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Configuration space of a mechanical system is the topological space X
whose points parameterize possible configurations/positions

Assumptions:
X is path connected
X has the homotopy type of a finite CW-complex

Example
2 joint planar robot arm has configuration space
X =1{(01,02)} =S'"x S"=T thetorus
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Motion planning problem

R.0.B.0.T. Comics
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"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Find an algorithm which, given configurations A, Bin X,
produces a motion of the system from Ato B

Rephrase: Given A,B € X, exhibity=~(A,B):1— X [=][0,1]
continuous path ~(t) = v(A, B)(t) from A= ~(0) to B=~(1)
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Motion planning ...
...is sometimes easy

can globally exhibit paths depending continuously on input (A, B)
...becomes more involved as the topology of X gets interesting
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cannot globally exhibit paths depending continuously on input (A, B)
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Motion planning . ..
PX = {~: | — X continuous} free paths on X (compact/open topology)
evo,i: PX = X x X evo1(v) = (7(0),7(1))

Motion planning problem:  find s: X x X — PX withevp 108 =idxyx
Call such s a motion planner
Desirable:  motion planner depends continuously on input (A, B)
Fact: 3s: X x X — PX continuous with evg 1 0 s = idxyx <= X ~*
so in general we divide X x X into pieces
motion planner s: X x X — PXistameif Xx X =F UFU---UFg
1. FiNFp=0fori#j
2. Each restriction s; = s|r,: F; — PXis continuous
3. Each F; is nice - a Euclidean neighborhood retract

Tame motion planner solves motion planning problem:
input (A, B) € X x X 3lF; with (A, B) € F; output s;(A, B)(t)
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Topological complexity of X TC(X)
TC(X) = min{k | 3 tame motion planner with X x X = Fy U--- U Fy}

Example TC(R") =1 R"xR"=F s(AB)(t)=(1—-t)-A+t B

Example (X = S') X
Fi={(x,—x) :xe X} Cc XxX YO
Fo=XxX~F={(x,y) : x# -y} X

s1 = S|f, : F1 — PX counterclockwise path from x to —x
S» = S|f,: Fo — PX shortest geodesic arc from x to y

Example (X = S?)

fix e € X, 7 a nowhere zero tangent vector field on X \ e
Fi ={(e,—e)}

Fo ={(x,—x) : x £ e}

Fs={(x.y) : x# -y}

s1 = S|f,: F1 — PX any fixed path from e to —e

S = S|f,: Fo — PX path x to —x along semicircle tangent to 7(x)

S3 = S|f,: F3 — PX shortest geodesic arc from x to y TC(S?) <3
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Homotopy invariance

Farber (2004) TC(X) is the sectional category or Schwarz genus of
the fibration evg 1: PX — X x X, v — (7(0),~(1))

. XxX=UU---UU with U; open and
TG(X) = min {k 3ds;i: U — I13X continulz)us sectionl evpoj 08 = idU,}
Homotopy invariance of TC(X) easier to see from this perspective
Determining TC(X) can be difficult
Farber-Tabashnikov-Yuzvinsky (2003) A
lfn=1,3,or7 TC(RP")=1+n
Ifn#£1,3,7 TC(RP") = 1 + immersion dimension of RP"
In particular TC(RP?) = 4
motion planning in RPP? RP? x RP? = U, U Uy U Uy, U Uy,
Uz = {(A, B)} lines through 0 in R® which make an acute angle
Sa: Uy — P(RP?) rotate A to B through this angle
Uy = {(A, B)} lines whose projections onto the xy-plane span
Sxy: Uy, — P(RP?) rotate A to B via plane orientation induced by (A, B)
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Bounds
Dimensional bound  TC(X) < 2-dim(X) + 1 X ~ finite CW-complex
Tame motion planner with 2n + 1 elements n = dim(X)
XK = k-skeleton of X Sk = X¥ ~. X*=" union of interiors of k-cells
Fi = Ukye—i Sk x S¢  disjoint ENRs with Fo U --- U Fop = X x X
define s;: F; — PX by definingsion Sk xS, k+/(=i
Product inequality TC(X x Y) <TC(X)+ TC(Y) —1
{Fi,si}_, and {F/, s;}j";1 tame motion planners for X and Y
— {F},s}} tame motion planner for X x Y

FK =Uijok Fix F|  sg=sixsjonFixF 2<k<n+m
Cohomology lower bound TC(X) > zcl H*(X; k) zero-divisor cup length

zcl H*(X; k) = cup length(ker(H*(X; k) @ H*(X;k) — H*(X;k))

A= @D,>0 A" graded algebra  cup length(A) = cl(A) is the biggest q
such that J3ay,...,aq € A>% (homogeneous) with ay - - 83 #0
sectional category(fibration p: E — B) > cl(ker(p*: H*(B;k) — H*(E;k))
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Topological complexity of orientable surfaces

Example (X = S? continued)

tame motion planner S? x S = FUFRL, UF3 = TC(S?) <3
if0+#xec H>(S%k) then(x®1-1®x)2=-2x®x #0

zcl H*(S?;k) > 2 — TC(S?) >3 TC(S?) =3

Example (X =S' x S'=T)

Product inequality = TC(S' x S') < TC(S') + TC(S") -1 =3

if H'(S' x 8';k) = (u,v) then (U1 —-1eu)(vel—-1®V)#0
zcl H*(S' x S';k) >2 — TC(S' x S") >3 TC(S'x 8" =3
Example (X = Xy = T#---#T orientable genus g > 2)
Dimensional inequality = TC(X,) <5

If H'(Xg; k) = (u;,v; | 1 <i<g) then
(LR1T-1u)(Viel—-1av) (el -1w)(v2®@1-1w)#0
zclH*(Xg; k) >4 = TC(Xy) >5 TC(Xg) =5

Daniel C. Cohen (LSU) Topological complexity of surfaces 2019 ICRA 9



Topological complexity of non-orientable surfaces

Example (X = RPz) Farber-Tabashnikov-Yuzvinsky

TC(RP?) = 1 4 immersion dimension of RP? = 4

Example (X = N, = RP?# - - - #RP? non-orientable genus h > 2)

Dimensional inequality = TC(Ny) <5
zcl H*(Nh; Zg) >3 = TC(Nh) >4

Dranishnikov (2016)

» TC(Np) =5for h>4 obstruction theory = TC(M#N) > TC(N)
for M, N surfaces with M orientable. ..
» shows that his approach do not extend to N, for h=2,3

} — 4§TC(Nh)§5

80... TC(Np) = TCo(Np) =? forh=2,3
in particular whatis TC(K)? K = Klein bottle
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Klein bottle

for any h >

proofs use more refined

cohomological considerations

Daniel C. Cohg Topological complexity of surfaces 2019 ICRA 11



