contains ∼ 170 ×
(100×100)3 ' 1.7×1014 states. Planning in such a huge graph
is highly expensive, if not impossible. However our distributed
planning technique was able to find the optimal solution
up to the desired precision consistently and sufficiently fast,
thus demonstrating the ability of the algorithm to solve large
problems.

We also tested our algorithm in simulation using Gazebo,
an open-source multi-robot simulator with accurate simulation
of rigid-body physics. Experiment were also performed with
Scarab mobile robot platforms along with an overhead LED
tracking system to track the positions of the robots. In order
to account for the non-zero radii of the robots, we performed
a greedy collision avoidance during run-time. For controlling
the non-holonomic robots, a feedback linearization technique
was adopted. More details can be found in [5].

VI. CONCLUSION

We have developed an algorithm for solving large opti-
mization problems with pair-wise nonlinear constraints and
arbitrary objective functions in a distributed fashion. Our
theoretical analysis gives the conditions under which the
algorithm converges to an optimal solution and a prescrip-
tion for making sure that those conditions are satisfied. We
have successfully implemented the algorithm to solve a large
multi-robot path planning problem in complex environment
with arbitrary shaped obstacles and distance constraints using
discrete graph searches for individual sub-problems.

Presently we are investigating the conditions under which
Separable Optimal Flow Direction and Ascent Direction are
guaranteed to exist. Generalizing each constrain to include
more than two partitions is also under progress. In a nut-shell,
besides solving a specific complex optimization problem in



distributed fashion, our approach opens up a new direction for
solving related classes of distributed optimization problems.

VII. APPENDIX

A. Proof of Theorem 1
The theorem clearly holds when for k = 0 since W 0

ij = 0
for all {ij} ∈ PN .

We prove the theorem by induction. Assume it holds for
k = 0 through k = κ. We will now prove that it continues to
hold for the k = κ+ 1. By inductive assumption we have:
{πκ1 , πκ2 , · · · , πκN} =

arg minπ1,π2,··· ,πN

“P
i∈NN ci(πi) +

P
{ij}∈PN W

κ
ijΩij(πi, πj)

”
That is, πκi = Πi(W

κ), ∀i ∈ NN (11)

We also note that, by Line 8 of the Algorithm,

πκ+1
j = πκj = Πj(W

κ), ∀ j ∈ NN
−rκ (12)

We prove by contradiction. Let us assume that

{πκ+1
1 , πκ+1

2 , · · · , πκ+1
N } 6=

arg minπ1,π2,··· ,πN

`P
i∈NN ci(πi) +P

{ij}∈PN W
κ+1
ij Ωij(πi, πj)

”
This implies that there exist π′1, π

′
2, · · · , π′N given by

{π′1, π′2, · · · , π′N} =
arg minπ1,π2,··· ,πN

`P
i∈NN ci(πi) +P

{ij}∈PN W
κ+1
ij Ωij(πi, πj)

”
such that, π′i = Πi(W

κ+1), ∀i ∈ NN (13)

and X
i∈NN

ci(π
κ+1
i ) +

X
{ij}∈PN

Wκ+1
ij · Ωij(πκ+1

i , πκ+1
j )

>
X
i∈NN

ci(π
′
i) +

X
{ij}∈PN

Wκ+1
ij · Ωij(π′i, π′j) (14)

Again, by the algorithm, it holds that:

πκ+1
rκ = arg minπrκ (crκ(πrκ)

+
P
{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(πκi , πrκ)

”
(15)

Noting that {irκ} ∈ PNrκ ⇒ i ∈ NN
−rκ , and using equation

(12), we get from (15),

πκ+1
rκ = Πrκ(Wκ+1,Wκ)

⇒ Ψrκ(Wκ+1,Wκ)
= crκ(πκ+1

rκ ) +
P
{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(πκ+1

i , πκ+1
rκ )

(16)
Also, from (13) and (6),

π′rκ = Πrκ(Wκ+1) = Πrκ(Wκ+1,Wκ+1)

Thus,

Ψrκ(Wκ+1,Wκ+1) = crκ(π′rκ) +
X

{irκ}∈PNrκ

Wκ+1
irκ
· Ωirκ(π′i, π

′
rκ)

(17)
Thus from (14), (16) and (17), upon rearrangement,X

i∈NN−rκ

`
ci(π

κ+1
i )− ci(π′i)

´
+

X
{ij}∈PN/PNrκ

Wκ+1
ij ·

`
Ωij(π

κ+1
i , πκ+1

j )− Ωij(π
′
i, π
′
j)
´

> Ψrκ(Wκ+1,Wκ+1)−Ψrκ(Wκ+1,Wκ) (18)

On the other hand, according to our inductive assumption,
{πκ1 , πκ2 , · · · , πκN} is a minimum for the global objective
function with Wκ. Thus,
U({πκ1 , πκ2 , · · · , πκN},W k)

≤ U({π′1, · · · , π′r−1,Πr(W
κ,Wκ+1), π′r+1, · · · , π′N},W k)

(19)
Now, since V κ is a Separable Flow Direction Direction

according to our hypothesis, it holds that Wκ+1
ij − Wκ

ij =
V κij = 0 ∀{ij} ∈ PN/PNrκ . Again from (12) we have
πκ+1
j = πκj ∀j ∈ NN

−rκ . Using these, along with (11) and
(13), we get from (19),X

i∈NN−rκ

`
ci(π

κ+1
i )− ci(π′i)

´
+

X
{ij}∈PN/PNrκ

Wκ+1
ij ·

`
Ωij(π

κ+1
i , πκ+1

j )− Ωij(π
′
i, π
′
j)
´

≤ Ψrκ(Wκ,Wκ+1)−Ψrκ(Wκ,Wκ) (20)

Thus from (18) and (20),
Ψrκ(Wκ + εκV κ,Wκ + εκV κ)−Ψrκ(Wκ + εκV κ,Wκ)

−Ψrκ(Wκ,Wκ + εκV κ) + Ψrκ(Wκ,Wκ) < 0
(21)

However this is a contradiction to our assumption that the
V κ and εκ defines a Separable Optimal Flow at Wκ for Ψrκ .
Hence our assumption of the existence of {π′1, π′2, · · · , π′N}
was incorrect. This proves Theorem 1.

B. Proof of Theorem 2
Since U({π},W ) is linear in W , from [6] we know that

Ψ(W ) = min{π} U({π},W ) is concave in W . Again by

optimality condition, U
(1,0)

({Π}(W ),W ) = 0
Thus, Ψ(W ) = U({Π}(W ),W )

⇒ Ψ
(1)

(W ) = U
(0,1)

({Π}(W ),W )

⇒
h
Ψ

(1)
(W )

i
ij

= Ωij(Πi(W ),Πj(W ))
(22)

Thus, if V k is an Ascent Direction, from (10) and (22) it
will imply that in every iteration we move towards a direction
in which Ψ increases. On the other hand, Ψ being concave,
can have only an unique optimum, which is a maximum,
when

h
Ψ

(1)
(W )

i
ij

= 0, ∀{ij} ∈ PN . We thus note that the
maximum, if it exists, is attained when all the constraints are
satisfied. Hence taking steps towards the maximum means that
we will eventually reach the feasible point, if it exists (within
errors defined by the Step Size).

C. Proof of Theorem 3
From the definitions of Ur, Πr and Ψr, by optimality

condition, U (1,0,0)
r (Πr(W1,W2),W1,W2) = 0,

⇒ c
(1)
r (Πr(W1,W2))+P

{lr}∈PNr
W1,lrΩ

(0,1)
lr (Πl(W2),Πr(W1,W2)) = 0

(23)
Differenciating (23) w.r.t. W1, using Problem Assumption

4.ii., setting W1 =W2 =W , and using (6) & (7),

Mr(W ) ·
h
Π

(1,0)
r (W,W )

i
ij

=

8<: Ω
(1,0)
kr (Πk(W ),Πr(W )), when {i, j} ≡ {k, r} ∈ PNr

0, when i 6= r, j 6= r
(24)



Similarly, differentiating (23) w.r.t. W2, followed by setting
W1 = W2 = W , and using (6) & (7), we get,
Mr(W ) ·

h
Π

(0,1)
r (W,W )

i
ij

+
P
{lr}∈PNr

WlrΩ
(1,1)
lr (Πl(W ),Πr(W )) ·

h
Π

(1)
l (W )

i
ij

= 0

(25)
Adding (25) and (24), and using (7),
Mr(W ) ·

h
Π

(1)
r (W )

i
ij

+
P
{lr}∈PNr

WlrNlr(W ) ·
h
Π

(1)
l (W )

i
ij

=

8<: Ω
(1,0)
kr (Πk(W ),Πr(W )), when {i, j} ≡ {k, r} ∈ PNr

0, when i 6= r, j 6= r
(26)

Equation (26) can be written as follows,26664
M1(W ) W12N12(W ) W13N13(W ) · · ·
W21N21(W ) M2(W ) W23N23(W ) · · ·
W31N31(W ) W32N32(W ) M3(W ) · · ·
...

...
...

. . .

37775
26666664

»
Π(1)

1 (W )
–
mn»

Π(1)
2 (W )

–
mn»

Π(1)
3 (W )

–
mn

...

37777775

=

2666666666664

· · ·
0

Ω(1,0)
mn (Πm(W ),Πn(W ))

0
· · ·
0

Ω(1,0)
mn (Πn(W ),Πm(W ))

0
· · ·

3777777777775

→ mth row

→ nth row

(27)

For all {m,n} ∈ PN .
We note that equations (24) and (27) gives prescriptions for

computing derivatives of Πr and Πr in terms of Πr and the
derivatives of cr & Ωij . It is important to note that while the
later are readily computable, the former aren’t.
Again, differentiating (4) w.r.t. W1 and using (23),h

Ψ
(1,0)
r (W1,W2)

i
ij

=


Ωkr(Πk(W2),Πr(W1,W2)), when {i, j} ≡ {k, r} ∈ PNr
0, when i 6= r, j 6= r

(28)
Differentiating (28) w.r.t. W2, using Problem Assumptions

4.ii., followed by setting W1 =W2 =W , and using (6) & (7),h
Ψ

(1,1)
r (W,W )

i
ij,mn

=

8>>>><>>>>:
Ω

(1,0)
kr (Πk(W ),Πr(W )) ·

h
Π

(1)
k (W )−Π

(1)
r (W )

i
mn

+ Ω
(1,0)
kr (Πk(W ),Πr(W )) ·

h
Π

(1,0)
r (W,W )

i
mn

,

when {i, j} ≡ {k, r} ∈ PNr
0, when i 6= r, j 6= r

(29)
Now using (24) and (27), we can computeh

Ψ
(1,1)
r (W,W )

i
ij,mn

in terms of the quantities mentioned in
the statement of the theorem. It is important to note that the
sole purpose of this dealing was to be able to express the
derivatives of Π and Π in terms of computable quantities.

Once we obtain the complete matrix for Ψ(1,1)
r (W,W ), we

can choose a Separable Optimal Flow Direction as a linear
combination of the right eigenvectors corresponding to the
non-negative eigenvalues of Ψ(1,1)

r (W,W ). Separable Optimal
Flow Step, ε, is chosen according to a desired accuracy. Thus,
if we choose V = a1e1 + a2e2 + · · · , where e1, e2, · · · are
the eigenvectors corresponding to non-negative eigenvalues
λ1, λ2, · · · , we get,

Ψr(W + εV,W + εV )−Ψr(W,W + εV )
−Ψr(W + εV,W ) + Ψr(W,W )

' (εV )T
h
Ψ

(1,1)
r (W,W )

i
(εV )

= ε2 (a1e1 + a2e2 + · · · )T (a1λ1e1 + a2λ2e2 + · · · )
= ε2 (λ1a

2
1 + λ2a

2
2 + · · · ) ≥ 0

(30)

We note that all the Vij for which i 6= r, j 6= r does
not influnce the condition (30) since

h
Ψ

(1,1)
r (W,W )

i
ij,mn

= 0

when i 6= r, j 6= r. Thus we can always choose the V such
that Vij = 0, i 6= r, j 6= r. Thus, within the limits of the
error introduced by the finite step-size, we can compute a
Separable Optimal Flow if one exists. It is easy to see that if
no positive real eigenvalue exists, then there does not exist a
Separable Optimal Flow at W for that particular Ψr. Under
such circumstances we can choose to skip to the next element
in the sequence {rk} and retry.
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