Differential Forms: A Complement to Vector Calculus

Errata

Page 3
k or ℓ

Page 4
Ex. 2
a) $3\varphi_3 - 4\varphi_4$
b) $x\varphi_3 + y\varphi_4$

Ex. 5
a) $x\psi_3 + y\psi_4$
b) $2y\psi_3 + \psi_4$

Ex. 6
d') $\psi_2\varphi_2$

Page 5
line 12
$(z + 1)e^zdz$

line -1
d$(x^4 + y^3 - z^2)dz$

Page 10
line 15
$\psi = x^5y^2z^3$

Page 17
line -15
Let $\varphi =$

line -8
$\frac{\partial}{\partial y}(x^2y^3 + x^4 + c(y))$

Page 18
line 1
Let $\varphi =$

line 6
Then $x^2z^3 +$

line 7
$= x^2z^3 + 2xy +$

line -14
$x^2y^3 + xy^2 + 4xz + 2x + 2yz^3 - y - 2z^2 + c$

Page 19
line -12
$\varphi =$

Page 20
line 15
Let $\varphi =$

Page 21
line 14
Let $\varphi =$

line 17
Then $\psi = (x^2y^2z^3 + 2x^3y^3z - x^4yz^2)dydz$

Page 30
line 15
DEFINITION 3.12: $(d?_1)^* = \varepsilon d?^1$, $\varepsilon = \pm 1$, where $(d?_1)(\varepsilon d?^1) = dx dy dz$.

Page 31
line 13
$dx_1, ..., dx_n$

Page 32
Ex. 4 b)
f = $2xy^3$

Page 33
Ex. 7e)
$-4xy^2zdxdy$

Ex. 10
$(d?_1)^* = \varepsilon d?^1$ where $(d?_1)(\varepsilon d?^1) = dx dy$.

Page 38
line 3
every

Page 54
line 11
then

Page 57
line -3 of footnote
because that analogy lets us use
\begin{align*}
&= x_1 x_2 \varphi(i, i) + x_1 y_2 \varphi(i, j) + x_2 y_1 \varphi(j, i) + y_1 y_2 \varphi(j, j) \\
&= x_1 x_2(0) + x_1 y_2 \varphi(i, j) + x_2 y_1 (-\varphi(i, j)) + y_1 y_2(0) \\
&= (x_1 y_2 - x_2 y_1) \varphi(i, j)
\end{align*}
\[+ C(f(t), g(t), h(t)) \, dt \]

\[\int_{C_3} \varphi_1 = \frac{16}{15} \quad \int_{C_3} \varphi_2 = \frac{14}{15} \]

\[\partial C = \{q\} \cup -\{p\} \]

\[(1 \cdot 1 - 0 \cdot 0) \]

\[dy = \frac{-4uvdu + 2(-v^2 + u^2 + 1)dv}{(u^2 + v^2 + 1)^2} \]
Since $k_2 = k_1 \circ \ell$, $k^*_2(\varphi) = \ell^*(k^*_1(\varphi))$ by proposition III.3.61.

For simplicity we complete the proof when $n = 2$. As $k^*_1(\varphi)$ is a 2-form on a region in \mathbb{R}^2, we may write $k^*_1(\varphi) = f(x, y)dxdy$ for some function $f(x, y)$. Then

$$\ell^*(k^*_1(\varphi)) = \ell^*(f(x, y)dxdy) = f(\ell(u, v))J(\ell)(u, v)dudv \quad (5.17)$$

by proposition 3.34.

Then the conclusion of the theorem becomes, by definition 3.2,

$$\pm \int_{T_1} f(x, y)dA_{xy} \pm \int_{T_2} f(\ell(u, v))J(\ell)(u, v)dA_{uv}. \quad (5.18)$$

We are assuming the orientations are all compatible. This implies that either T_1 and T_2 both have the same orientation as surfaces in \mathbb{R}^2, so both sides of (5.18) get the same sign, and that $J(\ell)(u, v)$ is always positive, or else T_1 and T_2 have opposite orientations as surfaces in \mathbb{R}^2, so the two sides of (5.18) have opposite signs, and that $J(\ell)(u, v)$ is always negative. In either case, then, (5.18) is just the standard change-of-variable formula for double integrals.

The case of general n is similar. (For $n = 3$, use 4.8 and 4.2 instead of 3.34 and 3.2.)
Ex. 13 should be flush with left margin

Page 194 footnote line 1 invertible

Page 197 line 18
\[a_2 \leq x_2 \leq b_2, \ldots, a_k \leq x_k \leq b_k \]

Page 216 line -3 involve dx_m.

Page 245 line -5 Jq should be Jg

Page 247 I.1 1 a) $(4x^2 - x)dx + 3xdy$
 b) $3x^2dx + (-x^2 + 2xy + x + y)dy$

I.1 2 a) $(3x^3 - 4y^2z)dx + (3yz + 4xz)dy$
 \[-(3x^2 + 3y^2 + 3z^2 + 8x + 4)dz \]
 b) $(x^4 + y^3z)dx + (-x^3 - xy^2 - xz^2 + 2xy + y)dz$

Page 248 I.2 2 d) $xdydz + (y^2 - 2)dzdx + (-z - 2yz)dx\,dy$

Page 249 I.3 2 d) $xi + (y^2 - 2)j + (-z - 2yz)k$

Page 251 III.1 2 e) 34 2 f) -17

III.2 2 d) 27
 3 a) 85

Page 252 IV.2 7 a) $x^3 - 2xy + 2y^2$

Page 253 IV.4 2) 1/15

Page 254 V.3 13) $-79/5$

V.4 2) 1/15