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ABSTRACT 
 

The present work deals with the problem of increasing the natural frequencies and hence the 
critical speeds of a rotating disk by inserting thin radial stiffeners into the disk. Introduction of 
such stiffeners of higher strength and rigidity though does not affect the properties and 
performance of the disk reasonably, according to the present analysis it is found that they can 
successfully increase the natural frequencies of the disk, both in static as well as rotating 
conditions. 
Using the FEM software Ansys 8.0, modal analyses of the rotating annular disk with radial 
stiffeners of different geometries were performed. A gradual development of the stiffener 
geometry on the basis of conclusions drawn from intermediate results finally yielded a 
stiffener, which could successfully push up the modal frequencies, and hence potentially 
increase the critical speeds of the disk. 
In an analytical approach to the problem, though it was rather difficult to incorporate the 
stiffener geometry, some elementary analyses were performed and after a thorough 
mathematical investigation, a partial differential equation was set to describe the vibration of 
the disk with stiffeners. However a final analytical solution could not be achieved at the 
present moment due to the complexity of the equation. 

 
INTRODUCTION 

 
Rotating disks and similar rotating objects appear in various practical problems in classical 
engineering applications like rotating shafts, disk clutches, cams & turbine blades. Moreover, 
in many important recent applications like rotating data storage devices in computers, the 
disks generally have to undergo extreme conditions of stresses at extremely high rotation 
speeds assuming orders of few thousand rotations per minutes. The problem takes critical turn 
when the frequency of rotation of the disk matches with its natural frequencies of vibration. 
Hence an investigation into the problem seeking ways for stiffening the disk without altering 
much of its dimensions & material properties and still result in an increase in such critical 
frequency is highly desirable. 
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PRESENT ANALYSIS – THE ANALYTICAL APPROACH 
 
In the present analysis we deal with only the out of plane modes of vibration of the plate/disk. 
Hence we have only one displacement variable, w, which denotes the displacement of a point 
on the disk along the axial direction from its un-displaced position. Here w is a function of r, θ 
and t, where r & θ are the space variables in cylindrical polar coordinates and t is the time. 
As we are interested in finding out the natural modes of vibration, we assume that w is a 
simple harmonic function of time with the same frequency and phase but varying amplitudes 
for all the points on the disk. That is, 

ti nerutrw ωθθ ⋅= ),(),,(      (2) 
where, ωn is the frequency of the particular natural mode of vibration. 
 
Moments on an elemental portion of the disk.   We start with the expression for bending 
and twisting moments on an element of the disk. The expressions for moments per unit length 
have been given by Timoshenko [1] for any orthogonal coordinate system. We have used the 
expression for cylindrical polar coordinates. Bending moments per unit length are given by, 
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where, ρr and ρθ are the radii of curvature along a radial line and tangent respectively, 
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And the twisting moment per unit length is given by, 
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and, rr MM θθ −=  
Here it may be noted that E, ν, and hence D are functions of r and θ. 
The following figure shows the moment vectors due to the above acting on an elemental 
portion of the disk. It may be noted here that the notations used by Timoshenko for Mr and Mθ 
have been interchanged in the present analysis. 

 
fig – 1



 

Shear stresses.   Now, figure 2 shows the direction of the shear stresses acting on the element 
which contribute to the moments along er and eθ directions. 

 
fig – 2 

 
As the moment of inertia of the element about any axis (er or eθ) embedded on it is a 
differential of order 4, the rotation of the element about the axes can be neglected. Hence we 
consider equilibrium of the bending & twisting moments and the moments due to the shear 
forces on the element. 
Considering moment about er, 
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And, considering moment about eθ, 
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Components of Radial and Circumferential stresses due to rotation of the disk.   If we 
consider the disk to be pre-stressed, there will be normal stresses along er and eθ. As the 
element has a curvature both along er and eθ directions, there will be components of forces 
due to σr and σθ along ez (figure 3). 

 
fig - 3 

 
On performing a simple analysis, it can be shown that the components of the forces due to 
radial and circumferential stresses along -ez are respectively given by, 
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For a disk with ri and ro as internal and external radii respectively and fixed at the inner 
circumference (as in the present case) and rotating with angular frequency ω, the radial and 
circumferential stresses are given by, 
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The final equation of motion.   Hence, the net force on the element along ez due to the τrz, τθz, 
σr and σθ causes it to accelerate along ez. Hence, the final equation of motion is given by, 
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where, ρ is the density of the material and is a function of r and θ. 
This gives, 
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Now, putting in (10) the expression for w in terms of u and ωn from (2), and performing all 
the calculations and simplifications using Mathematica 5.1 the following differential equation 
was obtained, 
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The notations used here are as follows: 

ri ≡ ri, ro ≡ ro, νθν ≡],[r , ρθρ ≡],[r , ed[r,θ] ≡ ( )2
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The above result was cross-checked by putting constant values of D, ρ and ν . It gave back the 
results as in [1] for disk with constant material properties. 
The non-trivial solutions to this partial differential equation in r and θ with appropriate 
boundary conditions give the modal shapes of the rotating disk with inhomogeneous material 
properties like stiffeners, etc. And the corresponding ωn’s gives the natural frequencies. 
 
Possibilities of solution.   As it can be seen, the obtained differential equation is a pretty huge 
one and is difficult to handle analytically without any suitable approximations. Attempts were 
made to reduce the partial differential equation to ordinary ones using separation of variable 
method. The substitution u(r,θ) = u1(r).u2(θ) was done, but without much simplification or 
separation of the variable r and θ. However there are possibilities of further investigation into 
the equation and solving it analytically using suitable approximation techniques like 
Galerkin’s methods, etc. 
However, as the present problem deals mainly with radial stiffeners (fig-4), a possible 
simplification of the equation may be performed by assuming that the properties like D, ρ and 
ν  are functions of θ only. 

 
fig - 4 

 
Moreover if we assume the stiffeners to be very thin and having drastically different material 
property values compared to that of the disk itself, the property functions D, ρ and ν  may be 
approximated by a Dirac Delta function as follows: 
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where, ξ is any property of the material integrated over length, 
 n = number of equispaced stiffeners on the disk. 
It may be noted that the domain of θ in which all the analyses are done is assumed to be [-2π, 
2π]. 

 
FINITE ELEMENT ANALYSIS 

 
The obtained partial differential equation can be attempted to be solved using suitable 
numerical techniques. However as a part of the present work, the numerical solutions have 
been performed using the FEM software Ansys. The description of the geometry, material 



properties, boundary conditions, grid type used, meshing and mode extraction method used 
are given below. All the values mentioned here are in SI unit system. 
 
Geometry of the Disk.   The disk was basically a thin annular cylinder with 
internal radius(ri) = 0.01, external radius(ro) = 0.051, thickness(h) = 0.001. 
The geometry and number of the stiffeners were varied and different sets of results were 
obtained for each of them. 
 
Material Properties.   The material of the disk is considered to be a type of plastic polymer, 
and the stiffeners were assumed to be made of steel. Hence the material property values were 
chosen accordingly. 
The material of the disk was chosen to have the following properties: 
E = 40×109, ρ = 2000, ν  = 0.25 
And the material of the stiffener was chosen to have the following properties: 
E = 200×109, ρ = 7800, ν  = 0.3 
 
Boundary Conditions.   The boundary condition was set so as to ensure that the disk is 
clamped at it’s inner circumference. In order to ensure that, the surface area of the inner 
cylinder of the disk was declared to have zero displacement along all the three degrees of 
freedom. 

 
fig - 5 

 
 
Grid type, meshing and mode extraction technique.   For meshing the volume of the disk, 
the 20-nodes solid element ‘SOLID95’ provided in Ansys was chosen. The particular choice 
was made because the SOLID95 element can tolerate irregular shapes without much loss of 
accuracy and the elements have compatible displacement shapes and are well suited to model 
curved boundaries. Hence for the present problem dealing with thin circular disk, this element 
was found to be most suitable. 
The meshing of both the disk and the stiffener volumes were done using unstructured grids. 
For the purpose of controlling the size of the elements Ansys’s ‘Smart Size’ tool was used. 
For the volumes of the disk, the size level was set to 7 and for the stiffeners the size level was 
set to 6. 
For each case, first a static analysis was performed with the prestressed effect on and with an 
angular velocity of the global coordinated about z-axis to account for the rotation of the disk. 
It was followed by a modal analysis with the previously obtained prestress data. For the modal 
analysis, the method used for extraction of the eigenvalues is Block Lanczos. 
 
The following section describes the geometry, position and number of stiffeners used and the 
corresponding results obtained in each case. 



RESULTS OF FINITE ELEMENT ANALYSIS 
 
The standard mode shapes for disk without stiffeners and clamped at the inner circumference 
consists of nodal circumferences and nodal diameters. A mode shape with i nodal diameters 
and j nodal circles is termed as mode (i, j). The following figures show some typical mode 
shapes (the lines represent the nodes): 

 
 (0, 0) (1, 0) (0, 1) (2, 1) 

  
fig – 6 

 
Disk with no stiffeners.   Modes obtained: First 20 modes were extracted, and the modal 
shapes obtained were the standard ones. A plot of the modal frequencies against the angular 
velocity of the disk is performed. The intersections of the straight lines with slopes 2, 3, etc 
with curves corresponding to modes (1,0), (2,0), etc give the critical frequencies. The obtained 
plots being the standard ones haven’t been shown in this paper. 
It was observed that the slope 1 line almost became asymptotic to the mode (0,0) curve. This 
is a result expected from the standard calculations for disk with no stiffeners. 
 
Disk with three straight equispaced radial stiffeners 
Stiffener Geometry: The stiffeners are simple thin rectangular parallelopipeds with length ro-ri 
= 0.041 and both height and thickness = h = 0.001. 
Modes obtained: The mode shapes obtained were same as before, but for all the modes (i, j) 
with i as multiple of 3, the frequencies of the orthogonal modes got splitted. The splitted 
modes are denoted by ‘A’ for the modes which have stiffeners on antinodes and ‘B’ for the 
modes which have stiffeners on modal diameters. 
The plot of modal frequencies against the angular velocity is shown in Graph-1. 
 
Disk with four straight equispaced radial stiffeners 
Stiffener Geometry: Same as Disk with three straight equispaced radial stiffeners 
Modes obtained: Mode shapes obtained were same as before, but splitting of orthogonal 
modes was observed for modes with nodal diameters multiples of 4. 
The plot of modal frequencies against the angular velocity showed that there hasn’t been any 
significant change in the critical angular velocities. 
 
It may be observed here that till now there has not been any significant change in the critical 
angular velocities because of addition of stiffeners to the disk. Hence an investigation by 
altering the geometry of the stiffeners may be done to see if the critical angular velocities go 
up. The following sections show the results obtained by altering the stiffener geometries. 
 



Disk with three expanding (narrower near the inner circumference, wider near the outer 
circumference) equispaced radial stiffeners. 
Stiffener Geometry: The stiffeners are trapezoidal shaped thin blocks with width of 0.0004 at 
the inner circumference and 0.002 at the outer circumference. 
The thickness is uniform thought and is equal to h = 0.001. 
On starting the analysis with zero angular velocity of the disk, it was found that the modal 
frequencies, and hence the critical speeds decreased considerably compared to the straight 
stiffeners case. This as the undesired case, hence further continuation of analysis with this 
geometry of stiffener was discontinued. 
However it was clear from the above mentioned observation that an increased mass 
concentration near the outer circumference is not desirable. Hence it may be interesting to do 
some study with stiffeners having higher mass concentration near the inner circumference. 
 
Disk with three contracting (wider near the inner circumference, narrower near the 
outer circumference) equispaced radial stiffeners 
Stiffener Geometry: As in 5.4, the stiffeners are the same trapezoidal shaped thin blocks, but 
they are now placed in a reverse orientation. That is, they have a width of 0.0004 at the outer 
circumference and 0.002 at the inner circumference. 
The thickness is uniform thought and is equal to h = 0.001. 
Modes obtained: Mode shapes obtained were similar to 5.2, with splitted orthogonal modes 
for modes with nodal diameters multiples of 3. However in this case, a few modes were found 
to be slightly deformed from the standard mode shapes. The modal frequencies vs. angular 
velocity plot is shown in Graph-2. 
 
Intermediate Conclusions for proceeding with further modifications on the stiffener 
geometry.   Though not very evident from the previous graphs, there had been a minor 
increase in the critical frequencies with contracting stiffeners when compared with the 
previous ones. A close comparative study of the frequencies of mode (1, 0) and its intersection 
with slope 2 line may reveal the fact (refer to the plot graph-3). 
 
The graph-3 reveals: 

 With addition of stiffeners, the lowest critical velocity has gone up slightly. 
 By increasing the number of stiffeners from 3 to 4 not much difference id made on the 

critical velocities. 
 By increasing the mass concentration of the stiffeners near the inner circumference 

there has been some increase in the critical velocity. 
 However, in all the above mentioned cases the value of the first critical angular 

velocity lies within the value 1500 (± 50) rad/s. Hence nothing much has yet been 
achieved. Hence further investigation is required 

From the above drawn conclusions it was logical to investigate the problem with stiffeners 
having even higher mass concentration near the inner circumference. The following section 
deals with such a stiffener geometry, which is a modification on the contracting stiffener, and 
was found to give much better results. 
 
Disk with three raised, contracting (raised above the surface of the disk and wider near 
the inner circumference) equispaced radial stiffeners 
Stiffener Geometry: The stiffeners are the similar to those of section 5.5, but they are now 
also raised above the surface of the disk near the inner circumference and gradually slopes 
down to meet the disk surface at the outer circumference. Hence, they are a sort of truncated 



pyramidal shaped stiffeners with the base of the pyramid at the inner circumference, and apex 
at the outer circumference. At the inner circumference they have a width of 0.002 and 
thickness of 0.00512. And at the outer circumference they have a width of 0.0004 and 
thickness of 0.001. Thus the geometry appears as shown in the following figure (figure not to 
the scale): 

 
fig – 7 

 
Modes obtained: In this case the mode shapes obtained were rather very interesting. Apart 
from a few standard higher mode shapes (like (4,0), (5,0), (6,0) and (3,1)), a few new types of 
modes were obtained, some of which were much deformed an asymmetric. 
It was interesting to observe that the standard modes with the lower modal frequencies were 
completely replaced by new modes with much higher modal frequencies. Hence the first few 
critical speeds of the disk were expected to increase considerably. 
Only a few of the standard modes were available, and they are shown in graph-4. 
 
But it will be of greater interest to make a study on the new mode shapes obtained with the 
present stiffener geometry. The following figures show some of those mode shapes: 

 
fig – 8 : Unusual mode shapes obtained 

 
As most of the standard (i, j) modes are absent with the present stiffener geometry, we will 
term the modes mode-1, mode-2, etc. in ascending order of their modal frequencies. For the 
purpose of comparison with the other stiffener geometries the modal frequency vs. angular 
velocity graphs were plotted for the different stiffeners for mode-1, mode-2 and mode-3. The 
plots are given in graph - 5, 6 and 7. 
 
From the graphs 5, 6 and 7 it can easily be seen how the 3 contracting and raised stiffeners 
used in this section have increased the modal frequencies for the disk substantially. 
However, as many of the standard modes were absent, it is difficult to draw any immediate 
conclusions regarding the critical speed of the disk. But as the modal frequencies were found 
to increase considerably, one can logically expect the critical velocities to increase 
accordingly. 



Hence the raised contracting stiffener gave extremely desirable results by increasing the 
modal frequencies. Even if we keep some allowance in these results in order to account for the 
numerical errors caused due to difference in meshing, the results show a high potential for the 
success of the stiffener geometry mentioned in this sub-section. 
However some of the mode shapes obtained in the simulation with this stiffener geometry 
were highly deformed and asymmetric. This may be because of numerical errors caused by 
uneven meshing, limitations of the mode extraction and solving methods used, etc. Further 
investigation is possible in order to explain these anomalous modal shapes. 
 

CONCLUSIONS 
 
The final conclusions that can be drawn from the above analysis and results: 

 An analytical solution has been attempted in order to account for variation of material 
properties within the disk, which is in fact the case for disks with stiffeners. A differential 
equation has been successfully set up and cross-checked by putting constant values of 
material properties to obtain the equation in [1]. However a final solution could not be 
achieved at the present moment due to the complexity of the differential equation. Further 
studies on the obtained partial differential equation with appropriate approximations may 
lead to a satisfactory analytical solution. 

 Using the FEM software Ansys, modal analysis of the rotating disk with stiffeners of 
different geometries were performed. A gradual development of the stiffener geometries 
on the basis of conclusions drawn from intermediate results finally yielded a stiffener 
which could successfully push up the modal frequencies, and hence potentially increase 
the critical speeds of the disk. 

 Further investigation into the problem may result in a successful analytical method for 
dealing with such disks with stiffeners. Moreover variation in the dimensions and 
geometry of the obtained stiffener may yield better and interesting results. 
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