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ABSTRACT

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra.
The JCF of a linear transformation, or of a matrix, encodes all of the structural information about
that linear transformation, or matrix. This book is a careful development of JCF. After beginning
with background material, we introduce Jordan Canonical Form and related notions: eigenvalues,
(generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the ques-
tion of diagonalizability, and prove the Cayley—Hamilton theorem. Then we present a careful and
complete proof of the fundamental theorem: Lez V' be a finite-dimensional vector space over the field
of complex numbers C,andletT : V —> V be a linear transformation. Then T has a Jordan Canonical
Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with
complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible ma-
trix P and a matrix J in Jordan Canonical Form with A = PJ P~1. We further present an algorithm
to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this
algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that
makes JCF clear. The ESP of A determines J, and a refinement, the labelled eigenstructure picture
(LESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide
numerous exercises for the reader.
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Preface

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear
algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information
about that linear transformation, or matrix. This book is a careful development of JCE

In Chapter 1 of this book we present necessary background material. We expect that most,
though not all, of the material in this chapter will be familiar to the reader.

In Chapter 2 we define Jordan Canonical Form and prove the following fundamental
theorem: Let V' be a finite-dimensional wvector space over the field of complex numbers C, and let
TV —V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has
an equivalent statement in terms of matrices: Lez A be a square matrix with complex entries. Then
A is similar to a matrix J in Jordan Canonical Form. Along the way to the proof we introduce
eigenvalues and (generalized) eigenvectors, and the characteristic and minimum polynomials of a
linear transformation (or matrix), all of which play a key role. We also examine the special case of
diagonalizability and prove the Cayley—Hamilton theorem.

The main result of Chapter 2 may be restated as: Ler A be a square matrix with complex
entries. Then there is an invertible matrix P and a matrix J in Jordan Canonical Form with
A= PJP~" In Chapter 3 we present an algorithm to find P and J, assuming that one can
factor the characteristic polynomial of A. In developing this algorithm we introduce the idea of
the eigenspace picture (ESP) of A, which determines J, and a refinement, the labelled eigenspace
picture (CESP) of A, which determines P as well. We illustrate this algorithm with copious examples.

Our numbering system in this text is fairly standard. Theorem 1.2.3 is the third numbered
result in Section 2 of Chapter 1.

We provide many exercises for the reader to gain facility in applying these concepts and
in particular in finding the JCF of matrices. As is customary in texts, we provide answers to the
odd-numbered exercises here. Instructors may contact me at shw2@lehigh.edu and I will supply
answers to all of the exercises.

Steven H. Weintraub

Department of Mathematics, Lehigh University
Bethlehem, PA 18015 USA

July 2009
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