The vast majority of these typos were found by Michael Janou Glaser, Bruce Gould, and Richard Louis Rivero, all of whom the author sincerely thanks.

Page 10, lines -2 and -1: Replace by

In particular, if \(n \) is odd, then \((\varphi^*)^* = \varphi\) for any \(k \). If \(n \) is even, then \((\varphi^*)^* = \varphi\) for \(k \) even and \((\varphi^*)^* = -\varphi\) for \(k \) odd.

Page 15, line 6: \(\varphi - x^2 dx - z^2 dy \) should be \(\varphi = x^2 dx - z^2 dy \).

Page 16, lines 11 and 12: \(dx_1 dx_2 \) should be \(dx_1 dx_2 dx_1, dx_1 dx_3 \) should be \(dx_1 dx_3 dx_1 \), and \(dx_{n-1} dx_n \) should be \(dx_{n-1} dx_n dx_1 \).

Page 19, line -1: \(\psi = x^5 y^3 z^2 \) should be \(\psi = x^5 y^2 z^3 \).

Page 20, line 2: \(d\psi = 0 \) should be \(d\varphi = 0 \).

Page 21, line 13: \(\varphi_1 = df_0 \) should be \(\varphi^1 = df_0 \).

Page 22: The labels on the axes of both graphs should be reversed.

Page 23, line 17: \(df_0 = d\varphi^1 \) should be \(df_0 = \varphi^1 \).

Page 23, line -6: \(\theta_2(-1, -1) \) should be \(\theta_2(-1, -1) \).

Page 25, line -7: \(f_{x_1} \) should be \(f^1 \).

Page 25, line -5: \(f_1 \) should be \(f^1 \).

Page 26, lines 4 and 5: \(g_2 \) should be \(g^2 \).

Page 27, line 15: \(x^2 z^2 \) should be \(x^2 z^3 \).

Page 27, line 16: \(x^2 \) should be \(2xy \).
Page 38, line 10: R should be \mathcal{R}.

Page 39, line -4: $\varphi = Adx + bdy + cdz$ should be $\varphi = Adx + Bdy + Cdz$.

Page 44, line -3: dx_n should be dx_m.

Page 46, line 7: the second occurrence of dx_mdxi_1 should be dx_mdxi_2.

Page 47, line 5: $\tilde{\varphi}$ should be φ.

Page 57, lines 15 and 16: F_1 should be F^1.

Page 64, lines 10 and 11: S_n should be S_k.

Page 64, line 11: $\sigma' = \sigma \tau$ should be $\sigma' = \tau \sigma$.

Page 64, line 13: v^p_2 should be v^2_p.

Page 66, lines -6,-5: σ_j should be defined by $\sigma_j(1) = j + 1$, $\sigma_j(i) = i - 1$ for $2 \leq i \leq j + 1$, $\sigma_j(i) = i$ for $j + 1 < i \leq m$.

Page 67, line -3: $\text{sign}(\sigma_1 \times \sigma_2) = \text{sign}(\sigma_1) + \text{sign}(\sigma_2)$ should be $\text{sign}(\sigma_1 \times \sigma_2) = \text{sign}(\sigma_1) \text{sign}(\sigma_2)$.

Page 67, line -1: φ should be φ_1.

Page 68, line 2: σ should be σ_1 and φ should be φ_1.

Page 68, line 4: σ should be σ_2 and φ should be φ_2.

Page 68, line 6: Insert $\text{sign}(\sigma)$ after the summation sign.

Page 69, line -3 and page 73, line -7: $p = (2, 5, 3)$ should be $p = (2, 5, -3)$.

Page 74, line -4: Insert $D_{\nu^p_m}$ after $(-1)^{m-1}$.
Page 81, line 13: \(\mathcal{B} \) gives the standard basis of \(\mathbb{R}^n \) should be \(\mathcal{B} \) gives the standard orientation of \(\mathbb{R}^n \).

Page 89, lines 20, 25: to verify \((\ast)_2\) should be to verify \((\ast)_1\).

Page 89, lines -2,-1: should read ... where \(H = (h_1, \ldots, h_{k-1}) \) ranges over all multi-indices of degree \(k - 1 \), up to permutation. Furthermore ...

Page 90, line 5: should read ... either \(H \) is a permutation of \(I_m \) for some \(m \), in which case we may choose \(H = I_m \), or else \(H \) has an entry that is not in \(I \).

Page 90, line 9: product of terms should be sum of terms.

Page 93, lines 8,9: should read ... is determined by its values \(\xi(d\varphi)(e^I_j) \) on all \(k \)-tuples \(e^I \) up to permutation. Thus ...

Page 93 line, 13 through Page 94, line 6: Replace by
\[
\begin{align*}
 dx_jdx_I(p_{tp}, e^I_{tp}) &= dx_j(p_{tp})dx_I(e^I_{tp}) \\
 &= dx_j(e^{j_1}_{tp})dx_I(p_{tp}, e^{j_2}_{tp}, e^{j_3}_{tp}, \ldots, e^{j_k}_{tp}) \\
 &\quad + dx_j(e^{j_2}_{tp})dx_I(p_{tp}, e^{j_1}_{tp}, e^{j_3}_{tp}, \ldots, e^{j_k}_{tp}) \\
 &\quad + \ldots + (-1)^k dx_j(e^{j_k}_{tp})dx_I(p_{tp}, e^{j_1}_{tp}, e^{j_2}_{tp}, \ldots, e^{j_{k-1}}_{tp}).
\end{align*}
\]

Note that the first term is \(x_j \) if \(J = I \) and is 0 if \(J \) is not a permutation of \(I \).

As for the remaining terms in the summation, if there is no value of \(\ell \) for which \(j_\ell = j \), then all of them are equal to 0, as \(dx_j(e^{j_\ell}_{tp}) = 0 \) for every \(j_\ell \).

If \(j_\ell = j \) for some \(\ell \), then every term except for possibly that one is 0, and that one has the value \((-1)^j dx_I(p_{tp}, e^{j_1}_{tp}, \ldots, e^{j_{\ell-1}}_{tp}, e^{j_{\ell+1}}_{tp}, \ldots, e^{j_k}_{tp}) \). If \(J_\ell \) is not a permutation of \(I_m \) for any \(m \) then this is equal to 0, as when this is expanded out there will be a \(j \)-index not equal to an \(i \)-index in every term. Otherwise we may assume, after reordering \(J \), that \(J_m = I_m \), and then this term has the value \((-1)^m dx_{im}(p_{tp})dx_{I_m}(e^{j_m}_{tp}) = (-1)^m x_{im} \).

Page 95, line 10 and page 97, line 11: eliminate second occurrence of \(\mathcal{R} \).
Page 95, line 14: $A(tp)$ should be $A'(tp)$.

Page 95, line -3: from $(^*_3)$ should be from $(^*_4)$.

Page 103, line 1: topmost entry of $r'(2)$ should be 1.

Page 103, line 11: $r(1)$ should be $r(0)$.

Page 103, line 12: $r'(1)$ should be $r'(0)$.

Page 107, line 12: the point p should be the point t_0.

Page 110, line 6: function S defined on N should be function f defined on S.

Page 111, line 5: k-forms should be j-forms.

Page 111, lines 6 and 7: $\mathcal{F}(S)$ should be $\mathcal{F}(\mathcal{S})$ and $\mathcal{F}(R)$ should be $\mathcal{F}(\mathcal{R})$.

Page 113, line 14: $k^*(f\psi + g\rho)$ should be $k^*(a\psi + b\rho)$.

Page 114, line 1: M should be \mathcal{R}.

Page 114, line 7: φ is linear should be φ is multilinear.

Page 114, line -2: v_p^i should be $k_*(v_p^i)$ and v_p^j should be $k_*(v_p^j)$.

Page 116, line 5: $k(f(p))$ should be $f(k(p))$.

Page 117, line -6: Lemma 3.3.8 should be Lemma 3.2.7.

Page 118, line 7: $k(u_1, \ldots, u_n)$ should be $k(u_1, \ldots, u_m)$.

Page 119, lines 2 and 3, and page 120, line 8: $v^3 + 2v$ should be $2v^3 + v$.
Page 119, lines 4 and 5, and page 120, lines 10 and 11 should both be:

\[(2u^3 + 4v^3 + 5u^2 + 2u + 3v)du + (3u^2 + v^3 + u^2 + 2u - v + 1)dv. \]

Page 120, line -4: The sum should be over \(H \), not over \(I \).

Page 121, line 4: Theorem 2.2.19 should be Theorem 2.2.20.

Page 123, lines -5 through -2: All occurrences of \(v \) should be \(v_p \).

Page 125, line -10: \((2uv + 1) \) should be \((2u - v + 1) \).

Page 127, line 7: should read ... so \(k^*(dA) = k^*(dx_i) \) is closed.

Page 128, line 13: \(d(k^*(A^I_0)) \) should be \(d(k^*(A^I_t)) \).

Page 130, line 1 (twice) and lines 5 and 6: \(A_I(x_1, \ldots, x_n, t) \) should be \(A^I(x_1, \ldots, x_n, t) \).

Page 131, lines -10 and -6: \(\tilde{\xi}(\theta) \) should be \(\tilde{\xi}(\varphi) \).

Page 132, line 8: by linearity should be by multilinearity.

Page 132, line -4: \(dx_I \) should be \(dx_I dt \) (twice).

Page 133, line -5: \(e^H_p \) should be \(dx_I(e^H_p) \).

Page 134, lines -8 to -1: replace by

\[
(\tilde{\xi}(d\varphi))(e^H_p) = (-1)^{(t+1)-1} \sum_{i=1}^{n} \int_{0}^{1} \left[A_{x_i}(p, t) dx_i dx_I dt (\tilde{e}^H_{(p,t)}, \tilde{f}_{(p,t)}) \right] dt
\]

\[
= (-1)^t \sum_{i=1}^{n} \int_{0}^{1} \left[A_{x_i}(p, t) dx_i dx_I (\tilde{e}^H_{(p,t)}) \right] dt
\]

\[
= (-1)^t \sum_{i=1}^{n} \int_{0}^{1} A_{x_i}(p, t) dt \left[dx_i dx_I (e^H_p) \right].
\]
For T_2: First note that for any $(\mathbf{v}_p^1, \ldots, \mathbf{v}_p^{\ell-1})$,

\[
\tilde{\xi}(\mathbf{v}_p^1, \ldots, \mathbf{v}_p^{\ell-1}) = (-1)^{\ell-1} \int_0^1 \left[A(p, t) dt \right] \mathbf{v}_p^1 \mathbf{w}(p, t) \mathbf{v}_p^{\ell-1} dh(p, t) \]

\[
= (-1)^{\ell-1} \int_0^1 \left[A(p, t) dt \right] \mathbf{v}_p^1 \mathbf{w}(p, t) \mathbf{v}_p^{\ell-1} dh(p, t) \]

Thus

\[
\tilde{\xi}(\phi) = (-1)^{\ell-1} \left[\int_0^1 A(p, t) dt \right] dx_1
\]

and hence

\[
d(\tilde{\xi}(\phi)) = (-1)^{\ell-1} \sum_{i=1}^n \left[\int_0^1 A(p, t) dt \right] dx_i dx_1
\]

so, for any (\mathbf{e}_p^H),

\[
d(\tilde{\xi}(\phi))(\mathbf{e}_p^H) = (-1)^{\ell-1} \sum_{i=1}^n \left[\int_0^1 A(x_i, p, t) dt \right] dx_i dx_1(\mathbf{e}_p^H).
\]

Page 135, line 9: $S = \text{supp}(\tilde{\xi}(\phi))$ should be $S = \text{supp}(\phi)$.

Page 137, lines 10, 11, 12: $d(\xi(\phi))$ should be $d(\Xi(\phi))$.

Page 157, line -13: the complement of \mathbb{R}^{n-1} in \mathbb{R}^n should be the complement of \mathbb{R}^{n-1} in \mathbb{R}_-.

Page 160, lines 15: the) should not be there.

Page 162, line -12: \mathbf{v}_q^1 should be \mathbf{v}_p^1 and \mathbf{v}_q^2 should be \mathbf{v}_p^2.

Page 162, line -11 should be: $c^1 \mathbf{v}_p^1 + c^2 \mathbf{v}_p^2 = k_\star(c^1 \mathbf{w}_q^1 + c^2 \mathbf{w}_q^2)$.

Page 163, line -6: restriction of f should be restriction of ϕ.
Page 166, lines 4 and 5: Definition 1.2.17 should be Example 1.2.17 and Definition 1.2.21 should be Example 1.2.21.

Page 184, lines -3 and -2: a linear transformation should be an isomorphism.

Page 185, lines 8, 11, and 13: \([L(v)]\) should be \([L]\) (seven times).

Page 190, line 16: There should be a space after the word "If".

Page 192, line -14: Definition 4.6.17 should be Definition 4.5.25.

Page 193, line 10: we will call the standard basis of \(T_0\mathbb{R}^{n-1}\) should be we will call the standard basis of \(T_0\partial\mathbb{R}^n\).

Page 193, lines -10 and -9: \(\mathbb{R}^n_-\) should be \(\mathbb{R}^n_+\) (twice).

Page 195, lines -7 and -5: \((k, \varepsilon_k)\) should be \((k, \sigma_k)\).

Page 196, line -2: The correct definition of the function \(f_3(x)\) is
\[
f_3(x) = f_2(x)/(f_2(x) + f_2(1 + x)).
\]

Page 197, line -13: The first occurrence of the word "the" should be eliminated.

Page 197, line -3: \(\mathcal{R}^n\) should be \(\mathbb{R}^n\).

Page 198, line 3: \(x_i^0\) should be \(x_i^0\).

Page 198, line 10: subscript \(s-1\) should be \(j-1\).

Page 198, line 16 \(k^{-1}\) should be \(k_j^{-1}\) (twice).

Page 201 lines 12 and 24: \(\ell\)-form(s) should be \(\ell - 1\) form(s) (twice).
Page 201 lines -3, -2, -1 should read:

\[F(p, 0) = f_0(p) \text{ and } F(p, 1) = f_1(p) \]

for every \(p \in M \).

Page 209, line 2: \(k_i(a, v) \) should be \(\tilde{k}_i(a, v) \).

Page 209, line -3: \(F : E \rightarrow E' \) should be a smooth map \(F : E \rightarrow E' \).

Page 212, lines 16-17: replace where \(\tilde{\ell}_{i_2i_1} = (\ell_{i_2i_1}, L_{i_2i_1}) \), with \(\ell_{i_2i_1} \) a diffeomorphism and \(L_{i_2i_1} \) a vector space isomorphism by where \(\tilde{\ell}_{i_2i_1} (q_1, v_1) = (\ell_{i_2i_1} (q_1), L_{i_2i_1} (q_1)(v_1)) \), with \(\ell_{i_2i_1} \) a diffeomorphism and for every \(q_1 \), \(L_{i_2i_1} (q_1) \) a vector space isomorphism.

Page 212, line 20: replace \(L_{i_3i_1} = L_{i_3i_2} \circ L_{i_2i_1} \) by \(L_{i_3i_1} (q_1) = L_{i_3i_2} (q_2) \circ L_{i_2i_1} (q_1) \), where \(q_2 = \ell_{i_2i_1} (q_1) \).

Page 214, line -8: Remark 5.1.8(ii) should be Remark 5.1.8(i).

Page 217, line 3: the second occurrence of \((M^*)^{-1} \circ (L^*)^{-1} \) should be \((M^{-1})^* \circ (L^{-1})^* \).

Page 217, line -11: Theorem 4.4.9 should be Theorem 5.1.9.

Page 219, line 5: \({}^t g {}^t B v \) should be \(\text{ent}({}^t g {}^t B v) \).

Page 227, line 5: add We implicitly assume throughout this chapter, unless explicitly stated otherwise, that \(\varphi \) has compact support (which is automatically true if \(M \) is compact).

Page 231, line -12: \(\varepsilon \) should be \(\varepsilon_k \).

Page 232, lines 16 and 24: \(f(u) \) should be \(f(k(u)) \).

Page 235, line 10: insert \(\varepsilon_k \) after =.
Page 236, lines 2 and 3 should read:
\[
\int_N \varphi = \int_M (k^*(\varphi))(e^1, \ldots, e^n)dV_{x_1, \ldots, x_n} \\
= \int_M \varphi((k_*(e^1)), \ldots, k_*(e^n))dV_{x_1, \ldots, x_n}.
\]

Page 242, line -7: 80 should be 100 and −80 should be −100.

Page 244, line -5: e^1 should be e^1 (twice).

Page 245, line 14: insert \(dt \) after \(-2t\).

Page 245, line -7: \(-144 \) should be \(-656 \) (twice).

Page 248, lines -4 and -3 should read:
\[
k^*(\omega) = \frac{\cos \theta}{\cos^2 \theta + \sin^2 \theta}(-\sin \theta d\theta) + \frac{\sin \theta}{\cos^2 \theta + \sin^2 \theta}(\cos \theta d\theta)
\]
\[= 0
\]

Page 249, line -10: \(\varphi(k'(t)) \) should be \(\varphi(k'(t)) \).

Page 249, line -1: \(\rho_1(v_p) = \) should be \(\rho_1(v_p) = 1 \).

Page 251, lines -4 to -1 should read:
\[
\int_{C_1} \varphi_1 = 0 \hspace{1cm} \int_{C_1} \varphi_2 = 2 \hspace{1cm} \int_{C_1} \varphi = 2 \\
\int_{C_2} \varphi_1 = 2 \hspace{1cm} \int_{C_2} \varphi_2 = 0 \hspace{1cm} \int_{C_2} \varphi = 2 \\
\int_{C_3} \varphi_1 = 7/6 \hspace{1cm} \int_{C_3} \varphi_2 = 5/6 \hspace{1cm} \int_{C_3} \varphi = 2 \\
\int_{C_4} \varphi_1 = 8/5 \hspace{1cm} \int_{C_4} \varphi_2 = 2/5 \hspace{1cm} \int_{C_4} \varphi = 2
\]

Page 254, line 4: being should be beginning.
Page 256, line -4: q_1 should be q.

Page 256, line -3: line should read $r(t) = (x_0^1, \ldots, x_0^{i-1}, t, x_0^{i+1}, \ldots, x_0^n)$.

Page 257, line -5: $a'(x_0)$ should be $a'(x_0^i)$.

Page 260, lines 15 and 19: Corollary 6.4.14 should be Corollary 6.4.13.

Page 261, line 1: Corollary 6.4.14 should be Corollary 6.4.13.

Page 261, lines 15 and 16: f^* should be f_0^*.

Page 264, line 7: line should end with a period instead of a comma.

Page 264, line 8: where φ^1 is should be Let φ^1 be.

Page 265, illustration following line 2: the region labelled R_1 should be labelled R_t.

Page 267, line 2: $a \geq 0$ should be $a \leq 0$.

Page 270, line 1: $F(t)$ should be $F(r(t))$.

Page 276 lines -8 and -7 should read:

$$\int_S \varphi = \int_R k^*(\varphi)(\mathbf{e}^1, \mathbf{e}^2)dA_{uv} = \int_R \varphi(k_*(\mathbf{e}^1), k_*(\mathbf{e}^2))dA_{uv}$$

$$= \int_R \varphi(k_u, k_v)dA_{uv},$$

Page 287, lines 6 and -5: delete second occurrence of $dy = dy$.

Page 289, line 7: H_N should be H_S.

Page 298, line -1: $|\mathbf{e}_1^2|_0$ should be $|\mathbf{e}_1^3|_0$.
Page 299, line -4: smooth map k should be smooth map c.

Page 300, line 8: basic chain k_i should be basic chain c_i.

Page 310, line 9: *compactly* should be *compactly supported*.

Page 319 line 12, should read:

$$
\int_C \varphi = \int_{C' \cup C''} \varphi = \int_{C'} \varphi + \int_{C''} \varphi = 0
$$

Page 320, line -8: \mathbb{R}^2 should be \mathbb{R}^3.

Page 341, line -9: φ_i should be φ^i, ψ_i should be ψ^i, and $d\varphi_i$ should be $d\varphi^i$.