Steven H. Weintraub

List of Publications


  1. Weintraub, Steven H. Reverse orthogonal polynomials, in Recent Developments in Orthogonal Polynomials, A. Barhoumi, R. Gharakhloo, A. Martinez-Finkelshtein, eds., Contemporary Mathematics 822, American Mathematical Society 2025.

  2. Weintraub, Steven H., Reflections of an Associate Secretary, Notices Amer. Math. Soc. 72 (2025), no. 5, 504-506.

  3. Weintraub, Steven H., An observation on average velocity, Amer. Math. Monthly, 130 (2023), no. 4, 384.

  4. Weintraub, Steven H., An Introduction to Abstract Algebra: Sets, Groups, Rings, and Fields, World Scientific 2022.

  5. Weintraub, Steven H., Reverse Legendre polynomials, Arch. Math. 118 (2022), 593-604.

  6. Weintraub, Steven H., The generalized inverses of differentiation and integration, Expositiones Math. 39 (2021), 679-682.

  7. Weintraub, Steven H., The theorem of the primitive element, Amer. Math. Monthly 128 (2021), no. 8, 753-754.

  8. Weintraub, Steven H., An expanded classification system for sessions and talks at future JMMs: a letter to the mathematical community, Notices Amer. Math. Soc. 67 (2020), no. 10, 1602-1605.

  9. Weintraub, Steven H., Linear Algebra for the Young Mathematician, American Mathematical Society, 2019.

  10. Weintraub, Steven H., Periodicity of certain generalized continued fractions, Monatsh. Math. 189 (2019), 765-770.

  11. Crilly, Tony, Weintraub, Steven H., and Wolfson, Paul R. Arthur Cayley, Robert Harley and the quintic equation: newly discovered letters 1859-1863, Historia Math. 44 (2017), 150-169.

  12. Weintraub, Steven H., The Induction Book, Dover Publications, 2017.

  13. Weintraub, Steven H. A family of tests for irreducibility of polynomials, Proc. Amer. Math. Soc. 144 (2016), 3331-3332.

  14. Weintraub, Steven H. The irreducibility of the cyclotomic polynomials, in Why Prove it Again? by John W. Dawson, Birkhaeuser 2015, Chapter 11, 149-170.

  15. Weintraub, Steven H. A survey on arithmetic questions in the representation theory of finite groups, in Recent Advances in Mathematics, A. K. Agarwal, ed., Ramanujan Mathematical Society Lecture Notes Series 21, Ramanujan Mathematical Society 2015, 187-201.

  16. Weintraub, Steven H. The adjoint of differentiation, Experimental Math. 23 (2014), 429-432.

  17. Weintraub, Steven H., Fundamentals of Algebraic Topology, Springer, 2014.

  18. Weintraub, Steven H., Differential Forms, Second edition, Academic Press (Elsevier), 2014.

  19. Weintraub, Steven H. Values of polynomials over integral domains. Amer. Math. Monthly 121 (2014), no. 1, 73-74.

  20. r Weintraub, Steven H. The common intellectual property of humankind (Letter to the editor), Notices Amer. Math. Soc. 60 (2013), no. 7, 839

  21. Weintraub, Steven H. Several proofs of the irreducibility of the cyclotomic polynomials. Amer. Math. Monthly 120 (2013), no. 6, 537-545.

  22. Weintraub, Steven H. A mild generalization of Eisenstein's criterion. Proc. Amer. Math. Soc. 141 (2013), no. 4, 1159-1160.

  23. Anselm, Maxwell and Weintraub, Steven H. A generalization of continued fractions. J. Number Theory 131 (2011), 2442-2460.

  24. Weintraub, Steven H., A Guide to Advanced Linear Algebra, Mathematical Association of America, 2011.

  25. Weintraub, Steven H. Observations on primitive, normal, and subnormal elements of field extensions, Monatsh. Math. 162 (2011), 239-244.

  26. Weintraub, Steven H. Involutions, Humbert surfaces, and divisors on a moduli space, Rend. Lincei Mat. Appl. 21 (2010), 415-440.

  27. Weintraub, Steven H. On Legendre's work on the law of quadratic reciprocity, Amer. Math. Monthly 118 (2011), 210-216.

  28. Weintraub, Steven H., Galois Theory, Second edition, Springer, New York, 2009, MR 2009j:12008

  29. Weintraub, Steven H., Jordan Canonical Form: Theory and Practice, Morgan and Claypool, 2009.

  30. Weintraub, Steven H., Jordan Canonical Form: Application to Differential Equations, Morgan and Claypool, 2008.

  31. Weintraub, Steven H., Factorization: Unique and Otherwise, A. K. Peters, Wellesley, MA 2008, MR 2009b:11193

  32. Weintraub, Steven H., A. Everett Pitcher (1912-2006), Notices Amer. Math. Soc. 54 (2007), 1331-1332.

  33. Weintraub, Steven H., Spreads of nonsingular pairs in symplectic vector spaces, J. Geom. 86 (2006), 165-180, MR 2008a:51005

  34. Weintraub, Steven H., Galois Theory, Springer, New York, 2006, MR 2006k:12001

  35. Weintraub, Steven H., An interesting recursion, Amer. Math. Monthly 111 (2004), no. 6, 528--530, MR 2005e:11012

  36. Weintraub, Steven H., Representation theory of finite groups: algebra and arithmetic, American Mathematical Society, Providence, RI, 2003; MR 2004k:20023

  37. Hoffman, J. William and Weintraub, Steven. H., Cohomology of the boundary of Siegel modular varieties of degree two, with applications, Fund. Math. 178 (2003), no. 1, 1--47, MR 2004f:11051

  38. Hoffman, J. William and Weintraub, Steven H., Four dimensional symplectic geometry over the field with three elements and a moduli space of abelian surfaces, Note Mat. 20 (2000/01), no. 1, 111--157; MR 2003e:14045

  39. Hoffman, J. William and Weintraub, Steven H., The Siegel modular variety of degree two and level three, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3267--3305; MR 2003b:11044

  40. Lee, Ronnie and Weintraub, Steven H., The Siegel modular variety of degree two and level four, Mem. Amer. Math. Soc. 133 (1998), no. 631, viii, 1--58; MR 98j:14031

  41. Hoffman, J. William and Weintraub, Steven H., Cohomology of the Siegel modular group of degree two and level four, Mem. Amer. Math. Soc. 133 (1998), no. 631, ix, 59--75; MR 98j:11039

  42. Lee, Ronnie and Weintraub, Steven H., Invariants of branched covering from the work of Serre and Mumford, Forum Math. 8 (1996), no. 5, 535--568; MR 98i:57002

  43. Weintraub, Steven H., Early transcendentals, Amer. Math. Monthly 104 (1997), no. 7, 623--631; MR 98h:26002

  44. Weintraub, Steven H., Differential forms, Academic Press, San Diego, CA, 1997; MR 97g:58002

  45. Weintraub, Steven H., Symmetries of a moduli space of abelian surfaces, in Abelian varieties (Egloffstein, 1993), 323--341, de Gruyter, Berlin, 1995; MR 96g:14036

  46. Weintraub, Steven H., Count-wheels: a mathematical problem arising in horology, Amer. Math. Monthly 102 (1995), no. 4, 310--316; MR 96f:01045

  47. Weintraub, Steven H., A note on linear transformations over integral domains, Linear and Multilinear Algebra 35 (1993), no. 3-4, 295--297; MR 95m:13006

  48. Lee, Ronnie and Weintraub, Steven H., On the homology of double branched covers, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1263--1266; MR 95e:57002

  49. Hulek, Klaus, Kahn, Constantin and Weintraub, Steven H., Moduli spaces of abelian surfaces: compactification, degenerations, and theta functions, de Gruyter, Berlin, 1993; MR 95e:14034

  50. Hunt, Bruce and Weintraub, Steven H., Janus-like algebraic varieties, J. Differential Geom. 39 (1994), no. 3, 509--557; MR 95e:14026

  51. Hulek, K., Kahn, C. and Weintraub, S. H., Abelian surfaces, degeneration of theta functions and the Horrocks-Mumford bundle, in Geometry of complex projective varieties (Cetraro, 1990), 165--189, Mediterranean, Rende, 1993; MR 95c:14058

  52. Weintraub, Steven H., Count-wheels, Ars Combin. 36 (1993), 241--247; MR 94f:05010

  53. Lee, Ronnie and Weintraub, Steven H., The "coadjoint" representation of PSp4(Z/2), Amer. J. Math. 115 (1993), no. 1, 109--135; MR 94e:11048

  54. Adkins, William A. and Weintraub, Steven H., Algebra, Springer, New York, 1992; MR 94a:00001

  55. Hulek, Klaus, Kahn, Constantin and Weintraub, Steven H., Singularities of the moduli spaces of certain abelian surfaces, Compositio Math. 79 (1991), no. 2, 231--253; MR 93a:14028

  56. Weintraub, Steven H., The abelianization of the theta group in low genus, in Algebraic topology Poznan 1989, 382--388, Lecture Notes in Math., 1474, Springer, Berlin, 1991; MR 92k:11050

  57. Hulek, Klaus and Weintraub, Steven H., The principal degenerations of abelian surfaces and their polarisations, Math. Ann. 286 (1990), no. 1-3, 281--307; MR 91e:14042

  58. Weintraub, Steven H., Some observations on plethysms, J. Algebra 129 (1990), no. 1, 103--114; MR 91b:20022

  59. Lee, Ronnie and Weintraub, Steven H., The Siegel modular variety of degree two and level four: a report, in Arithmetic of complex manifolds (Erlangen, 1988), 89--102, Lecture Notes in Math., 1399, Springer, Berlin, 1989; MR 90k:11061

  60. Lee, Ronnie and Weintraub, Steven H., A generalization of a theorem of Hecke to the Siegel space of degree two, in Algebraic topology (Evanston, IL, 1988), 243--259, Contemp. Math., 96, Amer. Math. Soc., Providence, RI, 1989; MR 90j:32038

  61. Weintraub, Steven H., Symmetries of simply-connected four-manifolds, especially algebraic surfaces, in Transformation groups (Osaka, 1987), 347--367, Lecture Notes in Math., 1375, Springer, Berlin, 1989; MR 90g:57030

  62. Lee, Ronnie and Weintraub, Steven H., On certain Siegel modular varieties of genus two and levels above two, in Algebraic topology and transformation groups (Göttingen, 1987), 29--52, Lecture Notes in Math., 1361, Springer, Berlin, 1988; MR 90d:11067

  63. Hulek, Klaus and Weintraub, Steven H., Bielliptic abelian surfaces, Math. Ann. 283 (1989), no. 3, 411--429; MR 90b:14052

  64. Lee, Ronnie, Miller, Edward Y. and Weintraub, Steven H., Rochlin invariants, theta functions and the holonomy of some determinant line bundles, J. Reine Angew. Math. 392 (1988), 187--218; MR 89m:57022

  65. Kirwan, F. C., Lee, R. and Weintraub, S. H., Quotients of the complex ball by discrete groups, Pacific J. Math. 130 (1987), no. 1, 115--141; MR 89j:32034

  66. Lee, Ronnie and Weintraub, Steven H., Moduli spaces of Riemann surfaces of genus two with level structures. I, Trans. Amer. Math. Soc. 310 (1988), no. 1, 217--237; MR 89i:32054

  67. Lee, Ronnie, Miller, Edward Y. and Weintraub, Steven H., Rochlin invariants, theta multipliers and holonomy, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 2, 275--278; MR 89d:57034

  68. Lee, Ronnie and Weintraub, Steven H., Topology of the Siegel spaces of degree two and their compactifications, Topology Proc. 11 (1986), no. 1, 115--175; MR 89c:32071

  69. Weintraub, Steven H., Which groups have strange torsion?, in Transformation groups, Poznan 1985, 394--396, Lecture Notes in Math., 1217, Springer, Berlin; MR 0874190

  70. Lee, Ronnie and Weintraub, Steven H., On the transformation law for theta-constants, J. Pure Appl. Algebra 44 (1987), no. 1-3, 273--285; MR 89a:32038

  71. Weintraub, Steven H., Letter to the editor: "Tricks or treats with the Hilbert matrix" [Amer. Math. Monthly 90 (1983), no. 5, 301--312; MR 84h:47031] by M. D. Choi, Amer. Math. Monthly 93 (1986), no. 4, 324; MR 87g:47047

  72. Lee, Ronnie and Weintraub, Steven H., Cohomology of a Siegel modular variety of degree 2, in Group actions on manifolds (Boulder, Colo., 1983), 433--488, Contemp. Math., 36, Amer. Math. Soc., Providence, R.I., 1985; MR 87g:11056

  73. Lee, Ronnie and Weintraub, Steven H., An interesting algebraic variety, Math. Intelligencer 8 (1986), no. 1, 34--39; MR 87d:32050

  74. Lee, Ronnie and Weintraub, Steven H., Cohomology of Sp4(Z) and related groups and spaces, Topology {\bf 24} (1985), no. 4, 391--410; MR 87b:11044

  75. Lee, Ronnie and Weintraub, Steven H., On a generalization of a theorem of Erich Hecke, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 24, 7955--7957; MR 84f:32041

  76. Weintraub, Steven H., A note on doubles of 4-manifolds, Canad. Math. Bull. 23 (1980), no. 3, 367--369; MR 82e:57004

  77. Weintraub, Steven H., $PSL2(Zp) and the Atiyah-Bott fixed-point theorem, Houston J. Math. 6 (1980), no. 3, 427--430; MR 82c:10029

  78. Weintraub, Steven H., Inefficiently embedded surfaces in 4-manifolds, in Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus,1978), 664--672, Lecture Notes in Math., 763, Springer, Berlin, 1979; MR 81c:57011

  79. Neumann, Walter D. and Weintraub, Steven H., Four-manifolds constructed via plumbing, Math. Ann. 238 (1978), no. 1, 71--78; MR 80g:57047

  80. Weintraub, Steven H., Group actions on homology quaternionic projective planes, Proc. Amer. Math. Soc. 70 (1978), no. 1, 75--82; MR 58 #24306

  81. Weintraub, Steven H., Topological realization of equivariant intersection forms, Pacific J. Math. 73 (1977), no. 1, 257--280; MR 58} #13100

  82. Weintraub, Steven H., On the existence of group actions on certain manifolds, in Transformation groups (Proc. Conf., Univ. Newcastle upon Tyne,Newcastle upon Tyne, 1976), 226--234. London Math. Soc. Lecture Note Series, 26, Cambridge Univ. Press, Cambridge, 1977; MR 57 #13998

  83. Weintraub, Steven H., Zp-actions and the rank of Hn(N2n), J. London Math. Soc. (2) 13 (1976), no. 3, 565--572; MR 54 #1268

  84. Weintraub, Steven H., Semi-free Zp-actions on highly-connected manifolds, Math. Z. 145 (1975), no. 2, 163--185; MR 53 #4103

  85. Weintraub, Steven H., Some connections between differential geometry and the study of involutions, Houston J. Math. 2 (1976), no. 1, 135--137; MR 53 #1617

  86. Akers, S. B.; Berlin, R. D.; Grossman, J. W.; Weintraub, Steven; Bershad, M. A.; Djokovic, D. Z.; Problems and Solutions: Solutions of Advanced Problems: 5492, Amer. Math. Monthly 75 (1968), no. 5, 556--558; MR 1534907


© Copyright American Mathematical Society 2009