Learned Critical Probabilistic Roadmaps for Robotic Motion Planning

Brian Ichter, Aleksandra Faust @ Robotics at Google

{ichter, faust}@google.com

Introduction

- Sampling-based motion planning uses *uniform* probing samples to build an arbitrarily accurate, implicit representation of the state space
- Often only a few critical states are necessary to parameterize solution trajectories
- Key Idea: Learn to recognize the critical states and use them to construct a hierarchical PRM, leveraging these critical states more heavily

Contributions

- Compute criticality via betweenness centrality, a graph-theoretical importance to shortest paths
- **Offline:** Learn to predict criticality from local features with a Convolutional Neural Network
- **Online:** construct a *Critical Probabilistic Roadmap*
 - Connect non-critical points locally
 - Connect critical points globally
- Shows 100x improvement in success, 10x in cost

Critical States Identification

- Graph theoretic approaches allow state space critical states. Compared: label propagation- unstable and poorly defined with less clear bottlenecks • K-cuts- requires fixed number of cuts, which heavily influences states
 - many graph centrality indicators
- Selected **betweenness centrality**:
 - computes the number of all-pairs shortest paths that pass through a node can be computed approximately, very quickly
 - added an additional smoothing step to discount skippable free-space states
- Learn a network, $h_{\rho}(x, y)$, to predict sample x's criticality from problem features y

Offline: Identify and Learn Samples

Online: Critical Probabilistic Roadmaps

- Construct a Critical PRM by sampling: \circ ($\lambda \log n$) critical, globally connected states \circ (n - $\lambda \log n$) uniform, locally connected states
- Preserves the theoretical guarantees of SBMP, asymptotic optimality and O(n log n) complexity

Algorithm 1 Online Critical PRM Construction

- **Input:** Planning problem $(\mathcal{X}_{\text{free}}, x_{\text{init}}, \mathcal{X}_{\text{goal}}), \lambda, n$
- 2 Sample *n* configurations and compute criticality with $h_{\theta}(x_i, y)$.
- 3 Select $\lambda \log(n)$ critical samples proportional to criticality.
- 4 Connect critical samples to all samples.
- 5 Connect non-critical samples within an r_n radius.
- 6 Connect x_{init} and \mathcal{X}_{goal} globally into the Critical PRM.

Results

- On narrow passage problem:
 - Identifies narrow passages
 - 100x speedup in success rate
 - 10x speedup in solution cost
- On indoor dataset:

- Trained on local image
- Identifies doorways, hallways
- Ignores open area
- Success and cost to come

