

FE Modelling approaches for soil-bridge systems towards better emergency response planning

Authors: Wazeer Ali, Dr Helder de Sousa and Dr Paolo Bocchini

Presentation: 11th October 2018, University of Porto, Porto, Portugal

Index

- Background
- DF 12th DIANAmee Gaps in the state of the art & objectives

PDF 12th C

NAmeetin

- Methodology ٠
- Case study
 - Overview _
 - E 12th DIANAmeeting al ANAmeeting FE modelling approach
 - Results I, II, III
- Conclusion 122

Background

Risk analysis in bridge management on, TN ✓ Prioritise resources' allocation ✓ Formulate Emergency evacuation plans Fragility curves Shelby, TN Legend ✓ Support vulnerability assessment DeSoto, MS Bridge Network Node Marshall, MS Memphis Road Network Formulation by means of the function: Shelby County, TN Memphis MPO Boundary Memphis MPO TAZ Junning **Evacuation Zone** 3..... Safe Zone $\ln(S_{\rm d}/S_{\rm c})$ $P[D > C | \text{IM}] = \Phi$ $\sqrt{\beta_{\rm D|IM}^2 + \beta_{\rm c}^2}$ Projection: NAD 1983 State Plane FIPS 4100 Feet. Prepared by Liang Chang, MAE Center, July 2009. PGA (Data Sources: Memphis MPO and US Census Bureau. (Chang et. al., 2012)

Gaps in the state-of-art and objectives

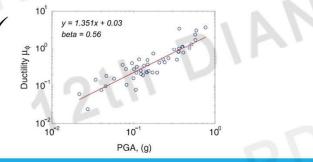
Gaps

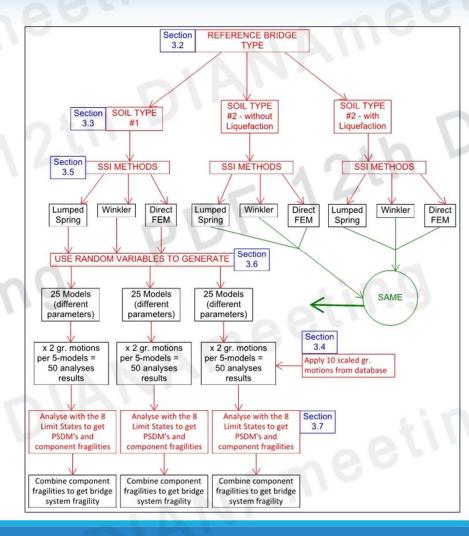
- ✓ Variances in site conditions are loosely addressed
- ✓ One SSI method used to assess liquefaction
- ✓ Costs associated with different levels of analysis

Objectives

- ✓ Assessment of bridge fragility on 2 different site profiles
- ✓ Effects of soil-structure interaction analysis
- ✓ Cost-benefit analysis associated with different models
- Bridge deck displacements (value-engineering)

Methodology


□ 3 Types of SSI models (section 3.5)


- ✓ Winkler spring
- ✓ Lumped spring
- ✓ Direct FE method

Random variables (section 3.6.1)

Random variable	Distribution type	Parameter 1		Parameter 2		Units	
Steel strength	Lognormal	λ=	6.13	ξ-	0.08	Mpa	
Concrete strength	Normal	μ=	33.8	σ=	4.3	Mpa	
Deck mass	Uniform	<i>l</i> =	0.9	<i>u</i> =	1.1	%	
Fixed Bearing coefficient of friction	Lognormal	λ=	-1.56	ξ=	0.5		
Rocker Bearing coefficient of friction	Lognormal	$\lambda =$	-3.22	ξ =	0.5		

□ Probabilistic Seismic Demand Model (section 4.1)

Case study - overview

- □ Type of Bridge:
 - ✓ Multi Span Continuous Steel Girder

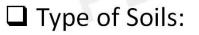
30.3 m

30.3 m

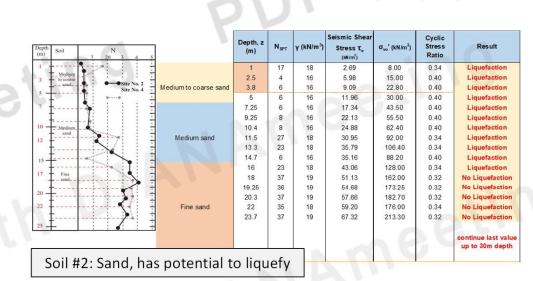
Fixed

Bearings

30.3 m


Bridge

Elevation


Rocker

Bearing

✓ Pile foundations

Deck

cross-section

0.178 m

8 @ 1.83m girders

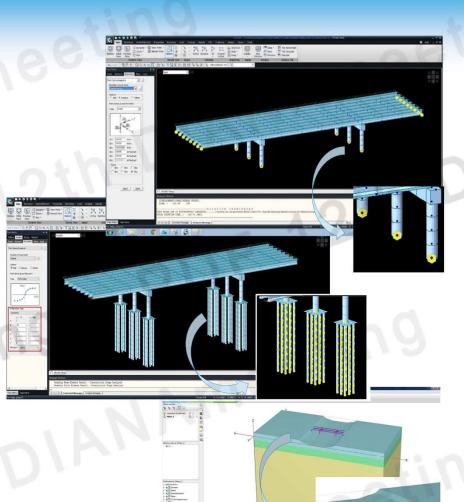
Deck

15 m

(Nielson, 2005)

Case study – FE modelling approach

Lumped spring model (*MIDAS software*)


- ✓ Spring parameters from pier & abutment analyses
- ✓ Faster analysis run-time than Winkler (\cong 3 min)
- ✓ Higher level of preparatory work

Winkler spring model (MIDAS software)

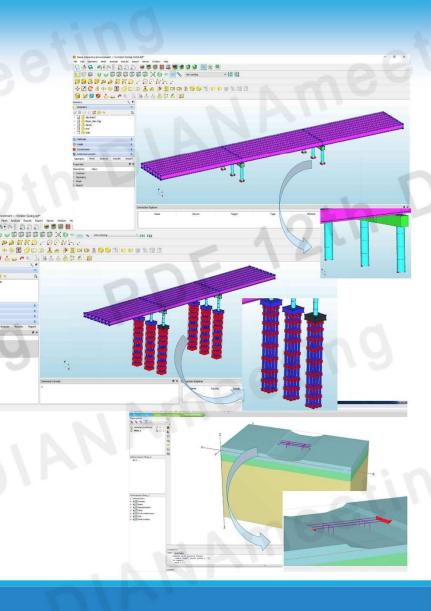
- ✓ P-y curves derived using ALP software
- ✓ Abutment spring parameter from separate analysis
- ✓ Relatively fast analysis run-time (\cong 15 min)

Direct FE model (PLAXIS software)

- ✓ Soil modelled as linear strain elements
- Boundary distances affect analysis results
- Relatively long analysis run-time (\cong 30 min)

Case study – FE modelling approach

Lumped spring model (DIANA software)

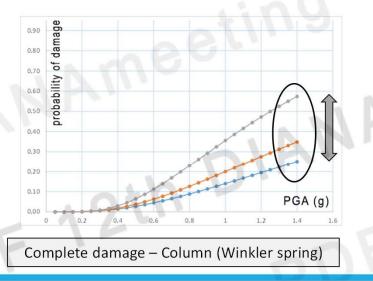

- ✓ Spring parameters from pier & abutment analyses
- ✓ Faster analysis run-time than Winkler
- ✓ Higher level of preparatory work

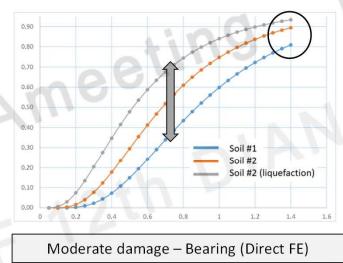
Winkler spring model (DIANA software)

- ✓ P-y curves derived using ALP software
- ✓ Abutment spring parameter from separate analysis
- ✓ Relatively fast analysis run-time

Direct FE model (PLAXIS software)

- ✓ Soil modelled as linear strain elements
- Boundary distances affect analysis results
- Relatively long analysis run-time (\cong 30 min)

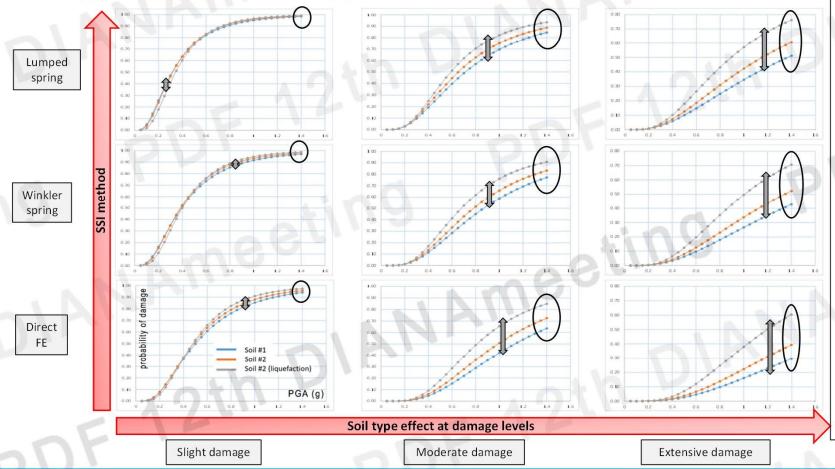



Case study: Results I – bridge components

As a function of the type of the SSI model approach:

study: Result	s I – bria	ge compo	onents							
function of the type of the SSI model approach:										
	Column/Pier	Fixed bearings	Rocker bearings	Abutments	Legend:					
Highest probability of failure	Lumped Spring	Lumped Spring	Direct FE Method	Direct FE Method	Highest values for Direct FE					
- A G	Winkler Spring	Winkler Spring	Lumped Spring	Lumped Spring	Highest values for					
Lowest probability of failure	Direct FE Method	Direct FE Method	Winkler Spring	Winkler Spring	Lumped spring					

As a function of the type of soil:

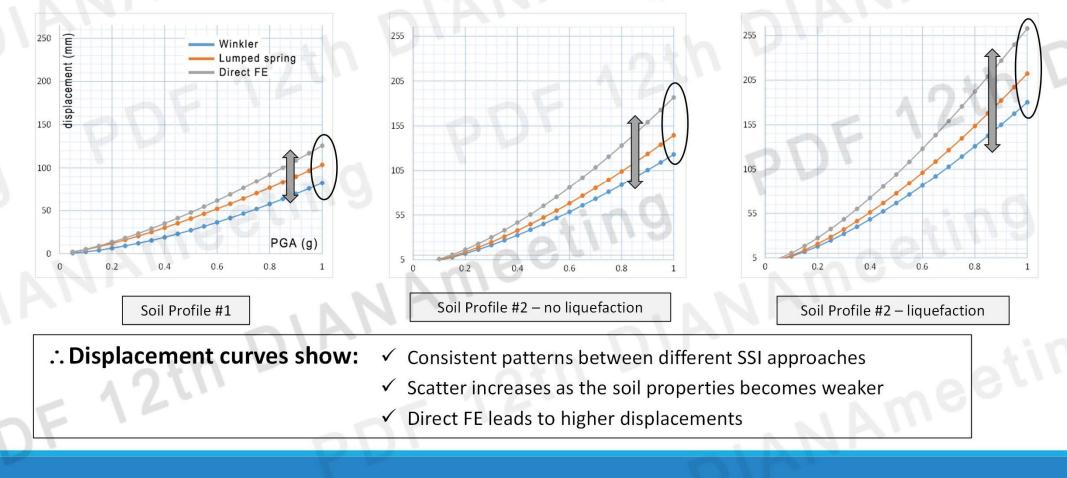


: Fragility curves show:

- ✓ High scatter between different soil profiles,
- ✓ Different patterns observed depending on the bridge component,
- ✓ Soil #2 (with liquefaction) has the highest probability,
- ✓ Soil #1 has lowest probability.

Case study: Results II – bridge system

Type of the SSI model approach vs. the type of soil:



.:. Fragility curves show:

- Consistent patterns between different SSI approaches,
- Lower probability of failures as the SSI approach becomes more refined,
- ✓ Soil type has more effect at higher levels of damage,
- Lumped-spring method produced highest probabilities, followed by Winkler-spring and Directmethod.

Case study: Results III – deck displacements

□ As a function of both the SSI model approach and the type of soil :

Conclusions

Impact of SSI modelling on fragility curves

- Greater effect at the bridge component level (important for retrofitting decisions)
- Consistent patterns between different SSI approaches at the bridge system level \checkmark
- Scatter increases between results from different SSI models as the soil properties becomes weaker \checkmark
- Lumped-spring method produced highest probabilities of failure but it is the fastest method
- Direct FE leads to higher displacements meetin

Comparison of modelling methods

- ✓ A more comprehensive SSI approach may not always be the most efficient approach
- ✓ The Winkler spring method provides acceptable results, on a comparative basis
- Define requirements (e.g. probability of failure, displacements, etc) before selecting a method of analysis

