Topological complexity of surfaces

Daniel C. Cohen

cohen@math.lsu.edu www.math.lsu.edu/~cohen Department of Mathematics Louisiana State University

Topological Methods in Robot Planning 2019 International Conference on Robotics and Automation

Configuration space

Configuration space of a mechanical system is the topological space X whose points parameterize possible configurations/positions

Assumptions:

X is path connected

X has the homotopy type of a finite CW-complex

Example

2 joint planar robot arm has configuration space

$$X = \{(\theta_1, \theta_2)\} = S^1 \times S^1 = T$$
 the torus

Motion planning problem

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Find an algorithm which, given configurations A, B in X, produces a motion of the system from A to B

Rephrase: Given $A, B \in X$, exhibit $\gamma = \gamma(A, B) \colon I \to X$ I = [0, 1] continuous path $\gamma(t) = \gamma(A, B)(t)$ from $A = \gamma(0)$ to $B = \gamma(1)$

Motion planning ...

... is sometimes easy

can globally exhibit paths depending continuously on input (A, B) ... becomes more involved as the topology of X gets interesting

cannot globally exhibit paths depending continuously on input (A, B)

Motion planning . . .

 $PX = \{\gamma \colon I \to X \text{ continuous}\}$ free paths on X (compact/open topology) $\text{ev}_{0,1} \colon PX \to X \times X$ $\text{ev}_{0,1}(\gamma) = (\gamma(0), \gamma(1))$

Motion planning problem: find $s: X \times X \to PX$ with $ev_{0,1} \circ s = id_{X \times X}$

Call such s a motion planner

so in general we divide $X \times X$ into pieces

Desirable: motion planner depends continuously on input (A, B)

Fact: $\exists s \colon X \times X \to PX$ continuous with $\operatorname{ev}_{0,1} \circ s = \operatorname{id}_{X \times X} \iff X \simeq *$

motion planner $s: X \times X \to PX$ is *tame* if $X \times X = F_1 \cup F_2 \cup \cdots \cup F_k$

- 1. $F_i \cap F_j = \emptyset$ for $i \neq j$
- 2. Each restriction $s_i = s|_{F_i} : F_i \to PX$ is continuous
- 3. Each F_i is nice a Euclidean neighborhood retract

Tame motion planner solves motion planning problem:

input $(A, B) \in X \times X$ $\exists ! F_i \text{ with } (A, B) \in F_i$ output $s_i(A, B)(t)$

Topological complexity of *X*

 $TC(X) = min\{k \mid \exists \text{ tame motion planner with } X \times X = F_1 \cup \cdots \cup F_k\}$

Example
$$TC(\mathbb{R}^n) = 1$$
 $\mathbb{R}^n \times \mathbb{R}^n = F_1$ $s_1(A, B)(t) = (1 - t) \cdot A + t \cdot B$

Example
$$(X = S^1)$$

$$F_1 = \{(x, -x) : x \in X\} \subset X \times X$$

$$F_2 = X \times X \setminus F_1 = \{(x,y) : x \neq -y\}$$

$$s_1 = s|_{F_1}: F_1 \to PX$$
 counterclockwise path from x to $-x$

$$S_2 = S_{|F_2}: F_2 \to FX$$
 shortest geodesic arc from x to y

$$s_2 = s|_{F_2} : F_2 \to PX$$
 shortest geodesic arc from x to y $TC(S^1) = 2$

Example
$$(X = S^2)$$

fix
$$e \in X$$
, τ a nowhere zero tangent vector field on $X \setminus e$

$$F_1 = \{(e, -e)\}$$

$$F_2 = \{(x, -x) : x \neq e\}$$

$$F_3 = \{(x, y) : x \neq -y\}$$

$$s_1 = s|_{F_1} \colon F_1 \to PX$$
 any fixed path from e to $-e$

$$s_2 = s|_{F_2}$$
: $F_2 \to PX$ path x to $-x$ along semicircle tangent to $\tau(x)$
 $s_3 = s|_{F_2}$: $F_3 \to PX$ shortest geodesic arc from x to y $TC(S^2) < 3$

$$s_3 = s|_{F_3} : F_3 \to PX$$
 shortest geodesic arc from x to y

Homotopy invariance

Farber (2004) TC(X) is the sectional category or Schwarz genus of the fibration ev_{0.1}: $PX \to X \times X$, $\gamma \mapsto (\gamma(0), \gamma(1))$

$$\mathsf{TC}(X) = \min \left\{ \begin{matrix} k & X \times X = U_1 \cup \dots \cup U_k & \text{with } U_i \text{ open and} \\ \exists s_i \colon U_i \to PX \text{ continuous section } \operatorname{ev}_{0,1} \circ s_i = \operatorname{id}_{U_i} \end{matrix} \right\}$$

Homotopy invariance of TC(X) easier to see from this perspective

Determining TC(X) can be difficult Farber-Tabashnikov-Yuzvinsky (2003)

If n = 1, 3, or 7 $TC(\mathbb{RP}^n) = 1 + n$

$$\Pi H = 1, 3, 0 \Pi T = 10 \text{ (BMP)}$$

If $n \neq 1, 3, 7$ $\mathsf{TC}(\mathbb{RP}^n) = 1 + \text{immersion dimension of } \mathbb{RP}^n$

motion planning in
$$\mathbb{RP}^2$$
 $\mathbb{RP}^2 \times \mathbb{RP}^2 = U_a \cup U_{xy} \cup U_{xz} \cup U_{yz}$

 $U_a = \{(A, B)\}\$ lines through 0 in \mathbb{R}^3 which make an acute angle $s_a: U_a \to P(\mathbb{RP}^2)$ rotate A to B through this angle

 $U_{xy} = \{(A, B)\}$ lines whose projections onto the xy-plane span $s_{xv}: U_{xv} \to P(\mathbb{RP}^2)$ rotate A to B via plane orientation induced by (A, B)

Bounds

Dimensional bound
$$TC(X) \leq 2 \cdot \dim(X) + 1$$
 $X \simeq \text{finite CW-complex}$ Tame motion planner with $2n+1$ elements $n = \dim(X)$ $X^k = k$ -skeleton of X $S_k = X^k \setminus X^{k-1}$ union of interiors of k -cells $F_i = \bigcup_{k+\ell=i} S_k \times S_\ell$ disjoint ENRs with $F_0 \cup \cdots \cup F_{2n} = X \times X$ define $s_i \colon F_i \to PX$ by defining s_i on $S_k \times S_\ell$ $k+\ell=i$ Product inequality $TC(X \times Y) \leq TC(X) + TC(Y) - 1$ $\{F_i, s_i\}_{i=1}^n$ and $\{F_j', s_i'\}_{j=1}^m$ tame motion planners for X and $Y \Longrightarrow \{F_k'', s_k''\}$ tame motion planner for $X \times Y$ $F_k'' = \bigcup_{i+j=k} F_i \times F_j'$ $s_k'' = s_i \times s_j'$ on $F_i \times F_j'$ $2 \leq k \leq n+m$ Cohomology lower bound $TC(X) > zcl H^*(X; k)$ zero-divisor cup length $zcl H^*(X; k) = cup length(ker(H^*(X; k) \otimes H^*(X; k) \xrightarrow{\cup} H^*(X; k))$ $A = \bigoplus_{m \geq 0} A^m$ graded algebra $cup length(A) = cl(A)$ is the biggest q

such that $\exists a_1, \dots, a_q \in A^{>0}$ (homogeneous) with $a_1 \cdots a_q \neq 0$ sectional category(fibration $p \colon E \to B$) $> \operatorname{cl}(\ker(p^* \colon H^*(B; \mathbb{k}) \to H^*(E; \mathbb{k}))$

Topological complexity of orientable surfaces

$$\begin{split} & \text{Example } (X = S^2 \text{ continued}) \\ & \text{tame motion planner } S^2 \times S^2 = F_1 \cup F_2 \cup F_3 \implies \mathsf{TC}(S^2) \leq 3 \\ & \text{if } 0 \neq x \in H^2(S^2; \Bbbk) \quad \text{then } (x \otimes 1 - 1 \otimes x)^2 = -2x \otimes x \neq 0 \\ & \text{zcl } H^*(S^2; \Bbbk) \geq 2 \implies \mathsf{TC}(S^2) \geq 3 \end{split} \qquad \qquad \mathsf{TC}(S^2) = 3$$

Example
$$(X = S^1 \times S^1 = T)$$

Product inequality $\Longrightarrow \mathsf{TC}(S^1 \times S^1) \leq \mathsf{TC}(S^1) + \mathsf{TC}(S^1) - 1 = 3$
if $H^1(S^1 \times S^1; \Bbbk) = \langle u, v \rangle$ then $(u \otimes 1 - 1 \otimes u)(v \otimes 1 - 1 \otimes v) \neq 0$
 $\mathsf{zcl}\,H^*(S^1 \times S^1; \Bbbk) \geq 2 \implies \mathsf{TC}(S^1 \times S^1) \geq 3$ $\mathsf{TC}(S^1 \times S^1) = 3$

Example
$$(X = \Sigma_g = T \# \cdots \# T \text{ orientable genus } g \geq 2)$$

Dimensional inequality $\implies \mathsf{TC}(\Sigma_g) \leq 5$
If $H^1(\Sigma_g; \Bbbk) = \langle u_i, v_i \mid 1 \leq i \leq g \rangle$ then

If
$$H^1(\Sigma_g; \mathbb{k}) = \langle u_i, v_i \mid 1 \le i \le g \rangle$$
 then $(u_1 \otimes 1 - 1 \otimes u_1)(v_1 \otimes 1 - 1 \otimes v_1)(u_2 \otimes 1 - 1 \otimes u_2)(v_2 \otimes 1 - 1 \otimes v_2) \ne 0$ $\operatorname{zcl} H^*(\Sigma_g; \mathbb{k}) \ge 4 \implies \operatorname{TC}(\Sigma_g) \ge 5$ $\operatorname{TC}(\Sigma_g) = 5$

Topological complexity of non-orientable surfaces

Example
$$(X = \mathbb{RP}^2)$$

Farber-Tabashnikov-Yuzvinsky

$$TC(\mathbb{RP}^2) = 1 + \text{immersion dimension of } \mathbb{RP}^2 = 4$$

Example
$$(X = N_h = \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2 \text{ non-orientable genus } h \geq 2)$$

Dimensional inequality
$$\Longrightarrow$$
 $TC(N_h) \le 5$ $zcl\ H^*(N_h; \mathbb{Z}_2) \ge 3 \Longrightarrow TC(N_h) \ge 4$ \Longrightarrow $4 \le TC(N_h) \le 5$

Dranishnikov (2016)

- ► $TC(N_h) = 5$ for $h \ge 4$ obstruction theory $TC(M \# N) \ge TC(N)$ for M, N surfaces with M orientable...
- ▶ shows that his approach do not extend to N_h for h = 2,3

so...
$$TC(N_h) = TC_2(N_h) = ?$$
 for $h = 2, 3$

in particular what is TC(K)? K = Klein bottle

C-Vandembroucq (2017)

$$TC(K) = 5$$

$$TC(N_h) = 5$$
 for any $h \ge 2$

proofs use more refined cohomological considerations