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ABSTRACT 

We study incentive issues that arise in semiconductor capacity planning and allocation. 

Motivated by our experience at a major U.S. semiconductor manufacturer, we model the 

capacity-allocation problem in a game-theoretic setting as follows: each product manager (PM) 

is responsible for a certain product line, while privately owning demand information through 

regular interaction with the customers. Capacity-allocation is carried out by the corporate 

headquarters (HQ), which allocates manufacturing capacity to product lines based on demand 

information reported by the PMs. We show that PMs have an incentive to manipulate demand 

information to increase their expected allocation, and that a carefully designed coordination 

mechanism is essential for HQ to implement the optimal allocation. To this end, we design an 

incentive scheme through bonus payments and participation charges that elicits private demand 

information from the PMs. We show that the mechanism achieves budget-balance and voluntary-

participation requirements simultaneously. The results provide important insights into the 

treatment of misaligned incentives in the context of semiconductor capacity-allocation. 

 

Keywords: semiconductor manufacturing, capacity planning, supply chain coordination, game 

theory, capacity-allocation game 
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1. Introduction  

 

Semiconductor manufacturing operations consist of two main stages: the ‘front-end’ operation of 

wafer fabrication, and the ‘back-end’ operation of assembly and testing. The front-end operation 

is typically the bottleneck as the process involves a 6-12 week manufacturing lead-time, while 

the back-end requires 2-4 days. Moreover, the wafer fabs are extremely capital intensive (some 

require more than $2 billion) while requiring significant lead-time to build (12-18 months). 

Demand in high-tech industry is known to be volatile and particularly sensitive to economic 

cycles. Managing wafer fab capacity is among the most crucial activities for semiconductor 

firms. In this paper, we explore an aspect of semiconductor capacity management inspired by our 

experience at a major U.S. semiconductor-manufacturing firm. 

 

In the semiconductor industry, strategic capacity planning decisions are typically made at the 

beginning of a fiscal year to determine how to configure and allocate wafer fab capacity with 

respect to aggregate microelectronics technologies required by different products. Key players in 

the planning process are business units directly responsible for customer demands, 

manufacturing units responsible for fab resources, and capacity planners at the corporate 

headquarters (HQ) who reconcile the goals of the business and manufacturing units while trying 

to realize strategic targets set by senior executives. Capacity-allocation resulting from strategic 

planning provides a basis for each business unit to strategize its negotiation posture with the 

customers while at the same time committing its financial accountability to the HQ. As such, the 

strategic capacity planning decisions are static by nature; they rarely change unless the market 

conditions change drastically. In between strategic planning updates, tactical planning takes 

place, where business units communicate to the wafer fabs their demand outlooks updated from 

new forecasts and confirmed customer orders, which results in an operational plan. In this 

context, capacity-allocation from strategic planning serves as a basis that specifies the level of 

wafer releases (capacity units) for which a business unit is entitled. In case the total demand 

exceeds the available capacity, the capacity is rationed proportionally to the initial capacity-

allocation (known in the industry as “sharing-the-pain” policy). Strategic capacity-allocation 

must reflect a reasonably accurate match of supply and demand during its intended fiscal period. 

Otherwise, short-term fluctuations in the market may lead to great inefficiencies. 
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An important aspect of decision-making in the industry is the decentralized nature of demand 

management. Custom semiconductor manufacturers typically market application-specific chips 

to a wide variety of industry sectors such as telecommunications, consumer electronics, and 

computing equipment. As the customers and the demand characteristics in these industries are 

drastically different, firms often organize their business units according to industry sectors. 

Within each business unit, demand management authority is delegated to product managers 

(PMs) who are responsible for a certain line of products. PMs, as a result, have the most accurate 

information on the demands that they manage, as they interact with the customers on a regular 

basis. As an attempt to coordinate the PMs’ efforts with company-wide performance, the PMs 

receive bonuses that are directly proportional to the total profits for their product lines. This 

incentive scheme is quite common in semiconductor firms.  Unfortunately, the strategic capacity 

planning and the incentive structure described above lead to behaviors that have highly 

undesirable consequences. First, the PMs perceive the strategic capacity-allocation as capacity 

guaranteed for their products throughout the fiscal year. They would utilize this capacity as 

much as possible, sometimes regardless of the actual demands. Second, a PM may have 

incentive to inflate (or delay) his demand signal during tactical planning as a way to protect his 

allocated capacity.  The HQ manager who oversees the capacity assignment activities describes 

the current allocation method and its shortcoming as follows: 

 

…Our current capacity-allocation method is to assign a certain number of wafer starts to 

each business unit by technology groups based on some reference demand view, typically 

a demand view that is linked to a specific financial commitment. This type of allocation 

creates a sense of wafer-starts ownership, and has a tendency to cause business segments 

to hold on to their share of wafers until the last moment when they don't really need to 

make the starts, or they tend to build inventory. From a global asset utilization point of 

view, these allocations drive under-utilization by trapping pocket of capacity to segments 

with a low-swing of demand, where at the same time there are segments short of supply 

because of a high-swing of demand. Because it is necessary to have some finite lead-time 

on the high-swings of demand, wafers that are relinquished at the point of execution are 
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sometimes too late to capture the upswing. - Director of Integrated Circuit Business 

Planning & Rationalization 

 

To address the above issues, the firm is interested in an incentive structure that would motivate 

PMs to reveal the true demand they observe during tactical planning such that the fabs may 

(re)allocate capacity dynamically to changing market conditions. On the other hand, due to the 

budgetary and fiduciary accountability demanded by corporate governance, the firm must retain 

the structure of strategic capacity planning, i.e., each PM will continue to receive an upfront 

capacity-allocations for planning purposes, knowing that the allocation may change later. While 

making perfect managerial sense, the above setting creates a complication from the modeling 

perspective since initial capacity-allocation imposes constraints that may hamper the efficiency 

for actual allocations that take place as the demand unfolds. This is a research issue that will be 

addressed in this paper.  

 

The capacity planning and allocation dilemma described above can be observed in many 

industries, however, its impact is exacerbated in the semiconductor industry for the following 

reasons: (i) the lead-time required for capacity expansion is long (12-18 months), which makes 

strategic capacity planning essential not only for manufacturing planning, but also for capital 

budgeting and financial planning purposes; (ii) manufacturing lead-time is long while the 

product life-cycle is short, which severely limits the options for corrective planning; (iii) demand 

is highly volatile, and it is therefore difficult to hold a PM accountable for his demand forecasts; 

(iv) inventory carries a high risk of becoming obsolete, which diminishes its value to buffer for 

forecast inaccuracies; (v) the capacity cost (of wafer fabs) is extremely high, which means that 

small adjustments in capacity-allocation could have great impact on profitability. 

 

In this paper, we propose a two-pronged approach to address the above incentive problems in 

semiconductor capacity-allocation; the goal is to improve efficiency in overall capacity-

allocation while at the same time addressing the decision makers’ (PMs) incentives. We propose 

a game- theoretic model for the capacity-allocation problem. We develop an incentive scheme 

that elicits private information from the PMs while implementing the optimal capacity-allocation 
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that maximizes the firm’s expected profits. The incentive scheme could be implemented using 

the executive bonus system commonly used in semiconductor firms.  

 

The rest of the paper is organized as follows: in the next section, we review the related literature; 

in Section 2, we define the capacity-allocation problem and establish the solution that will 

optimize the firm’s profit. In Section 3, we propose a capacity-allocation game that satisfies the 

budget-balance and voluntary-participation properties; this is followed by Section 4, where 

analyzes the mechanism and draws conclusions from its characteristics under various conditions. 

In Section 5, we describe a case study and numerical analysis based on real scenarios in the 

semiconductor environment, which is followed by the conclusions in Section 6. 

 

1.1. Related Literature 

 

Semiconductor capacity-allocation problems are extremely challenging due to the long 

manufacturing lead-time and the high demand uncertainty for semiconductor products. In this 

section, we first provide a broad overview of literature that addresses different aspects of 

semiconductor capacity planning, then point to a few papers that are closely related to our 

proposed capacity-allocation game.  

 

The semiconductor capacity-allocation literature can be grouped into optimization-based 

methods that focus on large-scale mathematical programming models to find precise solutions, 

and game-theoretic models that capture the behavioral aspects of decision making, both provide 

valuable insights for the problem environment. In the former group, significant efforts have been 

put forward to analyze the strategic and operational trade-offs in capacity planning and capacity-

allocation. Recent examples that represent this group of research include (Swaminathan 2001, 

2002, Barahona et al. 2001), who develop mixed-integer stochastic programming models for tool 

acquisition and capacity management decisions at wafer fabs. Cakanyildirim and Roundy (2002) 

evaluate capacity-planning procedures used in practice, and extend these procedures while trying 

to maintain their simplicity. Karabuk and Wu (2002, 2003) develop stochastic programming 

models that address strategic capacity and operational capacity-allocation problems, respectively. 

Their model addresses potential conflicts regarding capacity planning between the productions 
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and marketing functions in a semiconductor-manufacturing firm. Mechanisms are proposed to 

coordinate the capacity planning process.  Christie and Wu (2002) propose a multi-stage 

stochastic programming model using scenario trees; they study different ways to characterize the 

dependencies among demand scenarios, and analyze the impacts on solution quality. In all of 

these studies an inherent assumption is that all of the input parameters of the decision models are 

available for the modeler. However, this assumption fails when participating decision makers 

have private information and are motivated to take advantage of it for local gains. This leads to 

the second area of literature that consider the players’ incentives in a game-theoretic setting.  

 

Several different approaches can be found in the literature that addresses the players’ incentives 

in a capacity-allocation environment. For instance, Celikbas et al. (1999) devise penalty schemes 

to coordinate forecasting and production planning. Mallik and Harker (1998) develop a bonus 

rewarding function that provides marketing managers the incentive to improve their forecast 

accuracy. Porteus and Whang (1991) develop a transfer pricing scheme to coordinate inter-

divisional capacity planning and allocation. Kouvelis and Lariviere (2000) generalize the 

approach of Porteus and Whang (1991) to a class of internal market-coordination mechanisms. 

Groves and Loeb (1979) challenge the effectiveness of pricing mechanisms as a means for 

coordinating divisional managers and propose instead performance evaluation measures based on 

divisional profits less the impact of bundling decisions on the profits of other divisions. On the 

other hand, Harris and Kriebel, (1982) design optimal transfer-pricing schemes for allocating 

resources under a more restrictive setting. The capacity-allocation problem has also been 

analyzed in the context of supply chain coordination (c.f., Cachon and Lariviere, 1999a, 1999b, 

Schneeweiss and Zimmer, 2004). Balasubramanian and Bhardwaj (2004) look into marketing-

manufacturing coordination issues in a single company, which competes in a duopoly 

competition setting. 

 

This paper contributes to the capacity coordination literature by introducing a game where a 

strategic capacity-allocation is first announced while actual (re)allocation takes place over time 

as demand unfolds at various tactical planning points. This setting captures an important 

characteristic of the semiconductor planning environment described earlier; the manufacturer 

must generate some form of long-term strategic capacity plan and make it known to external and 
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internal constituents. Externally, the plan signals the customers the firm’s future manufacturing 

capabilities pertaining to their products, and discloses to the investors and share-holders the 

firm’s capacity positioning; internally, the plan serves as a reference that helps to set corporate 

revenue targets for different product categories while assigning priorities and financial 

accountabilities among business units. Although the mathematical model that we use takes a 

similar form to that of Cachon and Lariviere (1999b), we show that the initial allocation distorts 

the incentives of the players and makes coordination significantly more difficult. 

 

To analyze the capacity-allocation game we turn to the mechanism design literature in 

microeconomics. There is a line of research that focuses on coordinating trades among 

independent agents to maximize the surplus generated by the trade, subject to the requirements 

of voluntary participation and budget balance. In our problem the initial capacity-allocation 

creates an ownership, and reallocation can be viewed as a trade among the participants. 

Similarly, in our case the HQ acts as an intermediary and wants to maximize the surplus 

generated by the reallocation of capacity while maintaining voluntary participation and 

recovering any additional bonuses paid to facilitate reallocation. Our analysis follows the general 

mechanism design framework established by Myerson (1982).  

 

Several important findings in the literature are directly relevant to the capacity-allocation game 

we set out to study. Wu (2004) studies different type of supply chain intermediaries and their 

roles in subsiding the effects of adverse selection created by asymmetric information. Gibbard 

(1973), Green and Laffont (1977), and Myerson (1979) introduce the revelation principle for 

Bayesian games; it states that regardless of the actual mechanism constructed by the 

intermediary, given the Bayesian-Nash equilibrium outcome of the mechanism there exists an 

equivalent direct mechanism where the buyer and the supplier reveal their respective valuation to 

the intermediary, and the intermediary determines if the trade is to take place. This allows the 

study of a large class of asymmetric information games without the need to specify each 

mechanism in detail. Using the revelation principle, Myerson (1981) proposes an optimal 

mechanism design problem for auctions where the bidder chooses, among all possible 

mechanisms, one that would maximize her expected net revenue. Myerson and Satterthwaite 

(1983) prove that it is impossible to coordinate a buyer and a seller with an indivisible object if 
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the supports of their belief distributions overlap. Cramton et al., (1987) develop a bidding 

mechanism that assigns a jointly owned asset to the partner who values it the most. Since the 

valuations of agents are linear functions of the quantity owned, the outcome represents the 

optimal reallocation of the asset. The mechanism only works if the ownership distribution 

satisfies certain conditions. McAfee, (1991) studies a case where the quantity of the goods to be 

sold is privately known by the seller. He proposes a method that would elicit private information 

while maximizing the total valuations. Makowski and Mezzetti (1993) analyze a trading problem 

for an indivisible object with two buyers and one seller. They characterize the conditions under 

which an implementable solution exists. Makowski and Mezzetti (1994) and Williams (1999) 

generalize the theory and characterize a broader set of conditions under which a mechanism with 

implementable properties exists. 

 

We contribute to the literature by introducing a capacity (re)allocation game given reference 

allocation made by strategic capacity planning, and we develop a Bayesian incentive compatible 

mechanism that implements the firm’s optimal capacity-allocation; we characterize the 

conditions when an individual rational and budget balanced incentive structure can be attained. 

We also extend the analysis of reallocation of a whole asset in continuous quantities and show 

that the results of Cramton et al. (1987) do not hold when the valuation function is nonlinear. 

More importantly, in the context of strategic capacity-allocation, we show that distributing the 

entire capacity among business units in an environment where there is private information may 

make it impossible to reallocate it efficiently. We also show that, if the HQ postpones a fraction 

of capacity distribution for later reallocation points, then system-wide optimal reallocation can 

be achieved. To our knowledge, this problem has not been studied before in the context of 

capacity coordination.  

 

2. The Capacity-allocation Problem 

2.1. The Product Manager’s Decision Problem 

We consider the decision problem of a PM during a tactical planning phase after the reference 

allocation has been made from strategic capacity planning. There can be several tactical planning 

points in one fiscal period. Reference allocations are typically revised on a yearly basis. We 

assume that the tactical planning points are infrequent enough (such as quarterly) that the 
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decision point can be treated as independent. Therefore, we focus on a single decision point and 

describe a PM’s decision problem at this point. 

 

The enterprise planning system keeps track of customer orders for each product line and allows 

manual entry of forecast orders. Each PM prepares a priority-ordered demand list using the 

planning system. The ordering represents the relative importance of the entries in the list; 

importance is assigned based on the certainty or profitability of an order. At this point, PMs take 

into account their capacity share and may add or delete entries in the list to match or exceed their 

reference share. This list is then communicated to the wafer fab to be scheduled for production. 

The scheduler at the fab level releases wafers to satisfy the orders in the list; starting from the 

most important entries and continuing until the capacity share of the PM is filled. Capacity-

allocation has a decreasing marginal profit for a business unit, because each additional unit of 

capacity will be used to fill a relatively less important order in the order list. The demand is 

highly volatile and even the actual customer orders placed at the time of planning are subject to 

significant changes throughout the manufacturing lead-time. We consider an aggregation of the 

order list that each PM submits and describe their model based on aggregate demand. 

 

The demand analysis at the HQ level consists of historical data and input from the PMs. The 

analysis consists of identifying a nominal demand that is constant over the planning period. The 

variance on top of the nominal demand is very high and can be accurately identified by historical 

data. However, the nominal demand is not easy to predict and the PMs have more accurate 

demand information since they interact with the customers frequently and they can anticipate a 

shift in the nominal demand. 

 

We describe the PMs’ decision problem by a newsvendor model. Let iξ  represent the random 

variable for the demand for PM i’s products and ),( iii θF ξ represent its distribution with 

parameter iθ . We assume that iθ  is the mean of the distribution, which represents the nominal 

demand for business unit i, and that the respective PM observes it privately.  

 

We express the capacity as the number of wafers that can be manufactured per tactical planning 

period. Let ri be the average profit from one wafer allocated to PM i. We normalize the unit 
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production cost to zero without any loss of generality. In the highly volatile semiconductor 

industry, carrying inventory is undesirable. For custom-made products, a customer may stop 

ordering a particular version of a chip without any contractual liability. Other products may face 

a decline in demand or may even be phased out during the manufacturing lead-time, causing the 

inventory to be worthless to the manufacturer. In a striking example, CISCO Systems wrote off 

$2.25 billion in inventory during the economic downturn in early 2000’s. Their customers 

suddenly cancelled their orders and the company did not see any possibility of selling that 

inventory. 

 
 … On Tuesday, the Chief Financial Officer said the company [CISCO] plans to scrap 
and destroy the majority of the inventory because most of it can't be sold because it was 
custom-built …  

   Cnet.com news report May 9, 2001 
 
Therefore, we assume that the expected resale value of inventory at the end of the period is less 

than the production cost. Let vi represent the potential loss from one unit of leftover wafer at the 

end of the period (production cost minus salvage value) in PM i’s newsvendor model. We can 

describe total profit function for PM i’s business unit, under a demand realization of iξ and a 

capacity-allocation of yi, as follows: 

)0,max(),min(),( iiiiiiiii yvyry ξξξπ −−=       (1) 

It is a common practice in the semiconductor industry that the PMs are rewarded bonuses based 

on the profits they realize after sales are finalized. Typically, the bonus is directly proportional to 

the total realized profits for the division the PM represents. To capture this basic bonus structure 

we assume that the bonus function implemented by HQ is a strictly increasing function of 

realized profits tallied at the end of the fiscal period, and that all decision makers are risk neutral 

unity maximizes. Thus, each PM’s utility function reduces to maximizing the total expected 

profits of her respective business units since this will at the same time maximizes the total bonus 

she receives. Thus, the PM’s utility is the total expected divisional profit functions as follows: 

∫+−=Π=
iy

iiiiiiiiiiiii dθFvryrθyyE
0

),()(),()],([ ξξξπ     (2) 

The decision problem for a PM is to maximize the total expected division profits subject to their 

reference capacity-allocation constraint, ii xy ≤ , where xi is the reference allocation generated 
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previous by HQ during strategic capacity planning. The optimal solution to the PM’s decision 

problem is the newsvendor solution, as follows: 

















+

= −
ii

ii

i
iii xθ

vr
rFθy   ,,min)( 1*        (3) 

This clearly shows that a PM will want to utilize her reference allocation (her initial capacity 

share) as long as her newsvendor optimal solution is above her reference share. 

 

2.2. The Integrated Solution for the Capacity-Allocation Problem 

We consider a corporate environment where n PMs compete for scarce capacity and the HQ, 

acting as a central coordinator, wants to maximize the total expected profits for the corporation. 

We assume the net profits less total bonuses paid to PMs are always increasing in profits. 

Therefore, the HQ’s problem is equivalent to finding the capacity-allocation that maximizes total 

expected profits across n business units. We formally define the coordination problem as 

follows: 

Problem CA 

by

ts

θyθz

n

i
i

n

i
iii

≤

Π=

∑

∑

=

=

1

1y

  ..

),()(Max  

         (4)  

where b represents the total available capacity. 

 

For notational convenience, variables without a subscript represent a vector, where applicable. 

Let )(* θy  be the optimal capacity-allocation that solves problem CA for a given θ vector. We 

also define ∑
=

Π=
n

i
iii θyθz

1

** ),()(  as the optimal solution value for problem CA, for a given 

θ vector. 

 

We need the following assumptions to facilitate further analysis in the next section. We assume 

that the mean of demand distribution  iθ is independent across all PMs. We also assume that for 

every possible realization of the θ vector, all of the available capacity is allocated at the optimal 
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solution (i.e. θbθy
n

i
ii ∀=∑

=

,)(
1

* .) This assumption avoids trivial cases that do not require 

additional effort for coordination.  

 

We make the following assumptions regarding the newsvendor problem of a PM: (i) it is 

concave in capacity-allocation quantity iy , so *
iy  is unique and defined by the first order 

conditions; (ii) at any capacity-allocation )(θy , a marginal increase in iθ increases the system-

wide expected total profits. These assumptions are satisfied by most standard demand 

distribution functions such as Normal, Exponential and Weibull. A detailed analysis of suitable 

distribution functions in this regard is provided in Lariviere (1999).  

 

With the above assumptions we have 0)(*

>
∂

∂

i

i θy
θ

, and 0)(*

<
∂

∂

j

i

θ
θy , iji −∈∀∀ , , where the  

notation –i indicates all indices other than i (e.g. },,....,,,....,,{ 11121 nniii θθθθθθθ −+−− = ), and  

i
θ
θz
i

∀>
∂

∂ ,0)(*

. The first two terms in the previous statement imply that a higher iθ  value will 

receive larger capacity-allocation at the expense of other divisions. 

 

Finding the optimal allocation depends on private information from the respective PMs. Without 

acquiring the mean of the demand distribution information from the PMs, the HQ cannot 

implement the optimal capacity-allocation. On the other hand, the PMs are clearly motivated to 

exaggerate the demand mean because their allocation increases with the demand mean they 

report to the HQ. Therefore, it is not possible to implement the optimal allocation without an 

additional incentive structure. In the next section, we set up a capacity-allocation game, which 

applies a necessary incentive structure to implement the optimal capacity-allocation. 

 

3. The Capacity-Allocation Game 

The timing of events in the capacity-allocation game we want to design is as follows. At the start 

of a fiscal period strategic capacity-allocation decisions are made and an initial share of ix , 

expressed as a percentage of the total capacity, is assigned to PMs. We assume that all available 
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capacity is assigned initially. Operational decisions are based on reference allocation until the 

next tactical planning point. At that point the HQ solicits iθ from the PMs and announces the 

allocation rule )(* θyi and the bonus function )(θti  as a function of communicated iθ values. The 

PMs observe their true demand ( iθ ) privately and simultaneously announce a demand mean '
iθ .  

Capacity-allocation is implemented as )( '* θyi effective immediately and bonuses are paid after 

total profits are realized. We assume that all of the parameters used in the payment and allocation 

functions are publicly known, except for the private information iθ . 

 

Our objective is to devise a bonus payment function in the capacity-allocation game so that the 

PMs reveal their true demand knowing that the company-wide optimal allocation will be 

implemented. Note that the bonus function )(θti is above and beyond the divisional-profit-based 

bonus commonly used in the semiconductor industry (Section 2.1).  In other words, we are 

proposing an additional bonus that is not tied to the divisional profit but is a function of the 

information reported by the PM.   

 

The range of iθ values that a PM can announce (the message space) is restricted by the prior 

beliefs of the other PMs and the HQ, which we assume to be shared by every participant. The 

prior belief function represents the information that participants have about each other’s private 

information and is described by a distribution function. We will refer to the private information 

of the PMs as their type. Let )( ii θΦ  be the distribution function that represents the prior beliefs 

of participants about the type of PM i, with support ],[ iii θθθ ∈ . Furthermore, let *
iθ and 

'
iθ denote the actual type of PM i as it is privately known to her and the announced type by PM i, 

respectively. 

 

3.1 The surrogate profit function for PMs. 

 

In order to relate the bonus function ti(.) to the existing bonus system, we define the following 

surrogate profit function. Let ) (iπ be the surrogate profit function for PM i, to which the bonus 
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function g(.) is applied to determine the total bonuses to be paid. Let ti(.) be the function that 

represents a side payment to PM i. Then we have:  

 

niforθθtθθθyθθ iiiiiiiiiiiii ..1  ),())(),,((),, ( ''*'''' =+= −−− ξπξπ .  (5) 

 

The local problem of PM i reduces to maximizing the expected surrogate profit function for any 

given '
iθ− , and it is described as follows. 

 

Problem PM 

)],, ([E),,(   ''*''
i

' iiiiiii
θ

θθθθθMax
i

i

ξπξ −− =Π
      (6) 

The surrogate profit function pays the PMs the profits from their own business units and an 

additional side payment. This motivates the PMs not only to consider a coordinated solution, 

which is induced by the side payment, but also to keep the profits of their business units high. 

This incentive structure should serve as a means of coordinating the PMs in such a way that the 

bonuses paid are increased (together with the expected profits) and this increase is shared by the 

PMs appropriately.  

 

3.2. Desired properties of the capacity-allocation game 

Truth telling is the Bayesian Nash equilibrium policy for the PMs. That is, for each participating 

PM, announcing her true type maximizes her surrogate profit function in expectation with 

regards to others’ types. This is referred to as Bayesian incentive compatibility and expressed by: 

 
*'*''

i
*'*

i     ]),,([]),,([ '' iiiiiθiiiθ
θθiθθθEθθθE

ii
∀∀∀Π≥Π −−

−−
   (7) 

 

where, '
-iθ

E  is the expectation operator with respect to the prior belief function ()i−Φ . 

 

We require that the incentive payment be at most based on the total realized profits, including the 

side payments. We call this a budget-balanced scheme with respect to the existing bonus system. 

This requirement is also needed to satisfy the assumption we made while describing problem 
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CA. The total expected profit after bonus payments to the PMs is maximized with )(* θy if the 

side payments constitute a budget-balanced scheme. Otherwise, depending on the bonus system, 

additional profits may be offset by the additional bonuses to be paid to the PMs. The 

coordination should ideally allocate the capacity optimally, and the increase in total profits 

should increase the bonuses that the PMs expect to receive. This corresponds to the following 

budget- balance constraint on the side payment function. 

 

'

1

' 0)( θt
n

i
i ∀≤∑

=

θ     (8) 

 

Notice that the budget constraint implies that the total side payments may amount to a negative 

value, which indicates that the total bonus payments may be based on a value that is less than the 

total profits. This can be justified by the PMs by a significant increase in total profits from 

coordination that would otherwise not be possible. On an individual basis, a negative side 

payment could be acceptable by a PM only if the expected allocation, and hence the expected 

divisional profits, are larger than what could have been achieved with the reference allocation. In 

this case the PM should be willing to pay a participation fee for a higher expected divisional 

profit. This is ensured by the following property. 

 

In order to ensure voluntary participation of the PMs, the bonus system should pay off at least as 

much as a PM would get if she chose not to participate. We consider this constraint in 

expectation with regard to the belief function of the participants. This is called the interim 

individual rationality constraint, which is ensured if the following relation holds: 

 
**

i
*'* ),(b]),,([' iiiiiiiθ

θθxθθθE
i

∀Π≥Π −
−

    (9) 

 

where xi is the initial capacity share of PM i as a percentage of total capacity b. The right-hand-

side of the equation is the expected profit that PM i could have made if she did not participate in 

the capacity-allocation game and chose to stick with her initial capacity share. 
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Violation of individual rationality in our context implies that by participating in the coordination 

scheme a PM has to sacrifice her personal benefits, in terms of bonus payments, for the good of 

others. Even in an intra-company environment, this is highly undesirable, as a disadvantaged PM 

may show less effort to increase divisional profits, which then leads to decreased system-wide 

profits. In extreme cases, she may even seek employment elsewhere, as this effectively reduces 

her total financial compensation. 

 

3.3. A Coordination Mechanism for Capacity-allocation 

Consider the following side payment function as part of the PMs’ surrogate profit function: 

iqθθyθθyθBθBB
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When the side payment function described above is plugged into the surrogate profit function for 

PM i, the terms in the second line cancel each other in expectation. This results in PM i receiving 

system-wide total expected profits less a lump-sum participation charge Ci, in expectation to 

other PMs’ types. The term B is the system-wide total expected profits over the possible types of 

all participating PMs. Similarly, B(θi) is B as a function of PM i’s type θi. The term Ci is the 

minimum of the expected system-wide profits less the expected divisional profits over all 

possible types of PM i. The last term, q, is the total participation charges less the total expected 

side payments divided by n, which is the surplus as distributed equally to PMs.  
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Theorem 1 

The proposed side payment function 
(a) implements the optimal capacity-allocation, 
(b) is Bayesian Incentive Compatible, 
(c) supports a budget-balanced bonus structure for problem CA and satisfies interim 

individual rationality if and only if 0≥q . 
 

Proof: (See Appendix for proof). 

 

The surrogate profit function with the side payment function essentially pays the realized total 

profits to each PM and charges a lump-sum participation fee of Ci. The payment of the system- 

wide total profits aligns the incentives of the PMs with those of the corporation, hence induces 

truth telling as equilibrium strategy. The charges preserve this incentive structure because they 

are in a lump sum. Ci is the maximum that can be charged without knowing the type of PM i 

while still preserving voluntary participation. According to the definition of Ci, PM i expects to 

make at least that much over all the possible realizations of her type in expectation with respect 

to the types of other PMs. Any charge above Ci may violate the individual rationality for PM i 

for certain values of her type. 

 

The expression q measures the difference between the total expected payments and the lump sum 

charges to the PMs. If q is positive, then the charges offset the payments, budget balance is 

achieved and individual rationality is ensured. However, if q is negative, then either budget 

balance is violated or individual rationality is jeopardized at the expense of achieving budget 

balance. In the former case, q represents the cost of private information in terms of additional 

bonuses to be paid to the PMs. 

 

Mechanism CA is based on the existing bonus structure that is defined by the bonus function 

g().With the proposed mechanism, the PMs are still paid based on their divisional profits too; 

consequently they are motivated to expend effort to close more sales deals and to increase the 

mean of their divisional demand.  

 

4. Analysis of the Capacity-allocation game 
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We want to know whether we can identify cases in which we can be assured of the possibility of 

achieving budget balance and individual rationality simultaneously in the capacity-allocation 

game. In this section, we characterize the Ci values as a function of the initial capacity shares and 

the characteristics of private information about the PMs’ types and draw some insights into their 

interaction. 

 

Lemma 1. Let )},()({min   |   ],[{min
iiiiiiiii θxθBθθθθ Π−∈= . There exists ],[''

iii θθθ −−− ∈  such 
that the following results hold for every PM i. The value of ''

i−θ depends on the belief function 
and the expected profit function for PMs. 
 

Case Condition min
iθ = Ci = 
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Table 4.1. Characterization of participation charges from the PMs. 

 

First, we focus on the no-initial-share policy, case (b) in lemma 1. We have the following strong 

conclusion stated by the next theorem. 

 

Theorem 2. Individual rationality and budget balance always hold with zero initial share: 
i  xi ∀= 0 . Moreover, )(* θzq > . 

 

Proof (See Appendix). 
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This result proves that discontinuing the initial capacity-assignment policy overcomes the 

inefficiency that may be caused by private information under any business environment that can 

be described by the model. This is an important conclusion in that it provides a tradeoff between 

disadvantaging the PMs by putting them in uncertainty during their dealings with customers and 

implementing an incentive-compatible, individually rational optimal capacity-allocation. 

However, in the business environment of semiconductor manufacturing discussed earlier, this 

may not be a viable policy. 

 

Unfortunately, while the positive-initial-share case better captures the essence of semiconductor 

capacity planning, it is also more complex to analyze. The three regions for the initial capacity 

share, as shown in Table 1, have important practical implications. If xi satisfies (a.1), then PM i 

will always have, in expectation with regard to the types of the other PMs, more capacity after 

the capacity-allocation game is played. That is, she expects to be a capacity buyer from the other 

PMs, because we assume that initial shares sum up to the total capacity. Similarly, if xi satisfies 

(a.2), then PM i will be a capacity seller in expectation. Any initial capacity-allocation that leads 

one of the PMs to be an expected buyer or an expected seller is undesirable at the corporate level 

because of the delicate politics among the PMs, which we cannot capture with our game-

theoretic model. Semiconductor manufacturers engage in internal capacity trading often report 

unfair practices influenced by favor trading, seniority, and power play.  Therefore, we will focus 

on the initial capacity-allocations that fall into case (a.3) for all PMs. The next proposition 

restricts the feasible solution space for the initial allocation even more. 

 

Lemma 2. 
Assume case (a.3) in Table 1. 

(a) iθθ ii ∀=   ,min , if and only if bx
n

i
i >∑

=1

. 

(b) iθθ ii ∀=   ,min , if and only if bx
n

i
i <∑

=1

. 

 

The possibility of achieving both individual rationality and budget balance is not conclusive in 

the positive-initial-share case. It depends on the belief functions and the cost structure of the 

local newsvendor problem as well as how the initial shares are distributed. However, if we relax 
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the requirement that the total capacity is distributed as initial shares, then we find a compromise 

that ensures that all of the desirable properties hold.  

 

Theorem 3. 

Individual rationality and budget balance always hold if the initial shares are set as 
i),( ''*

ii ∀= −ii θθyx ,     (11) 
where, ''

iθ−  is defined as in Lemma 1. This means that xi must satisfy the following expression: 
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Proof (See Appendix). 
 

The theorem states that if the initial shares are set in such a way that all of the PMs end up with 

the same capacity share (in expectation) with regards to the other PMs’ type (at their lowest 

type), then individual rationality and budget balance holds simultaneously. However, by Lemma 

2, we know that this can be achieved if and only if the initial shares are less than the total 

capacity. The initial shares described by Theorem 3 represent the least acceptable quantity, from 

the PM’s perspective, as an initial capacity assignment. The unassigned capacity will be in the 

ownership of the HQ and it will be totally distributed with the mechanism CA. Therefore, this 

policy does not interfere with the politics between the PMs. Deferring the assignment of part of 

the capacity can be viewed as a bargaining tool for the HQ against the private information of the 

PMs. Our discussions with semiconductor manufacturers lead us to believe that the above 

scheme would be very easy to implement and makes intuitive sense to capacity planners, product 

managers and alike.  

 

5. Case Study 

 

In this section, we describe a case study constructed based on real-world scenarios observed in 

the semiconductor-manufacturing environment. The case is constructed to illustrate some of the 

key results developed in the previous sections.  

 

We consider a semiconductor Integrated Circuit (IC) manufacturer who produce customized IC’s 

for a variety of electronic devices. The IC manufacturer is organized by a number of business 
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units, each serving a particular market sector. We consider product managers from two different 

business units competing for the capacity available from wafer fabs. The PMs’ decision 

problems can be characterized by newsvendor models, and that their decision problems differ 

only in the demand means. This implies that the unit profit from one wafer and the unit cost for 

one unsold wafer are the same for both PMs, and that the demand distribution has the same 

variance at the same mean value. We observe that this assumption holds well in the custom 

semiconductor industry; the wafer manufacturing costs are very similar because they are 

manufactured at the same fab and the only difference is the setup made for different circuits that 

are printed on the wafer. Most companies try to maintain a stable profit rate for all fab 

technologies; therefore, on the average the business units have similar profit margins. At the end-

product level the profit rate may be different, but at the wafer level the average is quite similar. 

We also observed that individual orders could be accurately represented by a Normal 

distribution. Appealing to the central limit theorem, we further assume that the total demand is 

also normally distributed. 

 

A significant portion of the demand comes from a few major customers in the form of custom-

design chips unique to their products. Once a production run is completed for a customer, that 

particular batch of wafers cannot be used to satisfy demands for other customers. We model this 

case by a normally distributed demand with constant coefficient of variation γ. Therefore, the 

demand distribution takes the form ),|( iiii θθF γξ  where iθ is the mean and γ is the coefficient of 

variation of the demand distribution. As the expected volume of orders increases, so does the 

variance of the distribution. We assume that demand mean is privately known to each PM but the 

coefficient of variation is publicly known in the company. 

 

The demand distribution defined this way also satisfies the assumptions in Section 2.2. Under 

these assumptions the optimal allocation can be represented by a simple proportional allocation 

rule (Cachon and Lariviere, 1999b) defined by  

 

2,1  ),(min)(
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for any coefficient of variation γ.  When the PMs get capacity allocations in proportion to their 

expected demand, the company-wide total expected profits are achieved.  

 

Recall that the prior beliefs held by the participants about the type of PM i is characterized by 

distribution function )( ii θΦ  with support ],[ iii θθθ ∈ . We represent the belief function by the 

Beta distribution, which is well suited to describe a random process in the absence of relevant 

data (Law and Kelton, 1991). This is appropriate since the demand means at each tactical 

planning point is private information owned by the PMs, which is not readily extractable from 

historical data. However, historical or market research data can be used to determine the support 

of the belief function distribution. An important characteristic of semiconductor demand is that 

during a specific period of time, it could be going through a ramp-up, mature, or ramp-down 

phase depending on the stage of the product lifecycle and the market conditions. We use the 

skewness parameter in the Beta distribution to represent the expected demand patterns. A Beta 

density that is skewed right assigns higher probability to higher nominal demand values within 

its range, thus represents anticipation for demand ramp up. Conversely, a left skewed Beta 

density represents anticipation for demand ramp down. A Beta density with no skewness 

(Uniform distribution) can describe the beliefs for mature demand pattern with no noticeable 

ramps. This provides a straightforward setting to describe the beliefs of the participants in the 

capacity-allocation game. The data values used in this case study is listed in Table 2 below.  

 

Table 2. Data Used in the Example. 

Data Value Data Value 

r (unit profit) 50 
1θ (PM1 demand mean) [1000,2000] 

v (unit loss) 25 
2θ (PM2 demand mean) [1500,2500] 

b (capacity)   2550 )( 11 θΦ , )( 22 θΦ  

(Belief functions of PM 

i’s type) 

Beta(1,1): uniform – mature demand expected 

Beta(1,3): skewed right – ramp up expected 

Beta(3,1): skewed left – ramp down expected 

γ (cof of var) 0.05   
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The data generated in Table 2 is captures the key relationships we have observed at a 

semiconductor manufacturer. We set the capacity level such that at their lowest types, both PMs 

get the optimal allocation that solves their local problem (i.e. i  yy ii ∀= ,* ).  

 

In this numerical example, we compute the C1, C2 and B values under a variety of initial 

capacity-allocations and belief functions. The results are reported in Tables 3-5.  In the company, 

every PM gets at least 25% of the capacity as its initial share; therefore we covered initial 

allocations from 25% to 75% for both PMs. We used Maple version 6.0 to carry out the 

computations. In order to reduce computational requirements to match to our hardware 

capabilities, we discretized the beta distribution for the belief functions. We divided the support 

of the probability distribution into 10 equal intervals and took the middle point of the interval as 

the value of the random variable and the probability density of the interval as the probability. We 

conducted pilot runs to find the number of intervals so that the accuracy loss resulting from 

discretization is negligible. The Ci values are found by total enumeration over the discretized 

values of  iθ . 

 

First, we look at the uniformly distributed belief function case. As seen from Table 3 below, 

there are no initial allocation settings where q is nonnegative except the (0.75, 0.25) case. 

However, initial shares from (0.6, 0.4) through (0.75, 0.25) essentially falls into case (a.2) and 

(a.1) for PM 1 and 2, respectively, and are therefore unacceptable. In particular, at the initial 

share configuration of  (0.75, 0.25), PM 1 is allocated a capacity that is more than her optimal 

newsvendor solution ( )( ii θy ) for most of her possible types. Such initial configurations actually 

defeat the purpose of assigning an initial allocation. 

 

Another point Table 3 highlights is that q is very small compared to B. Therefore, a budget 

shortage actually leads to a negligible amount of extra bonuses to be paid to the PMs. 

Alternatively, the violation of individual rationality can be acceptably low. This situation can be 

explained by looking at the effect of increasing iθ  on the optimal total expected profit function 

z*(). As iθ increases, so does z*(). However, the rate of increase drops at a high rate at high values 
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of iθ as described by the derivative below (Cachon and Lariviere, (1999b) and by the envelope 

theorem): 
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This implies that z*() shows little sensitivity to iθ , and therefore the value of information in this 

example is relatively low. 

 

Next, we look at the effects of different belief functions as shown in Table 4 below. It is clear 

that coordination becomes easier as a higher level of demand mean is anticipated. A higher 

demand means an increase in the total system profits, which leads to an increase in the surrogate 

profit function for the PMs. Thus, they become more willing to participate to get the benefits 

from increasing total profits.  

Table 3.Computational results for uniformly distributed belief fn. (B=127457).  
(+,  - indicates the upper and lower support for the parameter respectively). 
 

x1,x2 min
2

min
1 ,θθ  C1, C2 C1+C2 q 

0.25,0.75 1050 -, 2450 + 95308, 31875 127183 -274

0.30,0.70 1050 -, 2450 + 88933, 38250 127183 -274

0.35,0.65 1050 -, 2150 82559, 44624 127184 -273

0.40,0.60 1150, 1750 76430, 50993 127424 -33

0.45,0.55 1350, 1550 - 70123, 57122 127245 -212

0.50,0.50 1650, 1550 - 63749, 63433 127183 -274

0.55,0.45 1950 +, 1550 - 57375, 69808 127183 -274

0.60,0.40 1950 +, 1550 - 51000, 76183 127183 -274

0.65,0.35 1950 +, 1550 - 44627, 82558 127186 -271

0.70,0.30 1950 +, 1550 - 38386, 88933 127319 -138

0.75,0.25 1950 +, 1550 - 33599, 95308 128907 1450

 

Especially with the ramp-up, case the q value, although negative, is negligibly small. Another 

observation is that the initial allocation value of (0.4, 0.6) induced the highest q under all of the 

belief functions. This happens to be very close to the optimal allocation that is based on the 
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expected value of belief functions: ])[],[(*
iii θEθEy − . The expected-value-based optimal 

allocations are (0.41, 0.59), (0.42, 0.58) and (0.43, 0.57) for ramp-down, mature, and ramp-up, 

respectively. It seems that a good rule of thumb is to set initial shares based on the expected 

value of beliefs. 

 

We also look at the initial shares that ensure individual rationality and budget balance as 

characterized by theorem 3. As shown in Table 5, the total allocation varies between 80- 90% of 

the total capacity. Similar to what we have observed before, as high demand levels are 

anticipated, the total that needs to be allocated decreases as the q value increases, hence the 

budget surplus. 
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Table 4. Comparison for different belief functions. 

x1,x2 q (Ramp-down) q (Mature) q (Ramp-up) 

0.25,0.75 -437 -274 -2

0.30,0.70 -437 -274 -2

0.35,0.65 -436 -273 -1

0.40,0.60 -17 -33 -1

0.45,0.55 -377 -212 -1

0.50,0.50 -437 -274 -2

0.55,0.45 -437 -274 -2

0.60,0.40 -437 -274 -2

0.65,0.35 -434 -271 1

0.70,0.30 -301 -138 134

0.75,0.25 1287 1450 1722

 

 

 Table 5. The initial capacity-allocation that satisfies conditions of Theorem 3. 

Belief  x1,x2 Total allocated q 

Ramp down 0.35, 0.55 0.90 11803 

Uniform 0.35, 0.55 0.90 12224 

Ramp up 0.30, 0.50 0.80 25486 

 

6. Conclusion 

We propose a capacity-allocation game motivated by the business environments of 

semiconductor manufacturing. We showed that, under the profit-only bonus structure popular in 

this industry, the incentives of the capacity-competing PMs are not properly aligned with the 

corporate interest. This is due to the private information that each PM holds regarding the 

demands for her business unit, and the initial capacity share that is assigned to PMs before 

demands realize.  The latter results from a common semiconductor practice known as supply-

demand planning or strategic capacity planning; we show that it leads to many unexpected 

consequences. 
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We develop a capacity-allocation mechanism with two-part tariff, where the side payment 

(executive bonus) is a function of the PMs’ reports about their private demand information. 

Under the proposed allocation mechanism, the PMs are induced to reveal their true demand 

information knowing that they must forego their initial allocations and that the system-optimum 

allocations will be implemented. The bonuses are paid after the profits in all business units are 

realized and observed. We investigate the situations when we can attain voluntary participation 

of the PMs and budget-balanced bonus payments by the HQ. Our results characterize the 

conditions under which these properties can be attained. Our main conclusion is that reducing the 

total initial assignment and keeping a fraction of the capacity for competition at the time of 

tactical planning is sufficient to balance the inefficiency due to the PMs’ asymmetric 

information. The example in our case study indicates that the initial assignment that supports a 

desirable coordination could be as high as 90% of the total capacity. 

 

In our analysis, we assume that the belief functions are common knowledge among the PMs and 

the HQ. Consequently, we also require that incentive compatibility and individual rationality 

hold in expectation. However, our assumptions may not hold true in some cases. For example, 

PMs who are operating in different markets may not hold a belief function regarding the demand 

of the others. In order to relax the common knowledge assumption we have to impose tighter 

restrictions on the incentive compatibility and individual rationality. Specifically, these 

conditions have to hold without regard to the type of the participating PMs. In this case, the 

analysis will differ in that the participation charges to the PMs will have to be less in order to 

accommodate the relaxed assumptions. Resolving this issue is reserved for future research.  
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APPENDIX 

 

Proof: Theorem 1. 

(T1.a) By definition of )(* θy in section 2.2. 

(T1.b) Consider the payments to the surrogate profit function under the mechanism <y*, t>.  

(i) Each PM receives the total realized profits. 

(ii) We define the total participation charge in expectation with regards to demand for PM i as 

follows. 

},0min{)],()()([
2
1),( ''*'''' qzBBBCh iiiiiiiiii −−−+−= −−−− θθθθθθ  

The expected participation charge with respect to the type of the other PMs is: 

''''' },0min{)]()([
2
1)],([ iiiiiiiiii HqBBBBChE

i
θθθθθθ ∀=−−−+−=−−

 

It is clear that the participation charge is lump sum in expectation with regards to the type of the 

other PMs. 

 

From (i) and (ii), <y*, t> is a Groves mechanism in expectation and by the equivalence theorem, 

<y*, t> is Bayesian incentive compatible (Makowski and Mezzetti 1994). 

 

(T1.c) The mechanism pays the realized profits to the respective business units plus the extra 

payments defined by t. We show that the total extra payments sum up to be less than or equal to 

zero. 
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Consider the right hand side of the equation above. If total expected pay, B, is larger than the 

total expected charge, (C1+C2+…Cn), then the third term on the right hand side deducts the 

difference from the total payments to the surrogate function and makes the equation evaluate to 

zero. On the other hand, if there is a surplus in the expected payments, then total payments 

evaluate to a negative value without any adjustment and the surplus is captured by the 

mechanism-designer in terms of less bonus payment. 

 

(T1.d) By participating in the capacity-allocation game, PM i is paid )( iiB θ in expectation with 

regards to the type of the other PMs. On the other hand, she gives up what her initial share would 

pay her, which is ),( iii x θΠ . The PMs are expected utility maximizers, therefore the payments 

are considered as expected values with regards to demand. Consequently, without knowing PM 

i‘s type, the HQ can at most charge a participation fee of Ci. The PM i expects to make at least Ci 

or more compared to not participating, at any realization of her type iθ . Consider the lump sum 

participation charge Hi defined in proof of (1.b). Hi equals Ci if and only if 0≥q , otherwise 

ii CH > and the interim individual rationality of PM i is violated. � 

 

Proof: Lemma 1. 

(L1.a) Consider 0>ix . 

(i) By the envelope theorem we have for every i, 
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By the assumptions we made regarding the demand distribution, it is clear that i∆ increases as 

iθ increases.  
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(ii) By the first mean value theorem for integrals, there exists ],[''
iii −−− ∈ θθθ  such that 

))(,()( ''*
iiiiii zB −−− −= θθθθθ  (e.g. see Trench 1978). Therefore, we can rewrite i∆ as, 
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According to the mean value theorem ''
i−θ may change value with respect to iθ . However, we 

know from (i) that i∆ is an increasing function of iθ . Therefore, i∆  increases regardless of the 

value of ''
i−θ . The term i∆ is negative as long as iii

*
i x),(y <−

''θθ , hence Ci is decreasing up to the 

iθ value until iii
*
i x),(y =−

''θθ where it evaluates to zero. Beyond that point, as iθ is increased 

iii
*
i x),(y >−

''θθ is satisfied. Consequently, i∆ always takes a positive value and Ci increases. 

 

Derivation of Ci values for cases (a.1) and (a.2) is straightforward. For case (a.3): by the mean 

value theorem for integrals we have,  
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(L1.b) Consider 0=ix . 

This is a special case of the previous case where the optimal allocation is always greater than 

initial share, which is zero. Therefore ii θθ =min and the second term in Ci evaluates to zero. � 

 

Proof: Theorem 2. 

Let ∑
=

−=
n

i
iizC

1

* )),()( θθθ , )()( * θθ zB = . From Lemma 1, Theorem 1 and independence of 

types we have, 
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If we can show that θθθ ∀≥   BC )()(  , then this implies that BnC
n

i
i )1(

1
−≥∑

=

. 

(i) At the lowest values of types θ  we have, 
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By the assumptions we made regarding the demand distribution function, 

 jiyy ninjjji ,),...,(),...,,,,...,( 21
*

1121
* ∀>+− θθθθθθθθθ . Therefore, we can conclude that at 

any ),...,( 21 nθθθ , )(θC increases at a higher rate than )(θB . With (i), this completes the proof. 
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Proof: Lemma 2  

(a)  if part: assume i  ii ∀= ,min θθ ; 

By Lemma 1(a)(3) i  ,xy iiii ∀=− ),( ''* θθ . Also by assumption A2, we have: by
n

i
iii =∑

=
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(b) The argument is same as (a) for the stated types. � 
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Proof: Theorem 3. 

By Theorem 1, Lemma 1 and independence of types we have, 
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By the assumptions we made regarding the demand distribution function, 

jiyy njniiij ,),...,(),...,,,,...,( 21
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* ∀>+− θθθθθθθθθ , therefore, at any ),...,( 21 nθθθ  the 

expression inside the integral of ∑
=

n

i
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1

is greater than the expression inside the integral of (n-1)B.  
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