This data refers to generalized continued fractions (see Maxwell Anselm and Steven H. Weintraub, A generalization of continued fractions, J. Number Theory 131 (2011), 2442-2460). We adopt the terminology of that paper, and refer to it for results cited here. But we call the reader's attention to several items.

A cf_{N} expansion is a continued fraction expansion with "numerator" N.
Roughly speaking, the "best" cf_{N} expansion of a positive real number is the cf_{N} expansion that provides the best approximation at every stage.

The analysis of these expansions shows there is a difference between the cases N small (for E) and N large (for E). If $D=[\sqrt{E}]$, then N is small (for E) if $N \leq 2 D$, and N is large (for E) otherwise.

We present a table of all nonsquare values of $E \leq 200$ and $N \leq 200$ for which $[[\sqrt{E}]]_{N}$, the best cf_{N} expansion of \sqrt{E}, has period ≤ 100.

Here are some highlights/statistics of this data.
There are a total of 4361 such pairs (E, N). Of these, 2114 pairs have N small and 2247 pairs have N large. There are:
214 pairs with period length 1.
2817 pairs with period length 2.
15 pairs with period length 3.
843 pairs with period length 4.
14 pairs with period length 5 .
196 pairs with period length 6 .
2 pairs with period length 7 .
124 pairs with period length 8.
4 pairs with period length 9 .
112 pairs with period length $10-19$.
14 pairs with period length $20-29$.
5 pairs with period length $30-39$.
1 pair with period length 88 .

Here are the values of (E, N) which have the longest periods:
$E=166, N=2$: period 88
$E=172, N=2$: period 38
$E=151, N=2$: period 36
$E=163, N=2$: period 32
$E=190, N=4$: period 32
$E=157, N=2$: period 30

Odd periods are relatively rare. Within the range of this table, there are 214 pairs with period length 1 and 41 pairs with odd period length >1, and there are only 6 cases of odd period >10. They are:
$E=181, N=1$: period 21
$E=157, N=1$: period 17
$E=109, N=1$: period 15
$E=193, N=1:$ period 13
$E=61, N=1:$ period 11
$E=97, N=1$: period 11
There are only 5 cases for $N>1$ with odd period ≥ 5. They are:
$E=118, N=2$: period 5
$E=139, N=3$: period 5
$E=162, N=2$: period 5
$E=166, N=5$: period 5
$E=181, N=4$: period 5
There is only 1 case of N large with odd period >1 :
$E=53, N=112$: period 3

We say that a sequence b_{1}, \ldots, b_{i} is palindromic if it reads the same left-to-right as right-to-left. We say that a sequence $b_{1}, \ldots, b_{i}, c_{1}, \ldots, c_{j}$ is semipalindromic of type (i, j), abbreviated as $\operatorname{sp}(i, j)$, if it consists of a palindrome of length i followed by a palindrome of length j.

If we write $[[\sqrt{E}]]_{N}=\left[\left[a_{0}, a_{1}, a_{2}, \ldots\right]\right]_{N}$, then $a_{0}=D$. As shown in that paper, if N is small and $[[\sqrt{E}]]_{N}$ is periodic of period k, then the period begins with a_{1} if N is small and a_{2} if N is large. In case N small, the periodic part is always $\operatorname{sp}(k-1,1)$, and $a_{k}=2 D$. (Of course, in the case $N=1$ it is known that the continued fraction expansion of \sqrt{E} is always periodic and always of this form.) Non-semipalindromic cases seem to be extremely rare. There are only two cases in this range where $[[\sqrt{E}]]_{N}$ is not semipalindromic:
$E=31, N=13:$ period 4
$E=187, N=58:$ period 6

The accompanying files are two tables, each in three formats:
periodic_table is a table with one line for each periodic case, giving the values of E and N, the length of the period, whether or not the expansion is semipalindromic, and if so, of what type.
periodic_table-long is a table with the above line for each periodic case followed by line(s) giving the cf_{N} expansion up until the end of the first period.

The files are:
periodic_table.html an html file suitable for viewing onscreen, periodic_table a UNIX text file suitable for download, periodic_table.txt a DOS text file suitable for download, periodic_table-long.html an html file suitable for viewing onscreen, periodic_table-long a UNIX text file suitable for download, periodic_table-long.txt a DOS text file suitable for download. (With my operating system and browser, both of the files periodic_table and periodic_table-long are suitable for viewing onscreen. But since not all browsers handle files the same way, I am including the html versions just in case.)

