
Unspecified Book Proceedings Series

Analysis of the Cut Locus via the Heat Kernel

Robert Neel and Daniel Stroock

Abstract. We study the Hessian of the logarithm of the heat kernel to see
what it says about the cut locus of a point. In particular, we show that the

cut locus is the set of points at which this Hessian diverges faster than t−1

as t ↘ 0. In addition, we relate the rate of divergence to the conjugacy and

other structural properties.

1. Introduction

Our purpose here is to present some recent research connecting behavior of
heat kernel to properties of the cut locus. The unpublished results mentioned
below constitute part of the first author’s thesis, where they will proved in detail.

To explain what sort of results we have in mind, let M be a compact, connected
Riemannian manifold of dimension n, and use pt(x, y) to denote the heat kernel for
the heat equation ∂tu = 1

2∆u. As a special case of a well-known result due to
Varadhan,

Et(x, y) ≡ −t log pt(x, y) → E(x, y) uniformly on M ×M as t↘ 0,

where E is the energy function, given in terms of the Riemannian distance by
E(x, y) = 1

2 dist(x, y)2. Thus, (x, y)  Et(x, y) can be considered to be a geomet-
rically natural mollification of (x, y) E(x, y). In particular, given a fixed x ∈M ,
we can hope to learn something about the cut locus Cut(x) of x by examining
derivatives of y  Et(x, y).

Before going further, we present an example which, although somewhat trivial,
may help explain what we have in mind. Namely, take M = S1 ≡ R/2πZ. In this
case, the heat kernel is a theta function

pt(0, θ) =
1√
2πt

∞∑
n=−∞

exp
[
− (θ + 2πn)2

2t

]
,

which is obtained by “wrapping” the heat kernel for R (i.e., the centered Gaussian
kernel with variance t) around S1. It is clear that, as t ↘ 0, for any m ≥ 0 and
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θ ∈ (−π, π):

∂m
θ Et ' −∂m

θ t log
(
e−

(θ+π)
2t + e−

(θ−π)
2t

)
= ∂m

θ t

(
θ2

2t
− log cosh

πθ

t

)
,

from which it follows that

lim
t↘0

∂m
θ Et(0, θ) = ∂m

θ

(π − |θ|)2

2
for θ ∈ (−π, π).

On the other hand,

lim
t↘0

∂θEt(0, θ)|θ=π = 0,

lim
t↘0

∂2
θEt(0, θ)

∣∣
θ=π

= −∞,

but
− lim

t↘0
t∂2

θEt(0, θ)
∣∣
θ=π

= π2,

and things get worse when m > 2.
The lessons to be learned from this example are
• The the behavior as t ↘ 0 of derivatives of Et undergo dramatic change

at the cut locus. For S1, this change is already evident in discontinuity
which the first derivative has there, and it becomes even more dramatic in
the second derivative, which goes from 1 when θ 6= 0 to −∞ when θ = 0.

• The rate at which the Hessian of Et(x, y) explodes when y ∈ Cut(x) can
be as high as t−1.

• The direction in which the Hessian explodes is toward −∞. In the case of
S1, the intuitive explanation for this is easy: there are no strictly convex
functions on a compact manifold and the Hessian of E(0, ·) is 1 except at
π. Hence, for S1, all the “concavity” of E(0, ·) must live at π.

That the behavior of Et for S1 is somewhat typical was proved in [3]. Namely,
the following result was proved there.

Theorem 1. 1 Given M and some fixed x as above,

lim
t↘0

∇2Et(x, y) = ∇2E(x, y)

uniformly for y in compact subsets of M\Cut(x). In addition, when y ∈ Cut(x)
and there are multiple minimal geodesics from x to y, then, if the initial velocities of
these geodesics have a sufficiently nice structure (e.g., if they form a submanifold
of the tangent space to x), then there is a (strictly) positive definite, symmetric
2-tensor A to which t∇2Et(x, y) converges as t↘ 0.

Some aspects of Theorem 1 are quite general. For example, if we think about
the Hessian ∇2E(x, ·) of E as a distribution (in the sense of Laurent Schwartz),
then it is relatively easy to show that its singular support is contained in Cut(x) and
that, as a distribution, ∇2E(x, ·) can (cf. [6]) be estimated from above in terms
of the uniform lower bound on the sectional curvature. Alternatively, the key
ingredient in the proof of Theorem 1 is the use of pathspace integration to express

1An extension of this result to higher derivatives was given in [7], where it was shown that,

at the cut locus, the mth order of Et may explode as fast as t−
m
2 .
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∇2Et(x, y) as the sum of two terms, one of which stays bounded as t ↘ 0 and
the other of which is −t−1 times the variance of a random variable. Because when
y /∈ Cut(x) there is only one minimal geodesic and the first variation around this
unique minimal geodesic is non-degenerate, an application of Laplace asymptotics
to the pathspace integral allows one to show that the distribution of this random
variable degenerates fast enough as t↘ 0 to kill off the variance term. On the other
hand, when y ∈ Cut(x) for the reason that there are multiple minimal geodesics,
there can be residual variance, and this is what accounts for the final statement in
Theorem 1.2

Unfortunately, the method employed in [3] is too cumbersome to encourage any
attempt to extend it to more delicate situations or obtain more detailed information.
For this reason, it seems wise to attempt seek alternative approaches. Perhaps
the most geometrically natural alternative would be to see if one can mimic the
computation in the preceding example writing M as the quotient of Rn by some
sufficiently nice group of transformations. For example, it is not hard to analyze
the flat torus in the same way as we did circle. More generally, one might hope to
get something out of writing M as the quotient of its universal cover by the group
of deck transformations. In particular, if M has non-positive sectional curvature,
then the Cartan–Hadamard Theorem says that its universal cover will have no cut
locus, and so everything should come down to an analysis of the way the deck
transformations act on the heat kernel on the universal cover. However, except in
very special case, like S1, such an analysis appears to be very difficult. Even worse,
when M can have positive curvature, the structure of geodesics on the universal
cover may not be essentially simpler than it is on M itself.

2. Another Approach

For the reasons alluded to toward the end of the preceding section, we will now
discuss another, and enormously simpler, way to think about the sort of analysis
on which Theorem 1 rests. Namely, it has been realized for some time (cf., for
example, Pinsky [4]) that more precise asymptotics for pt(x, y) with y ∈ Cut(x)
can be obtained by the following method, which we sketch here. By the Chapman–
Kolmogorov equation, we can write pt(x, y) as the integral of p t

2
(x, ·)p t

2
(·, y) over

M . Loosely speaking, as t↘ 0,

p t
2
(x, z)p t

2
(z, y) ' 1√

V (x, t
2 )V (y, t

2 )
exp

(
−hx,y(z)

2t

)
,

where hx,y(z) ≡ E(x, z) + E(z, y) is the hinged energy function and V (p, r) de-
notes the volume of the ball of radius r centered at p. In particular, a naive
Laplace asymptotic argument indicates the integral should be getting more and
more concentrated on the set Γ of z’s where hx,y(z) achieves its minimum value.
Equivalently, Γ = {z : hx,y(z) = E(x, y)} and, as such, is the set of mid-points of
minimal geodesics running from x to y. Thus, because Γ is a uniformly positive
distance from both Cut(x) and Cut(y), one can apply the Pleijel expansion to each
of the factors p t

2
(x, ·) and p t

2
(·, y). The result is an expression for the asymptotics

2In the extension in [7], the coefficient of t−
m
2 can be interpreted as the mth cumulant of

the random variable whose variance appears in this discussion.
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of pt(x, y) in terms of a Laplace integral of the asymptotics of the heat kernel near
Γ, which is valid whether or not y ∈ Cut(x).

Using more recent results on the heat kernel, including Theorem 1 and the
estimates in [8], it is possible to employ this method to study logarithmic derivatives
of the heat kernel. In order to give a precise statement of what the method says
when applied to the Hessian of Et(x, ·) at Cut(x), we need to introduce a little
notation. We have already introduced Γ, the set of midpoints of minimal geodesics
from x to y, and the hinged energy function hx,y(z) = E(x, z) + E(z, y). As we
said, Γ is precisely the place where z  hx,y(z) achieves its minimum value E(x, y)
Now let Γε be an ε-neighborhood of Γ, where we implicitly think of ε > 0 as being
strictly smaller than 1

2 dist(x, y). Further, given z ∈ M\Cut(x), there is a unique
Z ∈ TxM such that s ∈ [0, 1] 7−→ expx(sZ) is the minimal geodesic from x to
z, and we will use H(x, z) to denote the Jacobian of expx at Z. For fixed x,
z ∈M \ Cut(x) 7−→ H(x, z) ∈ R is a smooth function on M\Cut(x).

Theorem 2. Let M be a smooth, compact, connected Riemannian manifold.
Choose any two distinct points x and y on M any A ∈ TyM . Then there exists a
positive constant ε such that Γε is a strictly positive distance from {x, y}∪Cut(x)∪
Cut(y) and

∇2
A,AEt(x, y) = −4

t

{∫
Γε

(∇AE(z, y))2 exp
[
− 2

thx,y(z)
]
H(x, z)H(y, z) dz∫

Γε
exp

[
− 2

thx,y(z)
]
H(x, z)H(y, z) dz

−

[∫
Γε
∇AE(z, y) exp

[
− 2

thx,y(z)
]
H(x, z)H(y, z) dz∫

Γε
exp

[
− 2

thx,y(z)
]
H(x, z)H(y, z) dz

]2
+O(1),

where ∇AE(z, y) stands for differentiation in the second variable, evaluated at y.

In many ways, the formula in Theorem 2 is an exact replica of the formula on
which Theorem 1 was based. Indeed, here, like there, the coefficient of −t−1 is a
variance. In addition, as was the case there, all the integrals in this formula lend
themselves to analysis via Laplace asymptotics as t ↘ 0. The difference is that
here Laplace asymptotics is for finite dimensional integrals, whereas there it was
for integrals in pathspace. Thus, everything should be simpler here. On the other
hand, even though we are now working in finite dimensions, the asymptotics can
be far from trivial. Indeed, the set Γ onto which the integral is being forced to
collapse can be very complicated and ugly!

3. Preliminary Conclusions

We begin our discussion of Theorem 2 by making it explicit that the coefficient
of −t−1 is a variance. For this purpose, set

(1)
µt(dz) =

1Γε(z)
Zt

H(x, z)H(y, z) exp
(
−2hx,y(z)

t

)
dz

where Zt =
∫

Γε

H(x, z)H(y, z) exp
(
−2hx,y(z)

t

)
dz.

Clearly, the coefficient of −t−1 is the variance Varµt(∇AE(·, y)) of ∇AE(·, y)
with respect to µt. Moreover, because Γε is compact, we know that {µt : t > 0}
is relatively compact in the weak topology, and it is clear that the set L0 of limit
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points as t ↘ 0 consists of probability measures which are supported on Γ. In
particular, if µ ∈ L0 comes from ti ↘ 0, then we have that

lim
i→∞

ti∇2
A,AEti

(x, y) = −4 Varµ [∇AE(·, y)] .

In order to get a more explicit expression for ∇AE(z, y), let z ∈ Γ be given and take
Y (z) be the (unique) unit vector at y such that expy [dist(z, y)Y (z)] = z. Then we
know that

∇AE(z, y) = −1
2

dist(x, y) 〈A, Y (z)〉 .

Finally, use θA(z) to denote the angle between A and Y (z). Then, for any A ∈ TyM ,
we have

(2) lim
i→∞

ti∇2
A,AEti

(x, y) = −|A|2 dist(x, y)2 Varµ [cos θA(z)] .

Remark: We digress here in order to expand on the connections between the
approach which we are taking here and the one taken in [3]. In [3], the integrals were
taken with respect to Brownian paths on M which start at x and are conditioned
to arrive at y at time 1. Using the intuition which comes from the Feynman picture
(cf. [5]) of Brownian integrals as being Gaussian integrals in which the weight is
given by3

exp
(
−1

2

∫ 1

0

|ẇ(t)|2 dt
)
,

the heuristic expression for the heat kernel is

pt(x, y) =
1

Z(t)

∫
w(0)=x & w(1)=y

exp
(
− 1

2t

∫ 1

0

|ẇ(t)|2 dt
)
dw,

where the “dw” is supposed to indicate that the integral is taken with respect to
the (non-existent) Lebesgue measure on pathspace and the constant out in front
is a (equally non-existent) normalizing factor. Fanciful as this expression may be,
it strongly indicates that, as t ↘ 0, the overwhelming contribution to the integral
will come from those paths w for whose energy is nearly minimal, and, in the limit,
one should expect that the integral will be over minimal geodesics. Of course, this
is exactly what (2) says. Namely, because Γ parameterizes the minimal geodesics
from x to y, the measure µ can be thought of as a probability measure on the space
of these minimal geodesics and the function cos θA can be thought of a function
there.

Some simple facts about the log Hessian follow immediately from equation (2).
In the first place, if we homothetically scale M by a factor of a > 0,

lim
i→∞

ti∇2
A,AEti(x, y)

is multiplied by a2. Secondly, we have the inequality

0 ≥ lim sup
t↘0

t∇2
A,AEt(x, y) ≥ lim inf

t↘0
t∇2

A,AEt(x, y) ≥ −|A|2 dist(x, y)2.

Before looking more closely at hx,y and its accompanying Laplace asymptotics,
we take a moment to compute a specific example. Earlier, we observed that our
explicit computation for S1 would not extend to higher dimensional spheres. Using

3The use of w to denote a generic path is in honor of Wiener.
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Theorem 2, however, we can easily compute the leading term of the log Hessian
of the heat kernel on the spheres. Choose any point x ∈ Sn (here n can be any
integer greater than or equal to 2). Then Cut(x) consists of a single point, namely,
the antipodal point to x. Thus, we may as well let x and y be the north and south
pole, respectively, which we will denote N and S. In this case, Γ is the equatorial
sphere Sn−1. Further, by symmetry we see that µt converges to uniform probability
measure on the equatorial sphere (with respect to the induced volume measure).
Next, let A be any unit vector in TySn (it doesn’t matter which one, again by
symmetry). The equatorial sphere decomposes nicely into level sets of θA(z). In
particular, the level set for a given θ is Sn−2(sin θ).4

Given the preceding, we can compute the relevant integrals. If we let ωm denote
the volume of the unit sphere of dimension m, we then have that

Eµ
[
cos2 θA(z)

]
=

1
ωn−1

∫ π

θ=0

(π
2

cos θ
)2

(sin θ)n−2ωn−2 dθ

and

Eµ [cos θA(z)]2 =
(
ωn−2

ωn−1

)2
π2

4

(∫ π

θ=0

cos θ(sin θ)n−2 dθ

)2

.

The expectation-squared term vanishes because cos θ is anti-symmetric about π/2
while sin θ is symmetric, and thus the relevant integral vanishes. Plugging this in
gives

lim
t↘0

t
[
∇2

A,AEt(N,S)
]

= −
ωn−2π

2
∫ π

θ=0
(cos θ)2(sin θ)n−2 dθ

ωn−1

= −
ωn−2π

2
∫ π

θ=0
(cos θ)2(sin θ)n−2 dθ∫ π

θ=0
ωn−2(sin θ)n−2 dθ

= −π
2

n
,

where this last quotient of integrals can be evaluated using integration by parts.
Thus, for any n ≥ 1, we have now shown that ∇2

A,AEt(N,S) ∼ −π2

nt |A|
2 as t ↘ 0

for any A ∈ TSM .

4. Degenerate Minima and Conjugacy

In general it will not be so easy to determine the limiting measure, or measures,
µ ∈ L0. Even when the set Γ is rather simple (e.g., a finite set of points), one
needs information about the nature of the minima which hx,y has on Γ in order to
understand L0. That is, are some or all of the minima degenerate and, if they are,
how degenerate are they?

Before getting into a discussion of how degeneracy manifests itself in the asymp-
totics of ∇2Et, we take a moment to give, in terms of more familiar geometric
quantities, an interpretation of what it means for hx,y to have a degenerate or
non-degenerate minimum at a point z ∈ Γ. Namely, we want to show that the
degeneracy of hx,y at z ∈ Γ gives precise information about the conjugacy of the
minimal geodesic from x to y which runs through z. That something of this sort
ought to be true is clear. To wit, the most extreme degeneracy of hx,y occurs when
z is one of a whole submanifold M ′ ⊆ Γ having dimension n′ ≥ 1, as will be the

4By Sn(a) we mean the standard n-dimensional sphere scaled by a factor of a, that is, Sn(a)
is the set of points a distance a from the origin in Rn+1.
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case when M = Sn for some n ≥ 2. Because, in this case, the exponential map will
be constant as one moves away from z in any direction A ∈ TzM

′, the geodesic
through z will certainly be conjugate. A less extreme case occurs when z is an
isolated point of Γ (equivalently, an isolated minimum of hx,y). If we think about
how hx,y behaves as one moves away from z in some direction, then high order van-
ishing of hx,y in that direction should indicate the presence of nearby points which
are “almost” the midpoints of minimal geodesics from x to y. In other words, we
should expect that in this case the minimal geodesic through z is conjugate, al-
though now the conjugacy will usually be a consequence of finite order degeneracy
of the exponential map.

To make the preceding precise, given a smooth, real-valued function f which
is defined in a neighborhood of the origin in RN , we will say f is constant to
exactly order m at the origin in the direction ξ ∈ SN−1 if (∂t)if(tξ)

∣∣
t=0

is zero for
1 ≤ i < m but is non-zero for i = m. Now, let γ be a minimal geodesic connecting
a point x and y in M , and take (r, θ1, . . . , θn−1) to be the polar coordinate system
on TxM such that γ(r) = expx(r, 0, . . . , 0) for r ∈ [0,dist(x, y)]. We then say that
γ is conjugate to exactly order m in the direction ξ ∈ Sn−2 if θ  expx(r, θ) is
constant to exactly order m in the direction ξ. Notice that this terminology has the
annoying feature that geodesics which are conjugate of order 1 are not conjugate
in the usual sense!

We can now make a precise statement about the relationship between the de-
generacy of hx,y and conjugacy of geodesics.

Lemma 3. Choose distinct points x and y on M . Let (r, θ1, . . . , θn−1) and γ be
as above. Then hx,y vanishes to exactly order 2m at (dist(x, y)/2, 0, . . . , 0) in the
direction ξ if and only if γ is conjugate to exactly order 2m− 1 in that direction.

Thus if z ∈ Γ, then z is a non-degenerate minimum of hx,y (i.e., hx,y vanishes
to exact order 2 in all directions) if and only if x and y are not conjugate along
the minimal geodesic γ passing through z. On the other hand, if z is a degenerate
minimum, then x and y are conjugate, and furthermore, the index and orders of
conjugacy can be determined from information about which partial derivatives of
hx,y are zero.

5. More Refined Laplace Asymptotics when Γ is Discrete

Having related the degeneracy properties hx,y to geodesic geometry, we now
return to the problem of understanding the set L0 of limits, as t ↘ 0, of (cf.
equation (1)) {µt : t > 0}, and we begin by considering the case when Γ consists
of finitely many points, say z1, . . . , zm. Obviously, by taking ε small, we can write
the integrals with respect to the µt’s as a sum of integrals over neighborhoods of
the individual zi’s. Thus, we can study the asymptotics around each zi separately.

In order to understand what is happening to µt near zi as t ↘ 0, we must
understand the structure of the Laplace asymptotics of integrals of the form

(3) e−2hx,y(zi)/t

∫
Bε(zi)

ϕ(z)e−g(z)/t dz

as t ↘ 0, where g(z) ≡ 2hx,y(z) − 2hx,y(zi) and ϕ is a smooth function. By
assumption, g is non-negative and has a unique zero at zi. Laplace determined the
first term of the asymptotic expansion of this integral in the case when the region
of integration is one-dimensional and where g has a non-degenerate minimum (that
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is, g′′(zi) > 0). In order to see what happens in n-dimensions, we first suppose
that g can be diagonalized, in the sense that we can find coordinates (u1, . . . , un)
around zi so that

(4) g(u1, . . . , un) =
n∑

j=1

u
2kj

k

for some positive integers k1 ≤ · · · ≤ kn. Of course, at a non-degenerate minimum,
the Morse Lemma guarantees the existence of such coordinates with kj = 1 for each
j. However, as we will discuss further below, in general diagonalizability represents
a serious problem. Be that as it may, when g can be diagonalized at zi, results
of Estrada and Kanwal [2] allow us to give a complete expansion of (3). For the
present, we will content ourselves with the first term. Namely,

(5)
∫

Bε(zi)

ϕ(z)e−g(z)/t dz = t1/2k1+···+1/2kn

[
c volu(zi)ϕ(zi) +O

(
t1/kn

)]
where volu is the volume element in the u coordinate chart and c is a constant
which depends only on n and the kj ’s.

From (5), we see that a geodesic which is conjugate in many directions and/or to
high order contributes more to the integral over Γε than a “less conjugate” geodesic.
In particular, suppose that g can be diagonalized around each of its minima and
that zi has associated to it the order of its leading term, li = 1/2k1,i + · · ·+1/2kn,i.
Then we see that, as t↘ 0, µt converges to a limit µ which is supported on those
zi with li = min{l1, . . . , lm} and furthermore, the density at these points is given
by the coefficient of the leading term of the expansion coming from (5), normalized
to have total mass one. Therefore, not only does the limit exist, but we know we
know what it is.

In more general situations, g may not be diagonalizable around some of the
zi. Nonetheless, in a series of papers (for example [9]) which culminate in the
monograph [1], Arnold and his school have provided a fairly complete analysis of
the asymptotic expansion of equation (3) . We give a very brief summary of the
most relevant results. First, we need5 to assume that g vanishes to finite order
at z1. This presents no problem if we work in the analytic category, but in the
smooth category it need not be the case. Given that g vanishes to finite order at
zi, there exists a resolution of singularities (in the sense of Hironaka) from which
one can determine the behavior of the leading term of the expansion around zi. In
particular, there exists a positive rational number αi, an integer pi ∈ {0, . . . , n−1},
and a positive real number ci such that∫

Bε(zi)

ϕ(z)e−g(z)/t dz = ciϕ(zi)tαi | log t|pi +O
(
tαi | log t|pi−1

)
.

Further, for generic g, αi and pi can be determined simply by looking at the Newton
polytope, which is a finite combinatorial object depending only on finitely many
terms in the Taylor expansion of g, associated to g. Thus, at least in principle, if
we assume that g vanishes to finite order at each of the zi, we can associate to each
zi its leading term, and µt will converge to a limit µ supported on those zi with
dominant leading term.

5In fact, we know of no general results for the infinite order of vanishing case.
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6. Laplace Asymptotics when Γ is not Discrete

So far we’ve restricted our attention to cases in which Γ is composed of a finite
number of points. Obviously, this will not always be true. In general, Γ can be quite
complex, and we are very far from a result which covers all possibilities. Nonethe-
less, we will now discuss one fairly broad situation. Namely, suppose that Γ can be
decomposed as a finite collection of isolated, smooth submanifolds (possibly with
boundary) N1, . . . , Nm of M . Then the integral over Γε can be decomposed accord-
ingly into integrals over the ε-neighborhood (Ni)ε of the individual Ni. Further, by
Fubini’s Theorem, the integral over (Ni)ε can be written as an iterated integral in
which the horizontal and normal directions to Ni are segregated. But this means
that, for each z ∈ Ni, we can, when it applies, use the analysis just discussed. In
particular, if we assume that, for each Ni, the asymptotics of the integral in the
normal direction has the same order li at all points, then, just as before, µt will
converge to a measure µ which is supported on the union of those Ni’s for which li
is minimal. In fact, on each such Ni, µ will be absolutely continuous with respect
to the induced Riemann measure on Ni.

7. A Cautionary Example and a Positive Result

In the preceding two sections, we dealt with relatively nice situations in which
Γ was given by isolated smooth submanifolds. Here we construct an example which
shows that this need not be the case.

Our example involves S2 with a metric somewhat deformed from the standard
one. To be precise, start with the standard S2, the one which is embedded in R3

as the set of points of distance one from the origin, and let x be the north pole
and y the south pole. Next, parameterize the equator by θ ∈ [−π, π). With the
aid of C∞ bump functions, we can increase the radius in a neighborhood of some
sections of the equator so that, after this deformation, Γ = {0} ∪ {2−mπ : m ≥ 1}.
Further we can achieve this in such a way that hx,y has a non-degenerate minimum
at 2−mπ for each m ≥ 1. On the other hand, it is clear that hx,y will have to vanish
to infinite order at 0.

Obviously, we are well outside the situations considered here-to-fore, and the
methods developed above do not apply. Nonetheless, we can argue as follows. Pick
any point θ = π/2−m for some m ≥ 1, and choose an open set U ∩ Γ = {θ}. When
we apply Laplace asymptotics to the integral over U , we see that∫

U

e−
hx,y(z)

t dz ∼ t−1e−t−1dc1 volu(θ),

where d is half the distance from x to y and c1 is the constant which appeared
earlier. After applying this line of reasoning to each 2−mπ, we conclude that

lim sup
t↘0

µt(U) ≤
det
(
∇2hx,y(2−mπ)

)∑∞
`=1 det

(
∇2hx,y(2−`π)

) = 0,

since the denominator is infinite. But this means that, as t ↘ 0, µt converges to
the unit point mass at the point on the equator corresponding to θ = 0.

Here, even though Γ had an accumulation point at which hx,y vanished to
infinite order, we were still able to determine the limiting behavior of µt. One
could easily imagine extending the above construction to produce more pathological
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examples where determining the limiting behavior of µt would be quite difficult, if
it could be done at all.

In addition, this example demonstrates that multiplicity of minimal geodesics is
no guarantee that µ is not a point mass. In terms of the asymptotics of ∇2Et(x, y),
L0 contains some µ other than a point mass precisely when

lim sup
t↘0

t∇2
A,AEt(x, y) < 0 for some A ∈ TyM.

Thus, it is clear that the −t−1 term in the asymptotics of ∇2
A,AEt(x, y) is not

sufficient to determine when y ∈ Cut(x). Nonetheless we have the following positive
result about the relationship between Cut(x) and the asymptotics of ∇2Et(x, y).

Theorem 4. With the same notation as before, we have that y 6∈ Cut(x) if and
only if

lim
t↘0

∇2Et(x, y) = ∇2E(x, y)

and y ∈ Cut(x) if and only if

lim sup
t↘0

‖∇2Et(x, y)‖op = ∞,

where ‖ · ‖op is the operator norm.

In general, the qualitative result of Theorem 4 is the most we can say about
the leading order of ∇2Et for y ∈ Cut(x). However, in the special case where Γ
contains only one point, say z1, around which g is diagonalizable (in particular, we
assume equation (4) holds), we can give more detail. Using the further terms in
the expansion (5), one can show that, in this case, ∇2

A,AEt(x, y) ∼ −Q(A)t1/kn−1

where Q(A) is a symmetric, non-negative definite quadratic form on TyM . Further,
let Q⊥ be the restriction of Q to the n− 1 dimensional subspace perpendicular to
γ, where γ is the unique minimal geodesic between x and y, and let d be the
dimension of the kernel of Q⊥. Then the number of i for which ki = kn is given by
n− 1− d. In other words, the leading order tells us the highest order of conjugacy
of γ, and knowing the leading coefficient as a function of the vector A tells us the
number of (independent) directions in which this maximum order of conjugacy is
achieved. First, this case shows that every rational of the form −(m− 1)/m for a
positive integer m can be achieved as the leading order of the expansion of ∇2Et.
Second, it indicates that coefficients in the expansion other than that of t−1 may
have geometric significance. Unfortunately, these coefficients are hard to compute
in general, and at the moment we know nothing more about them.

8. Mollification of the Energy Function

So far, we’ve been concerned with understanding the asymptotics of the log
Hessian of the heat kernel for fixed points x and y. However, Theorem 2 can also
be used to investigate the distributional Hessian of E(x, y), where we think of x as a
fixed base point and y as varying over M . A result of Stroock [6] implies that, in the
compact case with which we are concerned, ∇2E(x, y), thought of as a distribution,
is bounded above by a non-negative constant. It follows that the singular part can
be at worst a negative measure, which for fixed base point x and smooth vector
field A we denote by νx,A. It is this measure which we will now investigate. From
Varadhan’s result, we know that t log pt(x, y) gives a smooth mollifier of −E(x, y)
as t↘ 0. Thus, computing the (distributional) limit of −t∇2

A,A log pt(x, y) as t↘ 0
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gives the distribution ∇2
A,AE(x, y). With this in mind, we turn our attention to

studying this limit.
We know that in a neighborhood of a point y not in Cut(x), the distribution

∇2
A,AE(x, y) is just a smooth function, and Theorem 1 tells us that our mollifier

converges to this limit pointwise. In particular, the singular support of ∇2
A,AE(x, y)

is contained in Cut(x). Looking at Theorem 2, we see that any terms not coming
from the variance are O(t) and thus don’t contribute to the singular part νx,A.
More concretely, let ϕ be a smooth function with support in an ε-neighborhood of
Cut(x). Then we have

〈ϕ, νx,A〉 = − lim
ε↘0

lim
t↘0

∫
Bε(Cut(x))

ϕ(y)
4
t

Varµt,y (∇AE(·, y)) dy

where µt,y is the measure µt defined by equation (1) corresponding to the point y,
with a slight modification. Namely, we need to enlarge the set Γ corresponding to
a given y to include not only the midpoints of minimal geodesics to y, but also the
midpoints of minimal geodesics from x to any point in a small neighborhood of y
(this is so that the error term in Theorem 2 is bounded uniformly as y approaches
Cut(x)). We know the limit on the right exists precisely because, by the general
theory of distributions, it must be equal to the quantity on the left.

Next, we will lift all of our considerations to the tangent space to M at x. First
we recall that Cut(x) has measure zero, and thus we can ignore it in the preceding
integral. Next, observe that M \ Cut(x) is contained in a single coordinate patch.
Namely, let (r, θ) be (normal) polar coordinates around x, and let d(θ) be the
distance to the cut locus along the geodesic corresponding to θ. Let Ux = {(r, θ) :
θ ∈ Sn−1, r ∈ (d(θ)− ε, d(θ))}. Then the exponential map gives a diffeomorphism
from Ux to M \ Cut(x). We have that

〈ϕ, νx,A〉 =

− lim
ε↘0

lim
t↘0

∫
Sn−1

[∫ d(θ)

d(θ)−ε

ϕ(r, θ)
4
t

Varµt,(r,θ)(∇AE(·, (r, θ))) vol(r, θ) dr

]
dθ.

(6)

Note that (d(θ), θ) = ∂U parameterizes the preimage of Cut(x) in the tangent space
to x (which is commonly called the tangential cut locus). We can thus identify Sn−1

with ∂U using polar coordinates, and then identify Sn−1 with the set of minimal
geodesics from x to points in Cut(x) (and also, for that matter, with the union
of Γx,y over all y ∈ Cut(x)). It is this identification of Sn−1 with the minimal
geodesics from x to Cut(x) which we will have in mind when, for example, stating
that some θ ∈ Sn−1 corresponds to a conjugate geodesic.

If we look at the integral in equation (6), we see that the central issue is the
fact that, while Varµt,(r,θ)(∇AE(·, (r, θ))) converges pointwise at any given r in the
region of integration, this convergence is not uniform as r ↗ d(θ). Thus one must
be able to estimate the variance as a function of t and r in such a way that one
can first integrate with respect to r and only then let t ↘ 0. Here we will say
only that this can be done, the central observation being that the the contribution
to the variance from nearby geodesics is determined by the Jacobi fields along the
geodesic corresponding to θ, as is the volume form. Carrying these ideas through
allows one to prove the a pair of theorems about the singular part of ∇2

A,AE(x, y).
First, one can show that, in a sense, lifting our concerns to the tangent space

is the right thing to do. A priori, the right-hand side of equation (6) only makes
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sense for functions ϕ on the tangent space which are lifts of smooth functions on
M . However, one can show that the relevant limits exist for almost every θ. In
fact, we have the following theorem.

Theorem 5. Let M be a smooth, compact Riemannian manifold and let x be
any point in M . Let A be any smooth vector field on M . Choose (normal) polar
coordinates on TxM and define Ux as above. Then the right-hand side of equation 6
defines a negative measure on ∂U , which is absolutely continuous with respect to
the measure dθ on ∂U obtained by identifying it with Sn−1 via polar coordinates.
Denote the corresponding Radon-Nikodym derivative by ρ(θ); then ρ(θ) is bounded.
Thought of as a distribution on M , ∇2

A,AE(x, y)) has as its singular part a negative
measure νx,A supported on Cut(x), and further, νx,A is given by the pushforward
of ρ(θ) dθ under the exponential map.

On M , there need not be any natural reference measure with which to compare
νx,A. Theorem 5 tells us that, on the tangent plane, there is such a natural reference
measure, namely the measure induced by identifying the set of directions around x
with Sn−1.

This leads us to wonder what we can say about ρ(θ). We have the following
result, which will require us to introduce a little notation. Let C ⊂ Sn−1 be the
set of all θ which correspond to conjugate geodesics. Next, say that the geodesics
corresponding to θ and θ̃ are associated if they lead to the same point in Cut(x)
(that is, if d(θ) = d(θ̃) and (d(θ), θ) and (d(θ̃), θ̃) are mapped to the same point
under expx). Let P ⊂ Sn−1 be the set of θ ∈ Sn−1\C to which there is associated to
precisely one other θ̃ ∈ Sn−1 and such that θ̃ 6∈ C. Finally, let R = Sn−1 \ (C ∪ P )
(so R consists of non-conjugate θ which are associated to more than one other
geodesic or which are associated to a conjugate geodesic). The three sets C, P and
R are disjoint and partition Sn−1.

Theorem 6. Let the hypotheses be as in Theorem 5. If θ ∈ C, then ρ(θ) = 0.
Also, R has measure zero as a subset of Sn−1 with respect to dθ, and ρ is continuous
except possibly at points of R.

In addition, we can give an explicit expression for ρ on P , although this requires
introducing more notation. Let θ be in P , and let θ̃ be the (one) associated geodesic.
Let y be their common endpoint. Also, let z be the midpoint of the geodesic
corresponding to θ. We know that hx,y has non-degenerate Hessian at z; let B
denote this Hessian. Let z̃ and B̃ be the corresponding objects associated to θ̃.
Next, let Ay ∈ TyM be the value of the vector field A at y. Then let ψ be the
angle between the geodesic given by θ and Ay, ψ̃ be the angle between the geodesic
corresponding to θ̃ and Ay, and ϕ the angle between the geodesics θ and θ̃. Finally,
recall that H(x, z) is the Jacobian of expx at the vector Z corresponding to z. Then

ρ(θ) = dist(x, y)|Ay|2
(
cosψ − cos ψ̃

)2

vol(d(θ), θ)

×

[
(1− cosϕ)

(
1 +

H(x, z)H(y, z)
√

det B̃
H(x, z̃)H(y, z̃)

√
detB

)]−1

.

Note that the volume element, all of the functions H(·, ·) appearing above, and
both B and B̃ can be computed from the Jacobi fields along the geodesics given by
θ and θ̃.
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There are a few things for us to observe in regard to Theorem 6. First of all,
conjugate geodesics do not contribute to the singular part of the distribution. From
the point of view of characterizing the cut locus, this means that simply looking at
the singular part of ∇2E(x, y) is insufficient, in contrast to the pointwise limits of
Theorem 4. On the other hand, in terms of understanding ∇2E(x, y), this says that
its singular part is not too bad, in some sense. While the cut locus itself can be
quite complicated (for example, it may not be triangulable), the only contributions
to the singular part come from points in P , which on M are places where locally
the cut locus looks like a smooth hypersurface and the singular part of ∇2E(x, y)
is just given by the jump discontinuity of ∇E(x, y) across this hypersurface. We
should point out, however, that even though there may not by any singular part of
∇2E(x, y) in a neighborhood of a conjugate point, in general one expects ∇2E(x, y)
to be unbounded near a conjugate point. Finally, note that, for a given x, ∇2E(x, y)
has no singular part if and only if Cut(x) and the first conjugate locus of x coincide.
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