
Comparison of clustering strategies for the functional
quantization of random functions

Graziano Fiorilloa, Vasileios Christoua, Amirali Shojaeiana,
Paolo Bocchinia, Javier Bucetab and Manuel J. Mirandac

aATLSS Engineering Research Center, Department of Civil and Environmental Engineering, Lehigh University
bDepartment of Chemical and Biomolecular Engineering, Bioengineering Program, Lehigh University

cDepartment of Engineering, Hofstra University

Abstract: The accuracy of the output quantities of stochastic problems in en-
gineering requires the use of random input that correctly represents the en-
tire sample space of the input quantities. For example, studies involving in-
frastructure reliability assessment, risk estimation, and community resilience
require an accurate description of the regional hazard, which through the use
of simulation-based techniques could be quantified by realizations of a two-
dimensional ground motion intensity measure field. The selection of a few such
realizations could be made with a technique called Functional Quantization by
Infinite Dimensional Centroidal Voronoi Tesselation (FQ-IDCVT). This is a
technique for the optimal selection (in the mean-square sense) of a predefined
number of samples of a random function with their associated weights. Although,
previous applications of FQ-IDCVT demonstrate that the technique works par-
ticularly well with different types of random fields (Gaussian / non-Gaussian,
homogeneous / non-homogenenous), the computational cost often becomes an
issue when multi-dimensional fields are at hand, because it scales linearly with
the size of the domain and the resolution that is used. To address the issue of the
escalating computational cost, in this paper the implementation of several accel-
erated clustering techniques is investigated. A quality check for each algorithm
is performed by comparing the accuracy and efficiency of each methodology
against a benchmark.

1 Introduction
In almost twenty years, the interest of researchers for uncertainty quantification and number of
scientific articles about probabilistic analysis grew substantially. This increased use of stochas-
tic models in science and engineering is mainly due to the increased computational capability
of modern electronic devices. However, these technological improvements are not yet sufficient
to make probabilistic models the standard of practical engineering applications and, therefore, a
considerable amount of research in improving the efficiency of stochastic computational meth-
ods is still necessary.
When a probabilistic simulation-based approach is adopted, several applications in civil engi-
neering require efficient computational methods, due to both the large scale of the problem and
the high number of random experiments required to accurately represent the uncertainty asso-
ciated with it. Infrastructure reliability assessment, risk estimation, and community resilience
analysis performed at the regional scale are typical examples of these applications [9, 6].

IASSAR

Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure
12th Int. Conf. on Structural Safety and Reliability, Vienna, Austria, 6–10 August 2017

Christian Bucher, Bruce R. Ellingwood, Dan M. Frangopol (Editors)
c©2017 TU-Verlag Vienna, ISBN 978-3-903024-28-1

1327

In all these cases, Functional Quantization by Infinite-Dimensional Centroidal Voronoi Tessela-
tion (FQ-IDCVT) can be used to reduce the complexity of the stochastic problem. FQ-IDCVT
is a technique for the optimal selection (in the mean-square sense) of a predefined number N of
samples (“quanta”) of a random function and their associated weights [13]. To select this opti-
mal set of samples, an IDCVT must be built. It has been proven that the IDCVT corresponds to
N regions of the functional space where the mean-square quantization error is minimized.
In previous works, FQ-IDCVT has been built using a methodology based on Lloyd’s method
[10]. The drawback of this algorithm is its high computational cost, which is an issue especially
for applications dealing with multi-dimensional random fields or when high-resolution is re-
quired. To address this issue, several clustering techniques are investigated to compare both the
computational cost and accuracy with respect to a benchmark solution.
After this introduction, the second section describes how clustering fits in the FQ-IDCVT frame-
work. In the third section, the clustering techniques employed in the paper are described. In the
fourth and fifth section the numerical results and conclusions are presented, respectively.

2 Functional Quantization by Infinite-Dimensional Centroidal
Voronoi Tessellation

Functional Quantization (FQ) is a technique for the optimal representation of a random func-
tion with a finite number of samples and their weights [11]. In particular, the FQ approach
consists of approximating a generic random function F with another random function FN ,
which can be fully described in a probabilistic sense by a finite number of N carefully se-
lected samples { fi}N

i=1 and their associated weights {pi}N
i=1 such that ∑N

i=1 pi = 1. Therefore,
FQ approximates a random function with a “simple function” instead of using parametric repre-
sentations, such as Karhunmen-Loève expansion or Spectral Representation. Specifically, multi-
dimensional FQ considers a random function F(ξ ,ω) defined in the probability space (Ω,F ,P)
as F : Ξ×Ω→ R, where Ξ is the (multi-dimensional) space domain in Rn, Ω is the sample
space, ξ is a point in Ξ and ω is a point in Ω [3].
A random function as defined above could also be interpreted as a random variable F(ω) with
values in the space of square integrable functions: F : Ω→ L2(Ξ). Therefore, every outcome ω
of the sample space is mapped by the random function to a certain n-dimensional realization in
the L2(Ξ) space.
On the other hand, the random function FN , which approximates F , is defined as:

FN(ξ ,ω) =
N

∑
i=1

fi(ξ) ·1Ωi(ω); 1Ωi(ω) =

{
1, if ω ∈Ωi
0, otherwise. (1)

where the representative functions { fi(ξ)}N
i=1 are called “quanta” and 1Ωi is the indicator func-

tion associated with the event Ωi ⊂ Ω. Therefore, the probability space Ω is partitioned into a
mutually exclusive and collectively exhaustive sets {Ωi}N

i=1. Each event Ωi has an associated
probability P(Ωi) and a representative function fi(ξ), which is called “quantum”. Quantum
fi(ξ) represents all the sample functions associated with the ωs belonging to event Ωi. In sum-
mary, the approximation FN maps all outcomes ω ∈Ωi to the same quantum fi(ξ), whereas the
random function F maps each outcome ω to a different realization.
The principal characteristic of FQ is its optimality criterion, which is the mean square con-
vergence of the approximate representation FN to the actual random function F . Therefore, in
principle the quanta { fi(ξ)}N

i=1 selected by FQ to represent the various {Ωi}N
i=1 are always

going to be optimal (in the mean-square sense) for a specific number N, called “quantizer size.”
The same process of partitioning and approximation can also be seen in the space of square in-
tegrable functions L2(Ξ). From this perspective, the L2(Ξ) space is tasseled into {Vi}N

i=1, where

1328

each tassel Vi collects all the realizations corresponding to F(ω) with ω ∈ Ωi. Therefore, FQ
induces a tessellation {Vi}N

i=1 in the L2(Ξ) space and consequently a corresponding partition
{Ωi}N

i=1 of Ω. Based on this partition, the probability P(Ωi) associated with each event is com-
puted. Given the relationship between the two spaces, the probability PF(Vi) is equal to the
associate P(Ωi).
In order to construct the tessellation {Vi}N

i=1 and compute the corresponding weights, Miranda
and Bocchini [13] developed FQ-IDCVT. This technique is based on the idea of Voronoi Tes-
sellation (VT), which is a process of partitioning a finite-dimensional Euclidean space Rn into
regions {Ti}N

i=1 called “Voronoi tassels.” Each tassel has a generating point and is defined as:

Ti = {y ∈ Rn | ‖y− ŷi‖< ‖y− ŷ j‖ for j = 1,2, ...,N; j 6= i} (2)

where ‖·‖ is the Euclidean norm. According to Equation (2), all the points y∈Rn that belong to
tassel Ti are closer to the generating point ŷi than to any other generating point ŷ j 6=i. A special
case of VT is the Centroidal Voronoi Tessellation (CVT), where each generating point ŷi, is
also the centroid of the tassel Ti and is expressed as ȳi. Miranda and Bocchini [13] extended
the concept of CVT to the infinite-dimensional space of square integrable functions L2(Ξ), in
which case a tassel is defined as follows:

Ti = {F(ω) ∈ L2(Ξ) | ‖F(ω)− f̂i‖L2(Ξ) < ‖F(ω)− f̂ j‖L2(Ξ) for j = 1,2, ...,N; j 6= i} (3)

where f̂i is the generating point of Ti and ‖ · ‖L2(Ξ) is the L2(Ξ) norm. Equation (3) denotes that
all realizations F(ω) closer to f̂i than any other f̂ j 6=i are clustered in Ti. In this specific case
the generating points { f̂i}N

i=1 are also the centroidal points { f̄i}N
i=1 of {Ti}N

i=1. The tassels that
are generated to construct a CVT by Equation (3) will be used as the tassels in the FQ sense.
Therefore, Ti ≡Vi and f̂i ≡ f̄i ≡ fi.
To impose convergence of the approximate representation FN to the random function F , the
following functional called “distortion” needs to be minimized:

∆({Vi, fi}N
i=1) =

N

∑
i=1

∫

Vi

‖ f (ω)− fi‖L2(Ξ)dPF (4)

Luschgy and Pagés [11] proved that a global minimizer exists, and Miranda and Bocchini [13]
proved that this minimizer has to necessarily correspond to a CVT of L2(Ξ), that is equivalent
to an IDCVT, but may not be unique.
For practical applications, usually a large and representative set of samples of the random func-
tions is considered, and through the construction of the IDCVT, they end up being grouped (or
clustered) into N tassels according to the minimum ‖ · ‖L2(Ξ) norm. This clustering process can
be performed in several ways, some of which do not yield a IDCVT. In particular, when a finite
number Nsim of samples is used to represent the L2 space, the integral in Equation (4) is replaced
by a sum:

∆({Vi, fi}N
i=1) =

N

∑
i=1

Nsim

∑
j=1
‖F(ω j)− fi‖L2(Ξ) ·1Ωi(ω) (5)

The function F and so each of its realizations F(ω j) are discretized with a resolution equal to
R [3].
Miranda and Bocchini [13] adapted Lloyd’s Algorithm used in a finite-dimensional Euclidean
space and extended it to cluster random functions for FQ-IDCVT. The algorithm proceeds as
follows:

1329

1. Randomly selects N out of Nsim realizations as the initial quanta { fi}N
i=1

2. Performs a Voronoi tessellation of the L2(Ξ) space

3. Updates each quantum with the average of the samples in the cluster

4. Returns to Step 2 until the functional distortion in Equation (5) converges to a stable value

To guarantee that convergence has been met, i.e. Equation (5) has been minimized, the algorithm
should stop when in one iteration all realizations remain in the same cluster.

3 Clustering Algorithms
In this section, we will provide first a conceptual overview of the benchmark algorithm (Lloyd’s
algorithm with exhaustive search) and then describe the four alternatives that we have selected
and considered for the quantization process. These algorithms were developed in the field of
machine learning and data mining in computer science and adapted herein to cluster random
functions.
For example, the first alternative preserves the general scheme of Lloyd’s algorithm, but takes
advantage of the principle of triangle inequality to construct the VT [4, 7]. The other alternatives
replace completely Lloyd’s approach, and they are hierarchical classification tree, k-nearest-
neighbor, and k-D Tree nearest-neighbor. There are other clustering techniques that have not
been covered in this survey, adopting different machine learning methods, such as Support Vec-
tor Clustering, AdaBoost, and Self Organizing Maps [15, 8].

3.1 Lloyd’s Algorithm with Exhaustive Search (LX)
The simplest and most accurate way to form a VT of the L2 space in step 2 of Lloyd’s algorithm
is to perform an exhaustive search. This means that at each iteration of the algorithm, the dis-
tances between each realization F(ω j) and all quanta { fi}N

i=1 are computed, and each realization
is assigned to the cluster of the closest quantum. Although this basic clustering algorithm is con-
ceptually straightforward, its computational cost is an issue when multi-dimensional fields are
considered and the resolution R is large. The complexity of Lloyd’s algorithm with exhaustive
search is O(Nsim ·N ·R ·T), where T is the number of iterations needed to meet convergence.
The solution of this operation is not unique because it depends on the initial selection of the
random quanta in step 1 [15]. However, the numerical examples presented in [13] show that the
choice of initial quanta leads to different solutions but with extremely similar distortion (less
than 0.5%). This means that the clustering algorithm may converge to local minima, which are
very close to the global minimum.
Arthur and Vassilvitskii proposed a variant called “k-means++” which selects an optimal initial
set of quanta and allows LX to reduce the number of iterations required to reach convergence
[1].

3.2 Lloyd’s Algorithm Combined with Elkan’s Algorithm (LE)
Elkan’s algorithm replaces the exhaustive search in Lloyd’s Algorithm with a more efficient
technique for the construction of the VT (i.e., step 2). It performs much better than LX when
either the number of quanta or the resolution of the problem are large [4, 7]. In particular, the
algorithm reduces the number of distances calculated by exhaustive search by leveraging the
triangular inequality:

‖F(ω j)− fm‖ ≤ ‖F(ω j)− fn‖+‖ fn− fm‖ (6)

1330

Where F(ω j) is a generic realization and fm, fn are two generic quanta. From the inequality, it
can be proven also that if ‖F(ω j)− fm‖≤ 0.5 ·‖ fn− fm‖, then it is also true that ‖F(ω j)− fm‖≤
‖F(ω j)− fn‖ and it is not necessary to compute ‖F(ω j)− fn‖ [4]. The algorithm proceeds
iteratively as Lloyd’s Algorithm, but before computing the distance between a realization and
the updated quanta in the current iteration, it first determines which quanta are candidates to
be the closest, using the mentioned inequality and a system of upper- lower-bounds [7]. The
complexity of Elkan’s algorithm is O(Nsim ·N · R+N2 · R · T), with T being the number of
iterations to meet convergence.

3.3 Hierarchical Classification Trees (CT)
A classification tree algorithm searches for similarities among the Nsim realizations in L2(Ξ),
and groups them together in one of two possible ways. The first approach is agglomerative
(bottom-up), which means that each of the Nsim realizations represents a cluster itself, and then
pairs are iteratively merged to form larger clusters based on the L2 norm until N clusters are
reached. Although several criteria for merging the clusters are available, in this study, the L2

norm is computed among the centroids of the clusters. The second approach is divisive (top-
down), which means that the clustering process initially assumes that all the Nsim realizations
are in one cluster. Then the algorithm separates these elements binarily into subgroups using a
threshold, until N subgroups are reached [8].
Most of the CT algorithms are agglomerative [8], and thus only this type of CT is considered
in this study. The complexity of the agglomerative CT is O((Nsim−N)2 ·R), which means it
requires at most (Nsim−N)2 operations times the resolution R to complete the classification of
Nsim realizations into N clusters. This algorithm becomes slow for large datasets [12].
Even though this algorithm uses the L2 norm, and represents the clusters using the centroids
(i.e., the quanta), it does not attempt to create a CVT of the space, nor do the following two
alternatives.

3.4 Exhaustive k-Nearest Neighbor Search (KN)
The basic idea behind the exhaustive k-Nearest Neighbor search algorithm is to evaluate the
proximity of each realization with its neighbor quanta. The neighborhood is defined as a hy-
percube centered at the realization to be classified, and the size of the hypercube expands by
increments δ until k quanta are enclosed in the neighborhood. Defining if a quantum belongs
to a hypercube can be done simply by looking at inequalities, and it is much faster than com-
puting the distance from the realization. In the exhaustive version of the algorithm, parameter
k coincides with N. Once the neighbor quanta have been identified, there are several criteria to
assign a realization to one of them. However, in this study, each realization is assigned to the
closest quanta in the neighborhood based on the L2 norm. Also, the initial estimate of the N
quanta is computed using an exhaustive search for a random subset of Nsim of size equal to 4 ·N.
The complexity of this initialization is O(N), while the complexity of the search algorithm is
O(Nsim ·N ·R). A variant of this technique, combines KN with classification trees in subregions
of the domain. One example is the k-D Tree method [2] that follows.

3.5 k̄-D Tree (KD)
The k̄-D Tree algorithm is a generalization of the binary tree in the k̄ dimensional space
Rk [2]. In our case, parameter k̄ is equal to the resolution R of the realizations. The en-
tire space is split into binary cells using hyperplanes perpendicular to selected directions at
certain thresholds. The hyperplanes are in general perpendicular to the k̄-dimensional axes.
For instance, in a 4-D space, the four hyperplanes would be perpendicular to the directions
(1,0,0,0),(0,1,0,0),(0,0,1,0), and (0,0,0,1), although other directions can be chosen. The

1331

threshold is typically chosen to be the median of the points’ coordinates along the axes in each
cell, but other approaches are also valid. The splitting operation is repeated recursively until
each cell includes one quantum. Then, KN is performed within each cell independently. Usu-
ally, each neighbor stops growing when it reaches the first quantum (i.e., parameter k of KN is
equal to 1, and it should not be confused with parameter k̄ of KD, which is equal to R). The com-
plexity for training the k̄-D Tree is O(N · logN) because in general each visited node of the tree
reduces the number of points by half [7]. The searching process has complexity O(k ·Nsim ·R).

4 Numerical Example
To compare the performance of the algorithms described in the previous section, a 1D non-
stationary random process was used as numerical example. All the numerical simulations were
performed with the commercial software MAT LAB R© [14] installed on a workstation with 64GB
of RAM and two Intel R© CPUs Xeon E5-2620 with six cores and frequency equal to 2.0GHz.
In this example, 3,000 realizations were generated for this process characterized by the follow-
ing spectral density function SFF(ω) and modulating function A(t), depending on the radial
frequency ω and time t respectively.

SFF(ω) =
σ2 ·b3 ·ω2

4
· exp(−b · |ω|)

A(t) =





3·t
P if t 6 P

3
1 if 1

3 < t 6 3·P
5

exp[−0.02 · (t− 3·P
5)] if t > 3·P

5

(7)

The coefficients σ and b are the standard deviation and the correlation parameter of the ran-
dom process, set equal to 2.0 and 1.0 respectively, while P is a parameter of the modulating
function, which depends on the number of points in the frequency domain Nω and the cutoff
frequency ωu. In this example, P is equal to 2πNω

ωu
, with Nω = 32 and ωu = 3.14 rad/s. A set

Figure 1: The figure shows five random samples out of 3,000 realizations of a uni-dimensional, non-
stationary random process with zero mean, standard deviation σ = 2.0 and correlation parameter b =
1.0.

1332

Table 1: Discretization of the random process.

Type of Process Parameter R - Random process’s discretization size

1D Non-Stationary 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072

of 5 random realizations for this process is shown in Figure 1. FQ-IDCVT was performed on
the Nsim samples and each sample was discretized with R points in the time domain. This means
that as parameter R increases, the numerical approximation of the random function F improves.
The drawback is that in such a case the computational cost increases. If a d-dimensional random
field with resolution R is analyzed, the computational cost increases proportionally to Rd . In this
example, eleven independent cases for the resolution R were considered, as listed in Table 1.
In each case, FQ-IDCVT was performed with each of the five algorithms investigated. Four
out of five algorithms (i.e., LX, CT, KN, and KD) are standard tools of the Statistics and Ma-
chine Learning Toolbox of MAT LAB R© [14]. The code for Elkan’s classification algorithm was
retrieved from [5]. The performance of each algorithm is measured in terms of computational
time and relative distortion (RD) with respect to LX, which is considered the reference. RD was
estimated using:

RD =
∆({Vi, fi}N

i=1)LX−∆({Vi, fi}N
i=1)z

∆({Vi, fi}N
i=1)LX

(8)

where z = (LE, CT, KN, KD). Figure 2 displays a comparison of the computational time and

Figure 2: (a) computational time required by each algorithm to perform FQ-IDCVT with 3,000 samples
for different discretization sizes of the random process; (b) relative distortion between Lloyd’s algorithm
with exhaustive search (LX), Lloyd’s algorithm with Elkan’s method (LE), Classification Tree (CT),
k-Nearest Neighbor (KN), and k̄-D Tree algorithm (KD) for different resolutions.

1333

the relative distortion among the algorithms and the benchmark solution. Figure 2a shows that
the computational cost increases as the discretization size increases, and that the performance
among the algorithms varies by almost two orders of magnitude. As expected, for large samples,
the CT is the algorithm with the highest computational time, while the fastest algorithms for the
quantization are KN, and KD. When KN, and KD are compared to LX, the computational time
is about 1.5 orders of magnitude smaller for values of R greater than 1,024. For relatively small
values of R, LE is similar to LX, because the cost of computing distances is comparable to the
time that the algorithms requires to check the triangle inequalities with the other quanta.
In terms of constructing the CVT tessellation, because only LX and LE are iterative procedures,
they can construct a CVT, while CT, KN, and KD are not iterative and do not construct a CVT.
In this example, for CT, KN, and KD the percentage of realizations to be rearranged in order
to achieve a CVT is in the range of 15-25%, as shown in Table 2. Finally, the LE algorithm is
about 66% faster than LX and about one order of magnitude slower than KN and KD, but it is
the most accurate alternative to LX. For instance, Figure 2b shows that despite the size of the
parameter R, the LE algorithm is always the one that finds quanta with the minimum distortion,
and thus the closest to Lloyd’s Algorithm with exhaustive search. All the other algorithms also
provide values of the relative distortion that are not sensitive to the discretization parameter R.
CT gives values of the relative distortion in the range 2.0− 2.5% while the relative distortion
obtained with KN and KD oscillates around 3.0%.
Figure 3 shows a graphical representation of the computational time versus the relative distor-
tion obtained with all clustering algorithms for a fixed value of the resolution R equal to 128;
1,024; 16,384 and 131,072. In each subplot, a vertical line indicates the benchmark solution
with respect to time. Algorithms falling to the right of the line are not computationally efficient.

Figure 3: Time vs Relative Distortion for different values of the random process’s discretization param-
eter R = 128, 1,024, 16,384, and 131,072.

1334

Table 2: Summary of results

Algorithm CVT CVT Achieved Comp. Time Rel. Distorion
[%] [sec.] [%]

LX 3 100.0 [2.5 - 2.9e+3] N/A
LE 3 100.0 [3.0 - 0.8e+3] [0.4 - 0.8]
CT 7 78.1 [16.4 - 7.1e+3] [2.3 - 2.6]
KN 7 86.8 [0.5 - 0.08e+3] [2.5 - 3.2]
KD 7 76.6 [0.4 - 0.09e+3] [2.4 - 3.5]

The best compromise is represented by the point closest to the origin, which turns out to be EL
for high resolutions and LX for low resolutions.

5 Conclusion
In this paper the computational efficiency of five clustering algorithms was investigated when
FQ-IDCVT of a random function was performed. Among these algorithms, Lloyd’s Algorithm
with exhaustive search was used as the benchmark solution.
The results of the analyses show that among the four algorithms compared to LX, Elkan’s
algorithm is the most accurate, with a relative distortion equal to 0.6%, while KN, KD, and
CT are in the range of 2.3− 3.5%. The lowest value observed in this range is obtained with
the classification tree algorithm. On the other hand, KN and KD are faster than LX by 1.5
orders of magnitude while Elkan’s algorithm is only 66% faster than the benchmark approach,
and the classification tree algorithm is the slowest. According to these results, the clustering
algorithm that provides the best trade-off in terms of accuracy and efficiency for the functional
quantization of multi-dimensional random field seems to be Elkan’s algorithm.

Acknowledgement
The support from Lehigh University through the CORE Project “Functional Quantization of
Ebola Zoonotic Spreading” is gratefully acknowledged.

References
[1] D. Arthur and S. Vassilvitskii. “k-means++: the advantages of careful seeding”. In: Pro-

ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (2007).

[2] S. Arya. “Algorithms for fast vector quantization”. In: Data Compression Conference,
1993. (1993), pp. 1–17.

[3] V. Christou, P. Bocchini, and M. J. Miranda. “Optimal representation of multi-
dimensional random fields with a moderate number of samples: application to stochastic
mechanics”. In: Probabilistic Engineering Mechanics 44 (2016), pp. 53–65.

[4] C. Elkan. “Using the Triangle Inequality to Accelerate k-Means”. In: Proceedings of the
Twentieth International Conference on Machine Learning (ICML-2003) (2003), pp. 147–
153.

[5] Fast k-means code for Matlab Source File. http://cseweb.ucsd.edu/~elkan/
fastkmeans.html. Accessed: 2016-12-20.

[6] G. Fiorillo. “Reliability and Risk Analysis of Bridge Networks Under the Effect of High-
way Traffic Load”. PhD thesis. The City College of New York, CUNY., 2015.

1335

[7] G. Hamerly. “Making k -means even faster”. In: 2010 SIAM international conference on
data mining (SDM 2010) (2010), pp. 130–140.

[8] G. James et al. An Introduction to Statistical Learning, with Applications in R. Springer,
2013.

[9] A. Karamlou and P. Bocchini. “Sequencing algorithm with multiple-input genetic opera-
tors: Application to disaster resilience”. In: Engineering Structures 117 (2016), pp. 591–
602.

[10] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information
Theory 28.2 (1982), pp. 129–137.

[11] H. Luschgy and G. Pagès. “Functional quantization of Gaussian processes”. In: Journal
of Functional Analysis 196.2 (2002), pp. 486–531.

[12] O. Maimon and L. Rokach. Data Mining and Knowledge Discovery Handbook. Springer,
2010.

[13] M. J. Miranda and P. Bocchini. “A versatile technique for the optimal approximation of
random processes by Functional Quantization”. In: Applied Mathematics and Computa-
tion 271 (2015), pp. 935–958.

[14] The Mathworks Inc. Matlab version 7.8 - R2009a. Natick, Massachusetts, 2009.

[15] X. Wu et al. Top 10 algorithms in data mining. Vol. 14. 1. 2008, pp. 1–37.

1336

